应用Affymetrix全基因组表达谱芯片研究正常人上皮细胞对化学致癌物BPDE的应答反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并(a)芘-7,8-二氢二醇-9,10-环氧化物(BPDE)是多环芳烃类(PAHs)环境化学污染物苯并(a)芘(BaP)在体内的代谢活化产物,并被认为是BaP的终致癌物。BPDE致突变、致癌并不是一个细胞被动接受的过程。BPDE引起大块加成性DNA损伤会激活细胞内核苷酸切除修复、细胞周期阻滞等保护性机制,也会激活低保真度的跨损伤复制机制引发DNA突变,以及激活一些可能有促癌作用的应激信号通路等。因此,要阐明BPDE的致突变、致癌机制,需全面了解细胞对BPDE的应答反应,即基因和毒物的相互作用。
     我们分别采用Affymetrix HG-U133 Set(~33000个基因)和HG-U133 Plus 2.0(~39000个基因)全基因组芯片来筛选FL人羊膜上皮细胞对不同剂量BPDE(0.005,0.05和0.5μM)处理后同一时间(4 h)的应答基因和同一剂量BPDE(0.05μM)处理后不同时期(1,10和22 h)的应答基因,以较为全面地研究正常人上皮细胞对BPDE的应答反应。基于TaqMan低密度芯片技术对基因芯片结果进行中等通量的定量RT-PCR验证获得了一大批可信的应答基因。
     剂量效应研究揭示了基因表达(H1F0,AURKA,CCNB1,CENPA,CDC20,KIF14,KIF2C,PKMYT1和EGFR,IGF1R,PRKCA,ITPR1,ATF3,HEXIM1,MYC,SAT1,GDF15,PEA15等)和细胞周期以及细胞毒性表型的紧密关联。转录调控分析结合实验验证发现部分基因的表达改变和BPDE激活一些应激反应相关的转录因子(AP-1,ATF3,NF-κB,p53,Elk-1,CREB和ATF6等)有关,有助于揭示细胞对BPDE应答从应激信号通路,相关转录因子到靶基因的整个过程。个别基因的改变,如CCNE1和CCNE2的上调等可能和BPDE的致癌机制有关。
     时间效应研究中对细胞周期,细胞生长和凋亡相关基因(H1F0,AURKA,CCCNB1,CENPA,KIF14,NEDD9,SGOL2,RCC1和DLSP1,EIF5A,BIRC4,CTGF,ATF1,JUN,PTEN,CYR61,TOB1,MUC1,FOS,MIRN21等)的分析,揭示了细胞对低浓度BPDE的反应模式,即细胞从启动应答,到整合效应,再到恢复的应答过程。相关基因的改变,如CYR61,MUCl,FOS和MIRN21等基因的上调可能和BPDE的致癌机制有关。
     对基因芯片结果进行高通量分析发现细胞对BPDE的应答基因涉及广泛的功能包括细胞周期调节,转录调节,RNA剪接、蛋白质代谢、泛素循环、脂类代谢、细胞骨架、细胞内运输、细胞生长、凋亡、信号转导、DNA修复和DNA损伤反应等;以及广泛的信号转导通路如MAPK、黏着斑、细胞周期、Wnt通路和TGFbeta通路等,有助于从全局了解细胞对BPDE的应答机制。对于重要的应答基因和通路与BPDE致突变和致癌机制的关系有待具体的实验研究。
(±)-anti-benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) is one of the metabolicproducts of benzo(a)pyrene (BaP),which belongs to the polycyclic aromatichydrocarbons (PAHs) environmental chemical pollutants.BPDE is considered as theultimate carcinogen of BaP.BPDE causing mutagenesis and carcinogenesis is not apassively accepted process by the cell.BPDE induces bulky-adduct DNA damage,which would activate intracellular nucleotide excision repair (NER) and cell cyclearrest,etc.protective mechanisms,also trigger the low-fidelity translesion replicationmechanism that leads to DNA mutations,and stimulate some tumor-promotive stresssignaling pathways,etc.Hence,a comprehensive understand of the cellular responseto BPDE,i.e.,the interaction between genes and toxicants,is essential for uncoveringthe mechanisms underlying BPDE-induced mutagenesis and carcinogenesis.
     We utilized Affymetrix HG-U133 Set (~33000 genes) and HG-U133 Plus 2.0(~39000 genes) whole-genome microarrays,respectively,to obtain responsive genestriggered by various doses (0.005,0.05 and 0.5μM) of BPDE at a same time point (4h) after treatment and by a single dose (0.05μM) of this carcinogen at various timepoints (1,10 and 22 h) after treatment in FL human amnion epithelial cells.Thereby,to rigorously investigate the cellular response to BPDE in normal human cells.Amedium-throughput quantitative RT-PCR validation of the microarray results based on TaqMan Low Density Array has revealed a flock of confident responsive genes.
     The dose-dependent effect study revealed that gene expression (H1FO,A URKA,CCNB1,CENPA,CDC20,KIF14,KIF2C,PKMYT1 and EGFR,IGF1R,PRKCA,ITPR1,ATF3,HEXIM1,MYC,SAT1,GDF15,PEA15,etc.) and the cell cycle andcytotoxictiy phenotypes were tightly linked.Transcriptional regulatory analysiscombined with experimental validation observed that a part of gene expressionchanges was due to the activation of some stress response-related transcription factors(AP-1,ATF3,NF-κB,p53,Elk-1,CREB and ATF6 etc.) by BPDE treatment.Thushelps to disclose the whole process of cellular response to BPDE from stress signalingpathways,related transcription factors to target genes.The change of a few genes,e.g.,the up-regulation of CCNE1 and CCNE2 might be associated with the mechanism ofBPDE-induced carcinogenesis.
     Through analysis of the cell cycle,cell growth and apoptosis-related genes (H1FO,A URKA,CCNB1,CENPA,KIF14,NEDD9,SGOL2,RCC1 and DUSP1,EIF5A,BIRC4,CTGF,ATF1,JUN,PTEN,CYR61,TOB1,MUC1,FOS,MIRN21,etc.),the time-courseeffect study revealed a model of celluar response to low-dose BPDE,i.e.,from start ofresponse,to integration and effect-generation,then to recovery.The alteration of somegenes,e.g.,up-regulation of CYR61,MUC1,FOS and MIRN21,etc.,might be relatedwith the mechanism of BPDE-induced carcinogenesis.
     High throughput analysis of the microarray results showed that the responsivegenes to BPDE were involved in multiple functions including cell cyle regulation,transcription regulation,RNA splicing,protein metabolism,ubiqutin cycle,lipidmetabolism,cytoskeleton,intracellular transport,cell growth,apoptosis,signaltransduction,DNA repair and DNA damage response etc.;and extensive signalingpathways including MAPK,focal adhesion,cell cycle,Wnt signaling pathway andTGFbeta.pathway etc.These observations contribute to a prospective view of thecellular response to BPDE.The relationships between some important responsive genes and pathways and the mechanism of BPDE-induced mutagenesis and carcinogenesisawait concrete experimental investigation in future.
引文
[1]Wogan,G.N.(1989).Markers of exposure to carcinogens.Environ Health Perspect 81,9-17.
    [2]Yang,W.(2005).Portraits of a Y-family DNA polymerase.FEBS Lett 579,868-72.
    [3]Wei,S.J.et al.(1991).Dose-dependent differences in the profile of mutations induced by an ultimate carcinogen from benzo[a]pyrene.Proc Natl Acad Sci U S A 88,11227-30.
    [4]Hussain,S.P.et al.(2001).Mutability of p53 hotspot codons to benzo(a)pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung.Cancer Res 61,6350-5.
    [5]Mukhopadhyay,S.,Clark,D.R.,Watson,N.B.,Zacharias,W.and McGregor,W.G.(2004).REV1 accumulates in DNA damage-induced nuclear foci in human cells and is implicated in mutagenesis by benzo[a]pyrenediolepoxide.Nucleic Acids Res 32,5820-6.
    [6]Chiapperino,D.et al.(2005).Error-prone translesion synthesis by human DNA polymerase eta on DNA-containing deoxyadenosine adducts of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene.J Biol Chem 280,39684-92.
    [7]Bi,X.,Slater,D.M.,Ohmori,H.and Vaziri,C.(2005).DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint.J Biol Chem 280,22343-55.
    [8]van Steeg,H.(2001).The role of nucleotide excision repair and loss of p53 in mutagenesis and carcinogenesis.Toxicol Lett 120,209-19.
    [9]Denissenko,M.F.,Pao,A.,Pfeifer,G.P.and Tang,M.(1998).Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers.Oncogene 16,1241-7.
    [10]Jeffy,B.D.,Chen,E.J.,Gudas,J.M.and Romagnolo,D.F.(2000).Disruption of cell cycle kinetics by benzo[a]pyrene:inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2.Neoplasia 2,460-70.
    [11]Li,J.,Tang,M.S.,Liu,B.,Shi,X.and Huang,C.(2004).A critical role of PI-3K/Akt/JNKs pathway in benzo[a]pyrene diol-epoxide (B[a]PDE)-induced AP-1 transactivation in mouse epidermal C141 cells.Oncogene 23,3932-44.
    [12]Li,J.et al.(2004).Differential effects of polycyclic aromatic hydrocarbons on transactivation of AP-1 and NF-kappaB in mouse epidermal cl41 cells.Mol Carcinog 40,104-15.
    [13]Zhang,X.,Yu,Y and Chen,X.(1994).Evidence for nontargeted mutagenesis in a monkey kidney cell line and analysis of its sequence specificity using a shuttle-vector plasmid.Mutat Res 323,105-12.
    [14]Pisarchik,A.,Wortsman,J.and Slominski,A.(2004).A novel microarray to evaluate stress-related genes in skin:effect of ultraviolet light radiation.Gene 341,199-207.
    [15]Tsai,M.H.et al.(2006).Transcriptional responses to ionizing radiation reveal that p53R2 protects against radiation-induced mutagenesis in human lymphoblastoid cells.Oncogene 25,622-32.
    [16]Whiteside,M.A.,Chen,D.T.,Desmond,R.A.,Abdulkadir,S.A.and Johanning,G.L.(2004).A novel time-course cDNA microarray analysis method identifies genes associated with the development of cisplatin resistance.Oncogene 23,744-52.
    [17]Akerman,G.S.et al.(2004).Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells.Mutat Res 549,43-64.
    [18]Belitskaya-Levy,I.,Hajjou,M.,Su,W.C.,Yie,T.A.,Tchou-Wong,K.M.,Tang,M.S.,Goldberg,J.D.and Rom,W.N.(2007).Gene profiling of normal human bronchial epithelial cells in response to asbestos and benzo(a)pyrene diol epoxide(BPDE).J Environ Pathol Toxicol Oncol 26,281-94.
    [19]Yu,Z.,Ford,B.N.and Glickman,B.W.(2000).Identification of genes responsive to BPDE treatment in HeLa cells using cDNA expression assays.Environ Mol Mutagen 36,201-5.
    [20]Hockley,S.L.,Arlt,V.M.,Jahnke,G.,Hartwig,A.,Giddings,I.and Phillips,D.H.(2008).Identification through microarray gene expression analysis of cellular responses to benzo(a)pyrene and its diol-epoxide that are dependent or independent of p53.Carcinogenesis 29,202-10.
    [21]Luo,W.,Fan,W.,Xie,H.,Jing,L.,Ricicki,E.,Vouros,P.,Zhao,L.P.and Zarbl,H.(2005).Phenotypic anchoring of global gene expression profiles induced by N-hydroxy-4-acetylaminobiphenyl and benzo[a]pyrene diol epoxide reveals correlations between expression profiles and mechanism of toxicity.Chem Res Toxicol 18,619-29.
    [22]Wang,A.et al.(2003).Response of human mammary epithelial cells to DNA damage induced by BPDE:involvement of novel regulatory pathways.Carcinogenesis 24,225-34.
    [23]Liu,G.and Yu,Y.(2006).Endoplasmic reticulum stress is involved in N-methyl-N'-nitro-N-nitrosoguanidine,benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide and mitomycin-induced cellular response in FL cells.Chinese J Pathophysiol 22,1-6.
    [24]Liu,G.,Shang,Y.and Yu,Y.(2006).Induced endoplasmic reticulum(ER)stress and binding of over-expressed ER specific chaperone GRP78/BiP with dimerized epidermal growth factor receptor in mammalian cells exposed to low concentration of N-methyl-N'-nitro-N-nitrosoguanidine.Mutat Res 596,12-21.
    [25]Shen,J.,Wu,M.and Yu,Y.(2006).Proteomic profiling for cellular responses to different concentrations ofN-methyl-N'-nitro-N-nitrosoguanidine.J Proteome Res 5,385-95.
    [26]Meergans,T.,Albig,W.and Doenecke,D.(1997).Varied expression patterns of human H1 histone genes in different cell lines.DNA Cell Biol 16,1041-9.
    [27]Dutertre,S.et al.(2004).Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition.J Cell Sci 117,2523-31.
    [28]Lindqvist,A.,van Zon,W.,Karlsson Rosenthal,C.and Wolthuis,R.M.(2007).Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression.PLoS Biol 5,e123.
    [29]Okada,M.,Cheeseman,I.M.,Hori,T.,Okawa,K.,McLeod,I.X.,Yates,J.R.,3rd,Desai,A.and Fukagawa,T.(2006).The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres.Nat Cell Biol 8,446-57.
    [30]Kramer,E.R.,Gieffers,C.,Holzl,G.,Hengstschlager,M.and Peters,J.M.(1998).Activation of the human anaphase-promoting complex by proteins of the CDC20/Fizzy family.Curr Biol 8, 1207-10.
    [31]Gruneberg,U.,Neef,R.,Li,X.,Chan,E.H.,Chalamalasetty,R.B.,Nigg,E.A.and Barr,F.A.(2006).KIF14 and citron kinase act together to promote efficient cytokinesis.J Cell Biol 172,363-72.
    [32]Maney,T.,Wagenbach,M.and Wordeman,L.(2001).Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin.J Biol Chem 276,34753-8.
    [33]Wells,N.J.,Watanabe,N.,Tokusumi,T.,Jiang,W.,Verdecia,M.A.and Hunter,T.(1999).The C-terminal domain of the Cdc2 inhibitory kinase Mytl interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression.J Cell Sci 112 (Pt 19),3361-71.
    [34]Schlessinger,J.(2000).Cell signaling by receptor tyrosine kinases.Cell 103,211-25.
    [35]Hai,T.and Hartman,M.G (2001).The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors:activating transcription factor proteins and homeostasis.Gene 273,1-11.
    [36]Turano,M.,Napolitano,G,Dulac,C,Majello,B.,Bensaude,O.and Lania,L.(2006).Increased HEXIM1 expression during erythroleukemia and neuroblastoma cell differentiation.J Cell Physiol 206,603-10.
    [37]Dang,C.V.,O'Donnell,K.A.,Zeller,K.I.,Nguyen,T,Osthus,R.C.and Li,F.(2006).The c-Myc target gene network.Semin Cancer Biol 16,253-64.
    [38]Thompson,E.B.(1998).The many roles of c-Myc in apoptosis.Annu Rev Physiol 60,575-600.
    [39]Li,L.,Rao,J.N.,Bass,B.L.and Wang,J.Y.(2001).NF-kappaB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells.Am J Physiol Gastrointest Liver Physiol 280,G992-G1004.
    [40]Zimmers,T.A.,Jin,X.,Hsiao,E.C.,Perez,E.A.,Pierce,R.H.,Chavin,K.D.and Koniaris,L.G (2006).Growth differentiation factor-15:induction in liver injury through p53 and tumor necrosis factor-independent mechanisms.J Surg Res 130,45-51.
    [41]Baek,S.J.,Wilson,L.C.and Eling,T.E.(2002).Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53.Carcinogenesis 23,425-34.
    [42]Subramaniam,S.,Strelau,J.and Unsicker,K.(2003).Growth differentiation factor-15 prevents low potassium-induced cell death of cerebellar granule neurons by differential regulation of Akt and ERK pathways.J Biol Chem 278,8904-12.
    [43]Wollmann,W.et al.(2005).The macrophage inhibitory cytokine integrates AKT/PKB and MAP kinase signaling pathways in breast cancer cells.Carcinogenesis 26,900-7.
    [44]Renganathan,H.,Vaidyanathan,H.,Knapmska,A.and Ramos,J.W.(2005).Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD.Biochem J 390,729-35.
    [45]Sesto,A.,Navarro,M.,Burslem,F.and Jorcano,J.L.(2002).Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays.Proc Natl Acad Sci USA99,2965-70.
    [46]Michels,A.A.,Nguyen,V.T.,Fraldi,A.,Labas,V.,Edwards,M.,Bonnet,E,Lania,L.and Bensaude,O.(2003).MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner.Mol Cell Biol 23,4859-69.
    [47]Cao,R.and Zhang,Y.(2004).SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex.Mol Cell 15,57-67.
    [48]Hall,J.A.and Georgel,RT.(2007).CHD proteins:a diverse family with strong ties.Biochem Cell Biol 85,463-76.
    [49]Kutney,S.N.,Hong,R.,Macfarlan,T.and Chakravarti,D.(2004).A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression.J Biol Chem 279,30850-5.
    [50]Nishio,H.and Walsh,M.J.(2004).CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription.Proc Natl Acad Sci U S A 101,11257-62.
    [51]Shi,Y.et al.(2003).Coordinated histone modifications mediated by a CtBP co-repressor complex.Nature 422,735-8.
    [52]Zhang,Y,Iratni,R.,Erdjument-Bromage,H.,Tempst,P.and Reinberg,D.(1997).Histone deacetylases and SAP18,a novel polypeptide,are components of a human Sin3 complex.Cell 89,357-64.
    [53]Klussmann,E.et al.(2001).Ht31:the first protein kinase A anchoring protein to integrate protein kinase A and Rho signaling.FEBS Lett 507,264-8.
    [54]Predescu,S.A.,Predescu,D.N.,Timblin,B.K.,Stan,R.V.and Malik,A.B.(2003).Intersectin regulates fission and internalization of caveolae in endothelial cells.Mol Biol Cell 14,4997-5010.
    [55]Hussain,N.K.et al.(2001).Endocytic protein intersectin-1 regulates actin assembly via Cdc42 and N-WASP.Nat Cell Biol 3,927-32.
    [56]Bellanger,J.M.,Astier,C,Sardet,C,Ohta,Y,Stossel,T.P.and Debant,A.(2000).The Racl-and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin.Nat Cell Biol 2,888-92.
    [57]Hornstein,I.,Alcover,A.and Katzav,S.(2004).Vav proteins,masters of the world of cytoskeleton organization.Cell Signal 16,1-11.
    [58]Nie,Z.,Boehm,M.,Boja,E.S.,Vass,W.C.,Bonifacino,J.S.,Fales,H.M.and Randazzo,P.A.(2003).Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1.Dev Cell 5,513-21.
    [59]Takatsu,H.,Sakurai,M.,Shin,H.W.,Murakami,K.and Nakayama,K.(1998).Identification and characterization of novel clathrin adaptor-related proteins.J Biol Chem 273,24693-700.
    [60]Planque,N.and Perbal,B.(2003).A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis.Cancer Cell Int 3,15.
    [61]Glienke,J.,Sturz,A.,Menrad,A.and Thierauch,K.H.(2002).CRIM1 is involved in endothelial cell capillary formation in vitro and is expressed in blood vessels in vivo.Mech Dev 119,165-75.
    [62]Zhou,M.,Chinnaiyan,A.M.,Kleer,C.G.,Lucas,P.C.and Rubin,M.A.(2002).Alpha-Methylacyl-CoA racemase:a novel tumor marker over-expressed in several human cancers and their precursor lesions.Am J Surg Pathol 26,926-31.
    [63]Luo,J.et al.(2002).Alpha-methylacyl-CoA racemase:a new molecular marker for prostate cancer.Cancer Res 62,2220-6.
    [64]Seyrantepe,V.,Poupetova,H.,Froissart,R.,Zabot,M.T.,Maire,I.and Pshezhetsky,A.V.(2003).Molecular pathology of NEU1 gene in sialidosis.Hum Mutat 22,343-52.
    [65]Keshava,C,Divi,R.L.,Whipkey,D.L.,Frye,B.L.,McCanlies,E.,Kuo,M.,Poirier,M.C.and Weston,A.(2005).Induction of CYPlAl and CYPIBI and formation of carcinogen-DNA adducts in normal human mammary epithelial cells treated with benzo[a]pyrene.Cancer Lett 221,213-24.
    [66]Jiang,H.Y.et al.(2004).Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response.Mol Cell Biol 24,1365-77.
    [67]Kool,J.,Hamdi,M.,Cornelissen-Steijger,R,van der Eb,A.J.,Terleth,C.and van Dam,H.(2003).Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM,Nibrinl,stress-induced MAPkinases and ATF-2.Oncogene 22,4235-42.
    [68]Chung,Y.W.,Jeong,D.W.,Won,J.Y,Choi,E.J.,Choi,Y.H,and Kim,I.Y.(2002).H(2)0(2)-induced AP-1 activation and its effect on p21(WAFl/CIPl)-mediated G2/M arrest in a p53-deficient human lung cancer cell.Biochem Biophys Res Commun 293,1248-53.
    [69]el-Deiry,W.S.et al.(1994).WAF1/CIP1 is induced in p53-mediated Gl arrest and apoptosis.Cancer Res 54,1169-74.
    [70]Shim,M.and Eling,T.E.(2005).Protein kinase C-dependent regulation of NAG-1/placental bone morphogenic protein/MIC-1 expression in LNCaP prostate carcinoma cells.J Biol Chem 280,18636-42.
    [71]Zheng,W.and Jefcoate,C.R.(2005).Steroidogenic factor-1 interacts with cAMP response element-binding protein to mediate cAMP stimulation of CYPIBI via a far upstream enhancer.Mol Pharmacol 67,499-512.
    [72]Solhaug,A.,Ovrebo,S.,Mollerup,S.,Lag,M.,Schwarze,P.E.,Nesnow,S.and Holme,J.A.(2005).Role of cell signaling in B[a]P-induced apoptosis:characterization of unspecific effects of cell signaling inhibitors and apoptotic effects of B[a]P metabolites.Chem Biol Interact 151,101-19.
    [73]Chen,S.,Nguyen,N.,Tamura,K.,Karin,M.and Tukey,R.H.(2003).The role of the Ah receptor and p38 in benzo[a]pyrene-7,8-dihydrodiol and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced apoptosis.J Biol Chem 278,19526-33.
    [74]Mukherjee,J.J.and Sikka,H.C.(2006).Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and downregulation of NFkappaB activation:role of p38 MAP kinase.Carcinogenesis 27,631-8.
    [75]Shaywitz,A.J.and Greenberg,M.E.(1999).CREB:a stimulus-induced transcription factor activated by a diverse array of extracellular signals.Annu Rev Biochem 68,821-61.
    [76]Schroder,M.and Kaufman,R.J.(2005).ER stress and the unfolded protein response.Mutat Res 569,29-63.
    [77]Salas,V.M.and Burchiel,S.W.(1998).Apoptosis in Daudi human B cells in response to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol.Toxicol Appl Pharmacol 151,367-76.
    [78]Jyonouchi,H.,Sun,S.,Porter,V.A.and Cornfield,D.N.(2001).Polycyclic aromatic hydrocarbon diol epoxides increase cytosolic Ca(2+) of airway epithelial cells.Am J Respir Cell Mol Biol 25,78-83.
    [79]Yue,L.,Lu,S.,Garces,J.,Jin,T.and Li,J.(2000).Protein kinase C-regulated dynamitin-macrophage-enriched myristoylated alanine-rice C kinase substrate interaction is involved in macrophage cell spreading.J Biol Chem 275,23948-56.
    [80]Mann,S.S.and Hammarback,J.A.(1996).Gene localization and developmental expression of light chain 3:a common subunit of microtubule-associated protein 1A(MAP1A) and MAP IB.J Neurosci Res 43,535-44.
    [81]Wang,Y,Tian,G,Cowan,N.J.and Cabral,F.(2006).Mutations affecting beta-tubulin folding and degradation.J Biol Chem 281,13628-35.
    [82]Mao,W.,Fukuoka,S.,Iwai,C,Liu,J.,Sharma,V.K.,Sheu,S.S.,Fu,M.and Liang,C.S.(2007).Cardiomyocyte apoptosis in autoimmune cardiomyopathy:mediated via endoplasmic reticulum stress and exaggerated by norepinephrine.Am J Physiol Heart Circ Physiol 293,H1636-45.
    [83]Jiang,H.Y and Wek,R.C.(2005).GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation.Biochem J 385,371-80.
    [84]Dennis,G,Jr.,Sherman,B.T.,Hosack,D.A.,Yang,J.,Gao,W.,Lane,H.C.and Lempicki,R.A.(2003).DAVID:Database for Annotation,Visualization,and Integrated Discovery.Genome Biol 4,P3.
    [85]Zhang,B.,Schmoyer,D.,Kirov,S.and Snoddy,J.(2004).GOTree Machine (GOTM):a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies.BMC Bioinformatics 5,16.
    [86]Whitfield,M.L.et al.(2002).Identification of genes periodically expressed in the human cell cycle and their expression in tumors.Mol Biol Cell 13,1977-2000.
    [87]Khan,Q.A.and Dipple,A.(2000).Diverse chemical carcinogens fail to induce G(l) arrest in MCF-7 cells.Carcinogenesis 21,1611-8.
    [88]Wang,Y et al.(2006).Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays.BMC Genomics 7,59.
    [89]Abruzzo,L.V.,Lee,K.Y,Fuller,A.,Silverman,A.,Keating,M.J.,Medeiros,L.J.and Coombes,K.R.(2005).Validation of oligonucleotide microarray data using microfluidic low-density arrays:a new statistical method to normalize real-time RT-PCR data.Biotechniques 38,785-92.
    [90]Th'ng,J.P.,Sung,R.,Ye,M.and Hendzel,M.J.(2005).HI family histones in the nucleus.Control of binding and localization by the C-terminal domain.J Biol Chem 280,27809-14.
    [91]Pugacheva,E.N.and Golemis,E.A.(2005).The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome.Nat Cell Biol 7,937-46.
    [92]Kitajima,T.S.,Sakuno,T.,Ishiguro,K.,Iemura,S.,Natsume,T.,Kawashima,S.A.and Watanabe,Y (2006).Shugoshin collaborates with protein phosphatase 2A to protect cohesin.Nature 441,46-52.
    [93]Li,H.Y.and Zheng,Y (2004).Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells.Genes Dev 18,512-27.
    [94]Owens,D.M.and Keyse,S.M.(2007).Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases.Oncogene 26,3203-13.
    [95]Park,M.H.,Joe,Y.A.and Kang,K.R.(1998).Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae.J Biol Chem 273,1677-83.
    [96]Morizane,Y.,Honda,R.,Fukami,K.and Yasuda,H.(2005).X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO.J Biochem (Tokyo) 137,125-32.
    [97]Perbal,B.(2004).CCN proteins:multifunctional signalling regulators.Lancet 363,62-4.
    [98]Gupta,P.and Prywes,R.(2002).ATF1 phosphorylation by the ERK MAPK pathway is required for epidermal growth factor-induced c-jun expression.J Biol Chem 277,50550-6.
    [99]Silvers,A.L.,Bachelor,M.A.and Bowden,G.T.(2003).The role of INK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression.Neoplasia 5,319-29.
    [100]Leslie,N.R.and Downes,C.P.(2004).PTEN function:how normal cells control it and tumour cells lose it.Biochem J 382,1-11.
    [101]Schroeder,J.A.,Thompson,M.C.,Gardner,M.M.and Gendler,S.J.(2001).Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland.J Biol Chem 276,13057-64.
    [102]Raina,D.,Ahmad,R.,Kumar,S.,Ren,J.,Yoshida,K.,Kharbanda,S.and Kufe,D.(2006).MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage.Embo J 25,3774-83.
    [103]Jin Cho,S.,La,M.,Ahn,J.K.,Meadows,G.G.and Joe,CO.(2001).Tob-mediated cross-talk between MARCKS phosphorylation and ErbB-2 activation.Biochem Biophys Res Commun 283,273-7.
    [104]Angel,P.and Karin,M.(1991).The role of Jun,Fos and the AP-1 complex in cell-proliferation and transformation.Biochim Biophys Acta 1072,129-57.
    [105]Zhu,S.,Wu,H.,Wu,F.,Nie,D?Sheng,S.and Mo,Y.Y.(2008).MicroRNA-21 targets tumor suppressor genes in invasion and metastasis.Cell Res 18,350-9.
    [106]Ji,R.,Cheng,Y,Yue,J.,Yang,J.,Liu,X.,Chen,H.,Dean,D.B.and Zhang,C.(2007).MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNAin vascular neointimal lesion formation.Circ Res 100,1579-88.
    [107]Yoshihama,M.et al.(2002).The human ribosomal protein genes:sequencing and comparative analysis of 73 genes.Genome Res 12,379-90.
    [108]Zanelli,C.F.and Valentini,S.R.(2007).Is there a role for eIF5A in translation?Amino Acids 33,351-8.
    [109]Odunuga,O.O.,Longshaw,V.M.and Blatch,GL.(2004).Hop:more than an Hsp70/Hsp90 adaptor protein.Bioessays 26,1058-68.
    [110]Russell,S.J.et al.(2004).The primary substrate binding site in the b' domain of ERp57 is adapted for endoplasmic reticulum lectin association.J Biol Chem 279,18861-9.
    [1]Butte,A.(2002).The use and analysis of microarray data.Nat Rev Drug Discov 1,951-60.
    [2]Datta,S.and Datta,S.(2006).Evaluation of clustering algorithms for gene expression data.BMC Bioinformatics 7 Suppl 4,S17.
    [3]Do,J.H.and Choi,D.K.(2008).Clustering approaches to identifying gene expression patterns from DNA microarray data.Mol Cells 25,279-88.
    [4]Eisen,M.B.,Spellman,P.T.,Brown,P.O.and Botstein,D.(1998).Cluster analysis and display ofgenome-wide expression patterns.Proc Natl Acad Sci U S A 95,14863-8.
    [5]Tamayo,P.,Slonim,D.,Mesirov,J.,Zhu,Q.,Kitareewan,S.,Dmitrovsky,E.,Lander,E.S.and Golub,T.R.(1999).Interpreting patterns of gene expression with self-organizing maps:methods and application to hematopoietic differentiation.Proc Natl Acad Sci U S A 96,2907-12.
    [6]Ashburner,M.et al.(2000).Gene ontology:tool for the unification of biology.The Gene Ontology Consortium.Nat Genet 25,25-9.
    [7]Dennis,G.,Jr.,Sherman,B.T.,Hosack,D.A.,Yang,J.,Gao,W.,Lane,H.C.and Lempicki,R.A.(2003).DAVID:Database for Annotation,Visualization,and Integrated Discovery.Genome Biol 4,P3.
    [8]Zhang,B.,Schmoyer,D.,Kirov,S.and Snoddy,J.(2004).GOTree Machine(GOTM):a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies.BMC Bioinformatics 5,16.
    [9]Subramanian,A.et al.(2005).Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles.Proc Natl Acad Sci U S A 102,15545-50.
    [10]Nikitin,A.,Egorov,S.,Daraselia,N.and Mazo,I.(2003).Pathway studio--the analysis and navigation of molecular networks.Bioinformatics 19,2155-7.
    [11]Chang,L.W.,Fontaine,B.R.,Stormo,G.D.and Nagarajan,R.(2007).PAP:a comprehensive workbench for mammalian transcriptional regulatory sequence analysis.Nucleic Acids Res 35,W238-44.
    [12]Krek,A.et al.(2005).Combinatorial microRNA target predictions.Nat Genet 37,495-500.
    [13]Lewis,B.P.,Burge,C.B.and Bartel,D.P.(2005).Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell 120,15-20.
    [1]Lee,R.C.,Feinbaum,R.L.and Ambros,V.(1993).The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell 75,843-54.
    [2]Reinhart,B.J.,Slack,F.J.,Basson,M.,Pasquinelli,A.E.,Bettinger,J.C,Rougvie,A.E.,Horvitz,H.R.and Ruvkun,G.(2000).The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature 403,901-6.
    [3]Lagos-Quintana,M.,Rauhut,R.,Lendeckel,W.and Tuschl,T.(2001).Identification of novel genes coding for small expressed RNAs.Science 294,853-8.
    [4]Lau,N.C.,Lim,L.P.,Weinstein,E.G.and Bartel,D.P.(2001).An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.Science 294,858-62.
    [5]Lee,R.C.and Ambros,V.(2001).An extensive class of small RNAs in Caenorhabditis elegans.Science 294,862-4.
    [6]Filipowicz,W.,Bhattacharyya,S.N.and Sonenberg,N.(2008).Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?Nat Rev Genet 9,102-14.
    [7]Gottesman,S.(2004).The small RNA regulators of Escherichia coli:roles and mechanisms~*.Annu Rev Microbiol 58,303-28.
    [8]Zeng,Y.(2006).Principles of micro-RNAproduction and maturation.Oncogene 25,6156-62.
    [9]Ruby,J.G.,Jan,C.H.and Bartel,D.P.(2007).Intronic micro RNA precursors that bypass Drosha processing.Nature 448,83-6.
    [10]Hutvagner,G.and Simard,M.J.(2008).Argonaute proteins:key players in RNA silencing.Nat Rev Mol Cell Biol 9,22-32.
    [11]Hwang,H.W.,Wentzel,E.A.and Mendell,J.T.(2007).A hexanucleotide element directs microRNA nuclear import.Science 315,97-100.
    [12]Bartel,D.P.(2004).MicroRNAs:genomics,biogenesis,mechanism,and function.Cell 116,281-97.
    [13]Mi,S.et al.(2007).MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia.Proc Natl Acad Sci U S A 104,19971-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700