生物酶处理技术应用于桑皮纤维提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生态环境和能源问题的日益突出,天然环保的绿色纺织品无论在原料生产工艺上还是在成品使用过程中都越来越受人们的关注。本课题重点研究生物酶脱胶技术应用于桑皮纤维提取工艺,在分析桑皮物质组成的基础上,对桑皮纤维的提取方法、工艺条件进行较为系统的研究,同时与传统的脱胶方法相比较,研究不同提取方法、工艺条件对桑皮纤维结构和性能的影响,为生物酶脱胶技术应用于桑皮纤维的提取和新型天然纤维制品的开发提供一定的理论依据。
     本文对桑皮纤维原料进行化学成分定量分析,测定桑皮中各物质组成的百分比含量。根据桑皮自身物质组成的特点,并借鉴麻类纤维原料的传统脱胶工艺,确定了桑皮生物酶-化学联合脱胶法的工艺流程,即:
     试样准备→预处理→水洗→生物酶处理→水洗→碱煮→水洗→酸洗→水洗→给油→自然晾干→桑皮纤维
     本文对桑皮脱胶工艺进行了深入研究,分析比较各个工艺条件参数对桑皮脱胶效果的影响,通过单因子分析和正交实验设计的方法制定出脱胶酶-化学联合脱胶的最佳工艺参数为:预处理阶段,硫酸溶液浓度3g/L、时间2h、温度50℃、浴比1:20;生物酶处理阶段,脱胶酶溶液浓度10g/L、作用时间10h、溶液pH=9、溶液温度55℃、浴比为1:30;碱煮,氢氧化钠溶液浓度12g/L、碱煮时间2h、磷酸三钠5g/L、温度100℃、浴比1:15;酸洗,乙酸溶液浓度7g/L、酸洗时间45min、温度50℃、浴比为1:10。
     本文通过对脱胶酶-化学联合脱胶和化学脱胶提取的桑皮纤维性能比较的研究发现:脱胶酶-化学联合脱胶工艺对纤维损伤较小,纤维表面化学侵蚀的痕迹不明显,纤维的长度、线密度均优于化学脱胶提取的纤维,纤维的标准回潮率为8.6%;脱胶酶-化学联合脱胶工艺对纤维的聚集态结构影响较小,纤维的结晶度、取向度均高于化学脱胶提取的纤维;脱胶酶-化学联合脱胶工艺没有改变其纤维基本的分子结构,仍然属于纤维素Ⅰ,而且对桑皮中木质素、半纤维素等胶质去除效果显著,制得纤维的纯度较高;经脱胶酶-化学联合脱胶工艺提取的纤维断裂强度、断裂功、初始模量均高于化学脱胶提取的纤维,断裂伸长率相对较低;脱胶酶-化学联合脱胶工艺提取的桑皮纤维表现出较好的光泽及白度。
With increasingly concerned of ecological environment and energy issues, people paid more and more attention on either the production processes of raw materials or the use of products. This subject of enzyme treatment technology is applied to the extraction experiment of mulberry fiber. This issue carried out a series of research in extraction method and condition of mulberry fiber on the basis of mulberry fiber’s material content. What’s more, comparing with degumming traditional, it analyzed different extraction methods and conditions impacting on the structure and performance of mulberry fiber. It provides a theoretical basis for biological enzyme degumming technology used in the extraction of mulberry fiber and new development of natural fiber products.
     This paper carried on quantitative analysis of mulberry fiber’s chemical composition test, determining the percentage of material content in Mori phloem. According to the characteristics of mulberry fiber itself and the reference to degumming traditional of Hemp fiber raw materials, it identified the process of mulberry enzyme-chemical degumming method. As follows:
     Sample preparation→Pretreatment→Washed→Enzyme treatment→Washed→A scouring→Washed→Pickling→Washed→Oil→Natural dry→mulberry fiber
     Studying on mulberry degumming method and comparing parameters of the various process conditions in the impact of degumming effect, it formulated the best parameters of enzyme-chemical degumming method: Pretreatment stage, Concentration of sulfuric acid 3g/L, Time 2h, Temperature 50℃, Liquor ratio 1:20; Enzyme treatment stage, Degumming solution concentration 10g/L, Time 10h, Solution pH=9, Solution temperature 55℃, Liquor ratio 1:30; Alkali cooking, concentration of sodium hydroxide solution 12g/L, Time 2h, Trisodium phosphate additives, Temperature 100℃, Liquor ratio 1:15; Pickling, concentration of acetic acid solution 7g/L, Time 45min, Temperature 50℃, Liquor ratio 1:
     Comparing with enzyme-chemical degumming method and chemical degumming method, it shows that in the process of enzyme-chemical degumming method, fiber is less damaged, signs of chemical attack on fiber surface is not obvious, length and linear density of fiber are superior to chemical degumming; fiber standard moisture regain is 8.6%; fiber’s aggregation structure is less influenced, crystallinity and orientation degree of fiber is higher than chemical fiber degumming; enzyme-chemical degumming method does not change its basic molecular structure of fibers, which still belongs to cellulose, meanwhile, it removes lignin and hemicellulose in mulberry quickly, fiber’s purity is very high; the extraction of fiber’s breaking strength, fracture work, initial modulus are higher than those of chemical fiber degumming, elongation at break is lower than that of chemical fiber degumming; fiber shows a better gloss and whiteness.
引文
[1]韩世玉.桑树资源概况及其多元化利用[J].贵州农业科学,2006,34(3):118-120.
    [2]中国农业科学院蚕业研究所.中国桑树品种志[M].北京:农业出版社,1993.
    [3]林天宝,李有贵,吕志强等.桑树资源综合利用研究进展[J].蚕桑通报,2008, (3):1-2.
    [4]杨草.利用桑皮生产人造棉新工艺[J].河南科技,1996,(2):13.
    [5]华坚,彭旭东等.桑皮纤维的结构和性能研究[J].丝绸,2003,(10):21-23.
    [6]张之亮.桑皮纤维脱胶工艺和结构性能研究[D].上海:东华大学纺织工程学院,2005.
    [7]荆学谦,杨佩鹏,武海良.桑皮纤维脱胶工艺初探[J].中国麻业,2006,28(4):182-186.
    [8]马君志,杜丽霞.桑皮纤维的制备及其产品开发[J].纺织导报,2007,(5):67-69.
    [9]羌晓阳,钱震.纺织纤维家族又一新成员——桑皮纤维的可纺、织、染分析[J].四川丝绸,2001,(3):46-47.
    [10]张之亮,张元明,章悦庭,张玮.几种新型植物纤维的开发利用现状[J].中国麻业,2004,26(2):91-94.
    [11]郝平.开发桑蚕副产物——增加产业经济效益[J].农业经济,2003,(7):40.
    [12]丛锐利,董卫国.桑皮纤维的化学提取方法及性能测试[J].山东纺织科技,2003, (4): 23-25.
    [13]邱训国,严松俊.桑皮纤维开发及其综合利用[J].辽宁丝绸,2002,(4):10-13.
    [14]天然纺织材料新突破——桑皮纤维[J].纺织装饰科技,2006,(4):28.
    [15]中国农业科学院蚕业研究所.中国桑树栽培学[M].上海:上海科技出版社, 1985.
    [16]柯益富,余茂德.桑树栽培及育种学[M].北京:中国农业出版社,1997.
    [17]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001:214-216.
    [18]邬义明.植物纤维化学[M].北京:中国轻工业出版社,1991:196-209.
    [19]向新柱,曾莹,杨明,唐志斌.构皮纤维的化学脱胶[J].纺织科技进展,2008, (4):69-71.
    [20] K.Drury. Fibres and the Environment[J].Canadian Textile Journal,1995,(5):13-15.
    [21]苎麻皮化学脱胶技术[N].加工出口区简讯月刊,1989,(4):15.
    [22] WANG Jim et al. Research Advancement in the Biologic Degumming of Ramie[J]. Journal of Anhui Agri,2008,36(15):6517-6518.
    [23] LIU Huan-ming,LIANG Yun-xiang,PENG Ding-xiang. Study on the Enzymatic Degumming of Ramie[J].PLANT FIBERS AND PRODUCTS,2006,28(2):87-90.
    [24]钱章武,杨松年.黄麻与洋麻的脱胶和分级检验[M].北京:纺织工业出版社,1982.
    [25]董政娥,管映亭.一种野生麻纤维脱胶初探[J].印染助剂,2003,(6):23-25.
    [26]张元明,韩光亭.生物化学联合脱胶与化学脱胶相比的优越性[J].国际纺织导报,2005,(3):14-16.
    [27]李群,赵昔慧.酶在纺织印染工业中的应用[M].北京:化学工业出版社,2006.
    [28]郭勇,郑穗平.酶学[M].广州:华南理工大学出版社,2000.
    [29]王修顺.生物酶的作用机理及其应用[J].科学前沿,2007,(11):8.
    [30]李群,赵昔慧.酶在纺织印染工业中的应用[M].北京:化学工业出版社,2006:2-3.
    [31]郭勇.酶的生产与应用[M].北京:化学工业出版社,2003.
    [32]林天宝,李有贵,吕志强,朱燕.桑树资源综合利用研究进展[J].蚕桑通报,2008, 39(3):1-4.
    [33]武玉壁等.东北地区桑树资源考察[J].蚕业科学,2000,26(4):254-256.
    [34]钟安华.不同收获期的苎麻纤维化学成分分析[J].中国麻业,2005,27(3):124-128.
    [35]邵宽.纺织加工化学[M].北京:中国纺织出版社,1996:2-4.
    [36]徐伟.天然竹纤维的提取及其结构和化学性能的研究[D].苏州:苏州大学纺织与服装工程学院,2006.
    [37]崔运花.大麻工艺纤维的脱胶工艺研究[D].上海:东华大学纺织工程学院,2006.
    [38] Foulk JA, Akin DE, Dodd RB. Processing techniques for improving enzyme-retting of flax [J]. Industrial Crops and Products,2001,13(3):239-248.
    [39] Akin DE, Foulk JA,Dodd RB,eta1.Enzyme-rotting of flax and characterization of processed fibers [J]. Journal of Biotechnolngy,2001,89(2):193-203.
    [40]刘唤明,梁运祥,彭定祥.苎麻酶法脱胶的研究[J].中国麻业,2006,28 (2):87-90.
    [41] Jin Peng-hui, Jiang Yao-xing, Zhang Yu. Influence of temperature and NaOH solution to mulberry[C].Textile Bioengineering and Informatics Symposium Proceedings, 2008:679-682.
    [42]赵书经.纺织材料实验教程[M].北京:中国纺织出版社,2000.
    [43] Liu Guanfeng et al. The Behaviour and Reelability of Yamamai Bare[J].Silk Monthly,1987,(4):25.
    [44]顾伯明.亚麻纺纱[M].北京:纺织工业出版社,1987.
    [45] Nelson.M.L,O'connor.R.T,Relation of certain Infraed Bands to Cellulose Crystal Lattice Type[J],J Appl Poly Sci,1964,8(3):131.
    [46]殷瑛. PTT纤维结构与性能的研究[D].杭州:浙江理工大学纺织工程学院,2007.
    [47]吴人洁.现代分析技术——在高聚物中的应用[M].上海:上海科学技术出版社, 1987.
    [48]常德华,官宁瑞等.辐射对棉纤维素结晶度的影响[J].北京理工大学报,1997, 27(5):579-583.
    [49]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002.
    [50]杨定国.波谱分析基础及应用[M].北京:纺织工业出版社,1993.
    [51]眭伟民,金惠平.纺织有机化学基础[M],上海交通大学出版社,298-300.
    [52] Dadashian F.,Wilding M.A. An investigation into physical changes occurring in Tencel fibers having different manufacturing dates[J]. Journal of Textile Institute,1999:275-287.
    [53]钟海庆.红外光谱法入门[M].北京:化学工业出版社,1983.
    [54]牟秋红,韦春,虞锦洪.剑麻纤维的处理方法对其热性能和形态结构的影响[J].桂林工学院学报,2004,24(4):436.
    [55]张世源,周湘祁.竹纤维及其产品加工技术[M].北京:中国纺织出版社,2008.
    [56]万玉芹.纺织用竹纤维脱胶、细化工艺及其结构性能研究[D].上海:东华大学纺织工程学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700