美洲牡蛎(Crassostrea virginica)抗病相关基因标记的筛选及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美洲牡蛎(Crassostrea virginica)天然分布于大西洋西岸和墨西哥湾,是美国重要的经济贝类。上个世纪中期,美洲牡蛎曾遭受两种原生动物病害(MSX和Dermo)的重创,无论养殖群体还是野生群体,均出现高感染率、高死亡率的现象,这使美国东海岸的养殖业几乎崩溃。本研究通过候选基因法和RAD测序的方法筛选美洲牡蛎抗病相关基因标记,并利用已知抗病相关的分子标记和中性的分子标记分析寄生虫病对特拉华湾美洲牡蛎群体遗传结构的影响。
     1.丝氨酸蛋白酶抑制因子1基因(cvSI-1)和美洲牡蛎抗病性状的相关性
     通过分析美洲牡蛎cvSI-1基因的SNP198位点在抗病品系、易感品系及其野生基群体,具有不同病害感染史的野生群体和处于同一流域,但具有不同病害选择压力的野生群体中和抗病性状的相关性,本研究发现SNP198位点C等位基因和美洲牡蛎的抗Dermo性状紧密相关。但SNP198是个同义突变,不改变编码氨基酸的序列,所以本研究还分析了SNP198位点和cvSI-1基因5’调控区多态性位点的连锁性来解释其抗病相关性。通过染色体步移和重测序的方法,获得长631bp的5’调控区,包含22个SNPs和3个插入/缺失多态性位点。利用野生群体死亡前和死亡后的材料,分析5’调控区-404位,长25bp的插入/缺失位点和SNP198位点的连锁性。在Dermo造成大部分死亡的死亡后群体中,-404插入/缺失的缺失等位基因上升了14.4%(p=0.0595),而SNP198的C等位基因仅上升了3.4%(p=0.5756)。缺失等位基因和C等位基因在80.3%的牡蛎中具有连锁性。具有缺失等位基因的牡蛎经Dermo病原体Perkinsus marinus感染后,其cvSI-1的表达量显著提高(p=0.017)。本研究结果提示我们,5’调控区的变异会提高cvSI-1的转录活性,因此通过抑制寄生虫的蛋白酶活性而对其产生抗性。2.丝氨酸蛋白酶抑制因子2基因(cvSI-2)和美洲牡蛎抗病性状的相关性一种新的丝氨酸蛋白酶抑制因子,cvSI-2,已经从美洲牡蛎的细胞质中分离出来,其能够体外抑制P. marinus的活性。本研究分析了cvSI-2基因的多态性和美洲牡蛎抗病性状的相关性。利用cvSI-2的cDNA序列搜索NCBI数据库,共得到33条美洲牡蛎的EST序列。将低质量的序列去除后,27条高质量的EST序列用于比对和SNP位点的筛查,获得5个高质量SNP位点,包括4个同义突变和1个非同义突变。随后,对非同义突变SNP226(A/G)和美洲牡蛎的抗病相关性进行分析。SNP226的GG基因型在两个家系死亡后的材料中分别上升17.0%(p=0.0005)和16.9%(p=0.0634)。另外,SNP226的G等位基因在选育的抗病品系中的频率最高,为93.5%,显著高于其野生基群体CTW (69.6%)和两个选育的易感品系FMF (63.0%)和UMFS (51.3%)。在Martha’s Vineyard、特拉华湾和切斯皮克湾三个不同水域,病害选择压力大的野生群体G等位基因频率都要高于病害选择压力小的群体。SNP226的G等位基因编码缬氨酸,A等位基因编码异亮氨酸。此位的缬氨酸可能能够增强cvSI-2蛋白和Dermo病原体丝氨酸蛋白酶结合的亲和性,从而增强了抑制其活性的能力,最终在美洲牡蛎的抗Dermo病害方面发挥重要作用。3.美洲牡蛎高密度遗传连锁图谱的构建及抗病性状的QTL定位利用RAD测序技术,构建了美洲牡蛎高密度遗传连锁图谱。通过分析标记死亡前后基因型频率的变化,定位抗病性状相关的QTL。雌性连锁图谱含12个连锁群,共1,350个标记,覆盖1,081.24cM,最大图距12.24cM,平均图距0.80cM,覆盖率为98.14%。雄性连锁图谱含10个连锁群,共1,236个标记,覆盖723.61cM,最大图距10.05cM,平均图距0.59cM,覆盖率为98.28%。雌性图谱中,88个标记在死亡后群体中基因型频率发生显著变化(p <3.74×10~(-5),经Bonferroni校正后的P值),其中有62个(76.3%)标记是成对或者成簇分布。雌性图谱检测到11个高精度QTL,分布在5个连锁群,其中第8号连锁群的QTL数目最多,为4个。雄性图谱中,80个标记在死亡后群体中基因型频率发生显著变化(p <4.04×10~(-5),经Bonferroni校正后的P值),其中有57个(71.3%)标记是成对或者成簇分布。雄性图谱检测到5个高精度的QTL,分布在4个连锁群,在第7号连锁群检测到2个。4.病害对特拉华湾美洲牡蛎幼体群体遗传结构的影响
     本研究利用8个抗病相关的SSR标记和9个中性的SSR标记对特拉华湾由北向南Hope Creek (HC)、Round Island (RI)、Beadons (BD)及Cape Shore (CS)4个采样点的美洲牡蛎幼体群体进行了群体遗传学分析。如果用17个微卫星位点分析两两群体间的遗传分化系数(Fst),Fst的分布范围为-0.0016-0.0015。最南部群体CS和最北部群体HC间的Fst值最大,为0.0015,但是和0没有显著性差异(p>0.0083,经Bonferroni校正后的P值)。如果用8个抗病相关的微卫星位点进行分析, Fst的分布范围为-0.0052-0.0013。CS群体和HC群体间的Fst值最大,为0.0013。但是其Fst值仍和0没有显著性差异(p=0.8417)。同样地,中性的微卫星位点也没有检测到这4个群体间的遗传分化。这说明特拉华湾幼体群体是个均一的大群体,没有出现遗传分化。5.特拉华湾美洲牡蛎群体有效群体大小(Ne)的估算
     具有高繁殖力和III型存活类型的美洲牡蛎中极有可能存在“少数个体维持大群体”的现象。为了验证特拉华湾美洲牡蛎群体中是否存在这种现象,本研究估算了其有效群体的大小(Ne),并比较特拉华湾的Ne在不同病害选择压力群体间和时间上的变化。对特拉华湾5个采样点,2006年和2009年成体牡蛎和幼体牡蛎群体样品在7个中性的SSR位点进行分型,利用三个双样品法和两个单样品法估测特拉华湾美洲牡蛎群体的Ne。结果显示,成体牡蛎和幼体牡蛎间的基因丰富度没有显著性差异,从而不支持“少数个体维持大群体”的理论。5种方法估算得到的Ne值差异较大,总体而言,所得Ne值较小,并且通常没有获得有效的上限估算值。幼体群体的Ne值分布范围是140-440,比成体群体的Ne值要小(589–2,779)。通过混合所有成体的样品所估算的Ne值提示着整个海湾的有效群体大小可能较大。本研究结果表明,特拉华湾某一批幼体牡蛎可能是由少数的成体牡蛎繁殖而来的,并存在一定的遗传漂变。但是这种小范围的遗传漂变并不影响整个湾成体群体的遗传变化,因为成体群体是每年很多批幼体群体积累多年的结果。
The eastern oyster (Crassostrea virginica Gmelin), naturally occurring along the coasts ofAtlantic Ocean and the Gulf of Mexico, supports important fishery and aquaculture industries inthe United States. The oyster industry has been seriously affected by two major diseases: MSXand Dermo since1950s. The two diseases, along with over-fishing and habitat destruction, areamong the leading causes for the collapse of the oyster fisheries in the mid-Atlantic region. Inthis study, disease-resistance markers with candidate genes and RAD sequencing technique areidentified. Further, with the putative disease-resistance and neutral markers, how diseasesmodify the population structure of spat population in Delaware Bay is analyzed. Finally, theeffective population sizes (Ne) of eastern oyster populations in Delaware Bay are estimated.
     1. Association between the cvSI-1gene and disease resistance in the eastern oyster
     SNP198of cvSI-1gene was genotyped in disease-resistant and susceptible strains, wildpopulations with different disease exposure histories as well as the populations within the sameestuary but with different diseases pressures. At SNP198, the C allele consistently increases infrequency after Dermo-caused mortalities. As SNP198is synonymous, we study whether itslinkage to polymorphism at the promoter region can explain the resistance. A631bp fragment ofthe5’ flanking region is cloned by genome-walking and re-sequenced, revealing22SNPs andthree insertion/deletions (indels). A25bp indel at-404is genotyped along with SNP198forassociation analysis using before and after mortality samples. After mortalities that wereprimarily caused by P. marinus, the frequency of deletion allele at-404indel increases by14.4%(p=0.0595), while that of SNP198C increases by only3.4%(p=0.5756). The resistance alleles at the two loci are linked in80.3%of the oysters. Oysters with the deletion allele at-404indelshows significant (p=0.017) up-regulation of cvSI-1under P. marinus challenge. Our resultssuggest that mutation at the promoter region causes increased transcription of cvSI-1, which inturn confers P. marinus resistance in the eastern oyster likely through inhibiting pathogenicproteases from the parasite.
     2. Association between the cvSI-2gene and disease resistance in the eastern oyster
     A new serine protease inhibitor from the eastern oyster, cvSI-2, has been shown to inhibit themajor extracellular protease of the Dermo pathogen P. marinus. In this study, we focus on theassociation between cvSI-1genetic variations and disease resistance in the eastern oyster.BLAST search on the National Center for Biotechnology Information (NCBI) databases returns33expressed sequence tag (EST) using cDNA sequence of cvSI-2as query. After discardingsequences with poor quality and too short length,27sequences are aligned for SNP discovery.Five SNPs, including four synonymous and one non-synonymous are identified in the258bpcoding region. The non-synonymous SNP, SNP226is genotyped in families before and afterdisease-caused mortalities, disease-resistant and susceptible strains developed from the samepopulation, as well as wild populations within the same estuary but with different diseasepressures. The G allele frequency of SNP226consistently increases after Dermo-causedmortalities in families and are enriched in the disease-resistant strain. In addition, within thesame estuary, populations with high prevalence of Dermo disease have more G allele than that ofthe populations with no Dermo. These results indicate cvSI-2gene is under natural selectionupon Dermo disease and the G allele of SNP226is associated with Dermo resistance in theeastern oyster. SNP226is a non-synonymous mutation, causing a valine-to-ileline (Val/Ilerespectively) substitution. The G allele (Val genotype) may result in increased expression ofcvSI-2or higher affinity of cvSI-2for perkinsin.
     3. Constructing high density linkage map and mapping disease-resistance QTLs in theeastern oyster
     The high density linkage map of eastern oyster is constructed with RAD markers. The putativedisease-resistance QTLs are identified by post-mortality genotype frequency shifts analysis. Thefemale map containing1,350markers in12linkage groups, is1,081.24cM in total length withaverage interval distance of0.8cM and98.14%in genome coverage. The male map containing 1,236markers in10linkage groups, is723.61cM in total length with average interval distanceof0.59cM and98.28%in genome coverage. Significant post-mortality shifts in genotypefrequency are detected at88and80markers in female and male maps, respectively. Linkageanalysis reveal that most markers (~70%) showing frequency shifts are closely linked to eachother on the genetic map. This finding suggests that post-mortality shifts in genotype frequencyare not random, but link to disease-resistance QTLs.11putative disease-resistance QTLs areidentified in female map, distributing in five linkage groups with the8thlinkage group containingthe most of four. Five putative disease-resistance QTLs are identified in male map, distributingin four linkage groups with the7thlinkage group containing two.
     4. Analysis of how diseases affecting the eastern oyster spat populations structure inDelaware Bay
     Spat oysters are collected from Hope Creek (HC)、Round Island (RI)、Beadons (BD) andCape Shore (CS) in Delaware Bay and genotyped in eight putative disease-resistance and nineputative neutral SSR markers. Genetic differentiation between populations (Fst) for all pairs ofpopulations are analyzed. Pair-wise comparisons between the four sample locations revealtypically low, not significant Fst estimates (-0.0016-0.0015) in all of the six pair-wisecomparisons with17markers. Not only the neutral markers but also the putative disease-resistance marker don’t detect population differentiation among the four populations. Thissuggests that the spat populations in Delaware Bay are a large and homogenous population.
     5. Ne estimation of eastern oyster populations in Delaware Bay
     The eastern oyster (Crassostrea virginica) may be prone to sweepstake reproductive success(SRS) due to its high fecundity and type III survivorship. To test if SRS occurs in the easternoyster, we study temporal and spatial genetic variation of oyster populations in Delaware Bay.Adults and spats are collected from five locations in different years and genotyped with sevenmicrosatellite markers. Slight genetic differences are revealed by Fst statistics between the adultpopulations and spat recruits, while the adult populations are spatially homogeneous andtemporally stable. No changes in allele richness are evident among adult and spat collections,suggesting no strong SRS. Ne estimates obtained with five methods are variable and oftenwithout upper confidence limits. When confidence limits are available, Ne estimates for spatcollections (140–440) are consistently smaller than that for adult populations (589–2,779). Analysis of pooled adult samples across all sites suggests that Nefor the whole Bay may be verylarge, which is also indicated by the lack of upper confidence limits in many estimates. Ourresults suggest that Nemay be small for a given spat fall due to moderate SRS, but the entireadult population may have large Neand temporally stable as they are accumulations of many spatfalls per year and over many years.
引文
[1] Bebianno M., Geret F., Hoarau P., et al. Biomarkers in Ruditapes decussatus: a potential bioindicatorspecies. Biomarkers,2004,9(4-5):305-330.
    [2] Loker E. S., Adema C. M., Zhang S. M., et al. Invertebrate immune systems–not homogeneous, notsimple, not well understood. Immunological reviews,2004,198(1):10-24.
    [3] Canesi L., Gallo G., Gavioli M., et al. Bacteria–hemocyte interactions and phagocytosis in marinebivalves. Microscopy research and technique,2002,57(6):469-476.
    [4] Takahashi K. and Muroga K. Review-Cellular Defense Mechanisms in Bivalve Molluscs. FishPathology,2008,43(1):1-18.
    [5]杜丽,张巍,陆逵, et al.贝类免疫机制研究进展.动物医学进展,2008,29(3):77-81.
    [6] Cajaraville M. P. and Pal S. G. Morphofunctional study of the haemocytes of the bivalve molluscMytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell structure andfunction,1995,20(5):355.
    [7] Olafsen J. A. Role of lectins (C-reactive protein) in defense of marine bivalves against bacteria.Advances in experimental medicine and biology,1995,371343.
    [8] Cheng T. Bivalves. Invertebrate blood cells,1981,1233-300.
    [9] Batista F., Boudry P., Dos Santos A., et al. Infestation of the cupped oysters Crassostrea angulata, C.gigas and their first-generation hybrids by the copepod Myicola ostreae: differences insusceptibility and host response. Parasitology,2009,136(5):537-543.
    [10] Pipe R. Hydrolytic enzymes associated with the granular haemocytes of the marine musselMytilusedulis. The Histochemical Journal,1990,22(11):595-603.
    [11]陈寅山,何桂颖and饶小珍.泥蚶血淋巴液凝集素的分离纯化及其性质研究.分子细胞生物学报,2006,39(5):453-460.
    [12] Li M. and Flemming C. Hemagglutinins from oyster hemolymph. Canadian Journal of Zoology,1967,45(6):1225-1234.
    [13] Mitta G., Vandenbulcke F. and Roch P. Original involvement of antimicrobial peptides in musselinnate immunity. FEBS letters,2000,486(3):185-190.
    [14] Janeway Jr C. A. and Medzhitov R. Innate immune recognition. Annual review of immunology,2002,20(1):197-216.
    [15] Medzhitov R. and Janeway Jr C. Innate immune recognition: mechanisms and pathways.Immunological reviews,2000,173(1):89-97.
    [16] Itoh N. and Takahashi K. G. A novel peptidoglycan recognition protein containing a goose-typelysozyme domain from the Pacific oyster, Crassostrea gigas. Molecular Immunology,2009,46(8-9):1768-1774.
    [17] Ni D., Song L., Wu L., et al. Molecular cloning and mRNA expression of peptidoglycan recognitionprotein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck1819). Developmental&Comparative Immunology,2007,31(6):548-558.
    [18] Wang L., Song L., Zhao J., et al. Expressed sequence tags from the zhikong scallop (Chlamysfarreri): discovery and annotation of host-defense genes. Fish&Shellfish Immunology,2009,26(5):744-750.
    [19] Song L., Wang L., Qiu L., et al. Bivalve Immunity. Invertebrate Immunity,2011,44-65.
    [20] Jayaraj S., Thiagarajan R., Arumugam M., et al. Isolation, purification and characterization of [beta]-1,3-glucan binding protein from the plasma of marine mussel Perna viridis. Fish&ShellfishImmunology,2008,24(6):715-725.
    [21] Kim J. Y., Adhya M., Cho S. K., et al. Characterization, tissue expression, andimmunohistochemical localization of MCL3, a C-type lectin produced by Perkinsus olseni-infected Manila clams (Ruditapes philippinarum). Fish&Shellfish Immunology,2008,25(5):598-603.
    [22] Gourdine J. P., Cioci G., Miguet L., et al. High affinity interaction between a bivalve C-type lectinand a biantennary complex-type N-glycan revealed by crystallography and microcalorimetry.Journal of Biological Chemistry,2008,283(44):30112.
    [23] Tasumi S. and Vasta G. R. A galectin of unique domain organization from hemocytes of the easternoyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. TheJournal of Immunology,2007,179(5):3086.
    [24] Yamaura K., Takahashi K. G. and Suzuki T. Identification and tissue expression analysis of C-typelectin and galectin in the Pacific oyster, Crassostrea gigas. Comparative Biochemistry andPhysiology Part B: Biochemistry and Molecular Biology,2008,149(1):168-175.
    [25] Song X., Zhang H., Zhao J., et al. An immune responsive multidomain galectin from bay scallopArgopectens irradians. Fish&Shellfish Immunology,2010,28(2):326-332.
    [26] Kim J. Y., Kim Y. M., Cho S. K., et al. Noble tandem-repeat galectin of Manila clam Ruditapesphilippinarum is induced upon infection with the protozoan parasite Perkinsus olseni.Developmental&Comparative Immunology,2008,32(10):1131-1141.
    [27] Christophides G. K., Zdobnov E., Barillas-Mury C., et al. Immunity-related genes and gene familiesin Anopheles gambiae. Science,2002,298(5591):159.
    [28] Prado-Alvarez M., Rotllant J., Gestal C., et al. Characterization of a C3and a factor B-like in thecarpet-shell clam, Ruditapes decussatus. Fish&Shellfish Immunology,2009,26(2):305-315.
    [29] Zhang H., Song L., Li C., et al. Molecular cloning and characterization of a thioester-containingprotein from Zhikong scallop Chlamys farreri. Molecular Immunology,2007,44(14):3492-3500.
    [30] Zhang H., Wang L., Song L., et al. The genomic structure, alternative splicing and immune responseof Chlamys farreri thioester-containing protein. Developmental&Comparative Immunology,2009,33(10):1070-1076.
    [31] Tanguy A., Guo X. and Ford S. E. Discovery of genes expressed in response to Perkinsus marinuschallenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene,2004,338(1):121-131.
    [32] Song L., Xu W., Li C., et al. Development of expressed sequence tags from the bay scallop,Argopecten irradians irradians. Marine Biotechnology,2006,8(2):161-169.
    [33] Perrigault M., Tanguy A. and Allam B. Identification and expression of differentially expressedgenes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX).BMC genomics,2009,10(1):377.
    [34] Qiu L., Song L., Xu W., et al. Molecular cloning and expression of a Toll receptor gene homologuefrom Zhikong Scallop, Chlamys farreri. Fish&Shellfish Immunology,2007,22(5):451-466.
    [35] Zhao J., Song L., Li C., et al. Molecular cloning, expression of a big defensin gene from bay scallopArgopecten irradians and the antimicrobial activity of its recombinant protein. MolecularImmunology,2007,44(4):360-368.
    [36] Gonzalez M., Gueguen Y., Desserre G., et al. Molecular characterization of two isoforms of defensinfrom hemocytes of the oyster Crassostrea gigas. Developmental&Comparative Immunology,2007,31(4):332-339.
    [37] Bachali S., Jager M., Hassanin A., et al. Phylogenetic analysis of invertebrate lysozymes and theevolution of lysozyme function. Journal of molecular evolution,2002,54(5):652-664.
    [38] Zhao J., Song L., Li C., et al. Molecular cloning of an invertebrate goose-type lysozyme gene fromChlamys farreri, and lytic activity of the recombinant protein. Molecular Immunology,2007,44(6):1198-1208.
    [39] Xue Q., Hellberg M., Schey K., et al. A new lysozyme from the eastern oyster, Crassostrea virginica,and a possible evolutionary pathway for i-type lysozymes in bivalves from host defense todigestion. BMC Evolutionary Biology,2010,10(1):213.
    [40] Fisher W. S. and DiNuzzo A. R. Agglutination of bacteria and erythrocytes by serum from sixspecies of marine molluscs. Journal of invertebrate pathology,1991,57(3):380-394.
    [41] Hughes T., Smith E. M., Chin R., et al. Interaction of immunoactive monokines (interleukin1andtumor necrosis factor) in the bivalve mollusc Mytilus edulis. Proceedings of the NationalAcademy of Sciences,1990,87(12):4426.
    [42] Beschin A., Bilej M., Torreele E., et al. On the existence of cytokines in invertebrates. Cellular andMolecular Life Sciences,2001,58(5):801-814.
    [43] Roberts S., Gueguen Y., De Lorgeril J., et al. Rapid accumulation of an interleukin17homologtranscript in Crassostrea gigas hemocytes following bacterial exposure. Developmental&Comparative Immunology,2008,32(9):1099-1104.
    [44] Bao Y., Li L. and Zhang G. The manganese superoxide dismutase gene in bay scallop Argopectenirradians: cloning,3D modelling and mRNA expression. Fish&Shellfish Immunology,2008,25(4):425-432.
    [45] Xing J., Lin T. and Zhan W. Variations of enzyme activities in the haemocytes of scallop Chlamysfarreri after infection with the acute virus necrobiotic virus (AVNV). Fish&ShellfishImmunology,2008,25(6):847-852.
    [46] Geret F., Manduzio H., Leboulenger F., et al. Molecular cloning of superoxide dismutase (Cu/Zn-SOD) from aquatic molluscs. Marine environmental research,2004,58(2-5):619-623.
    [47] Li C., Ni D., Song L., et al. Molecular cloning and characterization of a catalase gene from Zhikongscallop Chlamys farreri. Fish&Shellfish Immunology,2008,24(1):26-34.
    [48] Vlahogianni T., Dassenakis M., Scoullos M. J., et al. Integrated use of biomarkers (superoxidedismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessingheavy metals' pollution in coastal areas from the Saronikos Gulf of Greece. Marine pollutionbulletin,2007,54(9):1361-1371.
    [49] Moreira S. and Guilhermino L. The use of Mytilus galloprovincialis acetylcholinesterase andglutathione S-transferases activities as biomarkers of environmental contamination along thenorthwest Portuguese coast. Environmental monitoring and Assessment,2005,105(1):309-325.
    [50] Le Pennec G. and Le Pennec M. Induction of glutathione-S-transferases in primary cultureddigestive gland acini from the mollusk bivalve Pecten maximus (L.): application of a new cellularmodel in biomonitoring studies. Aquatic toxicology,2003,64(2):131-142.
    [51] MacKenzie Jr C. History of oystering in the United States and Canada, featuring the eight greatestoyster estuaries. Marine Fisheries Review,1996,58(4):1-78.
    [52] Haskin H. H., Stauber L. A. and Mackin J. A. Minchinia nelsoni n. sp.(Haplosporida,Haplosporidiidae): causative agent of the Delaware Bay oyster epizo tic. Science,1966,153(3742):1414.
    [53] Andrews J. D. and Wood J. L. Oyster mortality studies in Virginia. VI. History and distribution ofMinchinia nelsoni, a pathogen of oysters, in Virginia. Chesapeake Science,1967,8(1):1-13.
    [54] FARLEY C. A. Epizootic and enzootic aspects of Minchinia nelsoni (Haplosporida) disease inMaryland oysters. Journal of Eukaryotic Microbiology,1975,22(3):418-427.
    [55] Haskin H. and Andrews J. Uncertainties and speculations about the life cycle of the eastern oysterpathogen Haplosporidium nelsoni (MSX). American Fisheries Society Special Publication,1988,185-22.
    [56] Krantz G., Buchanan L., Farley C., et al.(1972). Minchinia nelsoni in oysters from Massachusettswaters.
    [57] Matthiessen G., Feng S. and Leibovitz L. Patterns of MSX (Haplosporidium nelsoni) infection andsubsequent mortality in resistant and susceptible strains of the eastern oyster, Crassostreavirginica (Gmelin,1791). New England. Journal of Shellfish Research,1990,9359-365.
    [58] Burreson E. M. and Ford S. E. A review of recent information on the Haplosporidia, with specialreference to Haplosporidium nelsoni (MSX disease). Aquatic Living Resources,2004,17(04):499-517.
    [59] Ford S. E. and Tripp M. Diseases and defense mechanisms. The eastern oyster Crassostrea virginica,1996,581-660.
    [60] Ford S. E., Ashton-Alcox K. A. and Kanaley S. A. In vitro interactions between bivalve hemocytesand the oyster pathogen Haplosporidium nelsoni (MSX). The Journal of parasitology,1993,255-265.
    [61] Powell E. N., Klinck J. M., Ford S. E., et al. Modeling the MSX parasite in eastern oyster(Crassostrea virginica) populations. III. Regional application and the problem of transmission.Journal of Shellfish Research,1999,18(2):517-538.
    [62] Ewart J. W. and Ford S. E.(1993). History and impact of MSX and Dermo diseases on oyster stocksin the northeast region, Northeastern Regional Aquaculture Center, University of MassachusettsDartmouth.
    [63] Interface W. OIE World Animal Health Information Database (WAHID) Database.2009.
    [64] Guo X., Ford S., DeBrosse G., et al. Breeding and evaluation of eastern oyster strains selected forMSX, Dermo and JOD resistance. J. Shellfish Res,2003,22333-334.
    [65] Ragone Calvo L. M., Calvo G. W. and Burreson E. M. Dual disease resistance in a selectively bredeastern oyster, Crassostrea virginica, strain tested in Chesapeake Bay. Aquaculture,2003,220(1-4):69-87.
    [66] Davis C. V. and Barber B. J. Growth and survival of selected lines of eastern oysters, Crassostreavirginica (Gmelin1791) affected by juvenile oyster disease. Aquaculture,1999,178(3-4):253-271.
    [67] Tall B., La Peyre J., Bier J., et al. Perkinsus marinus extracellular protease modulates survival ofVibrio vulnificus in Eastern oyster (Crassostrea virginica) hemocytes. Applied and environmentalmicrobiology,1999,65(9):4261-4263.
    [68] Silverman G. A., Whisstock J. C., Bottomley S. P., et al. Serpins Flex Their Muscle. Journal ofBiological Chemistry,2010,285(32):24299.
    [69] Yoshida M., Kijima M., Akita M., et al. Potent and specific inhibition of mammalian histonedeacetylase both in vivo and in vitro by trichostatin A. Journal of Biological Chemistry,1990,265(28):17174.
    [70] Klemba M. and Goldberg D. E. Biological roles of proteases in parasitic protozoa. Annual review ofbiochemistry,2002,71(1):275-305.
    [71] Xue Q. G., Waldrop G. L., Schey K. L., et al. A novel slow-tight binding serine protease inhibitorfrom eastern oyster (Crassostrea virginica) plasma inhibits perkinsin, the major extracellularprotease of the oyster protozoan parasite Perkinsus marinus. Comparative Biochemistry andPhysiology Part B: Biochemistry and Molecular Biology,2006,145(1):16-26.
    [72] La Peyre J. F., Xue Q. G., Itoh N., et al. Serine protease inhibitor cvSI-1potential role in the easternoyster host defense against the protozoan parasite Perkinsus marinus. Developmental&Comparative Immunology,2010,34(1):84-92.
    [73] Xue Q., Itoh N., Schey K. L., et al. Evidence indicating the existence of a novel family of serineprotease inhibitors that may be involved in marine invertebrate immunity. Fish&ShellfishImmunology,2009,27(2):250-259.
    [74] La Peyre J. F., Chu F. L. E. and Meyers J. M. Haemocytic and humoral activities of eastern andPacific oysters following challenge by the protozoan Perkinsus marinus. Fish&ShellfishImmunology,1995,5(3):179-190.
    [75] Meyers J., Burreson E., Barber B., et al. Susceptibility of diploid and triploid Pacific oysters,Crassostrea gigas (Thunberg,1793) and eastern oysters, Crassostrea virginica (Gmelin,1791), toPerkinsus marinus. J. Shellfish Res,1991,10433-437.
    [76] Wang S., Peatman E., Liu H., et al. Microarray analysis of gene expression in eastern oyster(Crassostrea virginica) reveals a novel combination of antimicrobial and oxidative stress hostresponses after dermo (Perkinsus marinus) challenge. Fish&Shellfish Immunology,2010,29(6):921-929.
    [77] Seo J. K., Stephenson J., Crawford J. M., et al. American oyster, Crassostrea virginica, expresses apotent antibacterial histone H2B protein. Marine Biotechnology,2010,12(5):543-551.
    [78] Dorrington T., Villamil L. and Gómez-chiarri M. Upregulation in response to infection andantibacterial activity of oyster histone H4. Fish&Shellfish Immunology,2011,30(1):94-101.
    [79] Luikart G., England P. R., Tallmon D., et al. The power and promise of population genomics: fromgenotyping to genome typing. Nature Reviews Genetics,2003,4(12):981-994.
    [80] Allendorf F. W., Hohenlohe P. A. and Luikart G. Genomics and the future of conservation genetics.Nature Reviews Genetics,2010,11(10):697-709.
    [81] Davey J. W., Hohenlohe P. A., Etter P. D., et al. Genome-wide genetic marker discovery andgenotyping using next-generation sequencing. Nature Reviews Genetics,2011,12(7):499-510.
    [82] Altshuler D., Pollara V. J., Cowles C. R., et al. An SNP map of the human genome generated byreduced representation shotgun sequencing. Nature,2000,407(6803):513-516.
    [83] Kraus R., Kerstens H., Van Hooft P., et al. Genome wide SNP discovery, analysis and evaluation inmallard (Anas platyrhynchos). BMC genomics,2011,12(1):150.
    [84] You F., Huo N., Deal K., et al. Annotation-based genome-wide SNP discovery in the large andcomplex Aegilops tauschii genome using next-generation sequencing without a reference genomesequence. BMC genomics,2011,12(1):59.
    [85] Van Orsouw N. J., Hogers R. C. J., Janssen A., et al. Complexity reduction of polymorphicsequences (CRoPS): a novel approach for large-scale polymorphism discovery in complexgenomes. PLoS One,2007,2(11): e1172.
    [86] Gompert Z., Forister M. L., Fordyce J. A., et al. Bayesian analysis of molecular variance inpyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies.Molecular Ecology,2010,19(12):2455-2473.
    [87] Miller M. R., Dunham J. P., Amores A., et al. Rapid and cost-effective polymorphism identificationand genotyping using restriction site associated DNA (RAD) markers. Genome research,2007,17(2):240-248.
    [88] Baird N. A., Etter P. D., Atwood T. S., et al. Rapid SNP discovery and genetic mapping usingsequenced RAD markers. PLoS One,2008,3(10): e3376.
    [89] Xie W., Feng Q., Yu H., et al. Parent-independent genotyping for constructing an ultrahigh-densitylinkage map based on population sequencing. Proceedings of the National Academy of Sciences,2010,107(23):10578.
    [90] Elshire R. J., Glaubitz J. C., Sun Q., et al. A robust, simple genotyping-by-sequencing (GBS)approach for high diversity species. PLoS One,2011,6(5): e19379.
    [91] Andolfatto P., Davison D., Erezyilmaz D., et al. Multiplexed shotgun genotyping for rapid andefficient genetic mapping. Genome research,2011,21(4):610-617.
    [92] Baxter S. W., Davey J. W., Johnston J. S., et al. Linkage mapping and comparative genomics usingnext-generation RAD sequencing of a non-model organism. PLoS One,2011,6(4): e19315.
    [93] Chutimanitsakun Y., Nipper R., Cuesta-Marcos A., et al. Construction and application for QTLanalysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC genomics,2011,12(1):4.
    [94] Pfender W., Saha M., Johnson E., et al. Mapping with RAD (restriction-site associated DNA)markers to rapidly identify QTL for stem rust resistance in Lolium perenne. TAG Theoretical andApplied Genetics,2011,1-14.
    [95] Amores A., Catchen J., Ferrara A., et al. Genome evolution and meiotic maps by massively parallelDNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics,2011,188(4):799-808.
    [96] Hohenlohe P. A., Bassham S., Etter P. D., et al. Population genomics of parallel adaptation inthreespine stickleback using sequenced RAD tags. PLoS Genetics,2010,6(2): e1000862.
    [97] Emerson K. J., Merz C. R., Catchen J. M., et al. Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of the National Academy of Sciences,2010,107(37):16196-16200.
    [98] Etter P. D., Preston J. L., Bassham S., et al. Local de novo assembly of RAD paired-end contigsusing short sequencing reads. PLoS One,2011,6(4): e18561.
    [99] Hohenlohe P. A., Amish S. J., Catchen J. M., et al. Next‐generation RAD sequencing identifiesthousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout.Molecular Ecology Resources,2011,11117-122.
    [100] Scaglione D., Acquadro A., Portis E., et al. RAD tag sequencing as a source of SNP markers inCynara cardunculus L. BMC genomics,2012,13(1):3.
    [101] Vos P., Hogers R., Bleeker M., et al. AFLP: a new technique for DNA fingerprinting. Nucleic acidsresearch,1995,23(21):4407.
    [102] Irving J. A., Pike R. N., Lesk A. M., et al. Phylogeny of the serpin superfamily: implications ofpatterns of amino acid conservation for structure and function. Genome research,2000,10(12):1845.
    [103] Rawlings N. D., Tolle D. P. and Barrett A. J. Evolutionary families of peptidase inhibitors.Biochemical Journal,2004,378(Pt3):705.
    [104] Clarke E. P., Cates G. A., Ball E. H., et al. A collagen-binding protein in the endoplasmic reticulumof myoblasts exhibits relationship with serine protease inhibitors. Journal of Biological Chemistry,1991,266(26):17230.
    [105] Encomio V., Stickler S., Allen Jr S., et al. Performance of “natural dermo-resistant” oyster stocks-survival, disease, growth, condition and energy reserves. Journal of Shellfish Research,2005,24(1):143-155.
    [106] Green-Beach E.(2011). Dermo disease on Martha’s Vineyard: infections of Perkinsus marinus andits influence on oyster host population structure, Rutgers University-Graduate School-NewBrunswick.
    [107]于海洋.牙鲆微卫星标记的筛选和美洲牡蛎抗病相关基因SNP的初步分析.中国海洋大学博士论文,2010.
    [108] Raymond M. and Rousset F. GENEPOP (version1.2): population genetics software for exact testsand ecumenicism. Journal of heredity,1995,86(3):248-249.
    [109] Ford S. E., Chintala M. M. and Bushek D. Comparison of in vitro-cultured and wild-type Perkinsusmarinus. I. Pathogen virulence. Diseases of aquatic organisms,2002,51(3):187-201.
    [110] Sharp P. A. Speculations on RNA splicing. Cell,1981,23(3):643.
    [111] Ford S. E., Tripp, M.R. Diseases and defense mechanisms. In: Kennedy VS, Newell RIE, Eble AF(eds) The eastern oyster: Crassostrea virginica. Maryland Sea Grant, College Park, MD,1996,383-450.
    [112] Ford S. E. and Haskin H. H. Infection and mortality patterns in strains of oysters Crassostreavirginica selected for resistance to the parasite Haplosporidium nelsoni (MSX). The Journal ofparasitology,1987,368-376.
    [113] Guo X. Use and exchange of genetic resources in molluscan aquaculture. Reviews in Aquaculture,2009,1(3‐4):251-259.
    [114] Faisal M., MacIntyre E. A., Adham K. G., et al. Evidence for the presence of protease inhibitors ineastern (Crassostrea virginica) and Pacific (Crassostrea gigas) oysters. Comparative Biochemistryand Physiology Part B: Biochemistry and Molecular Biology,1998,121(2):161-168.
    [115] Xue Q.-G., Waldrop G. L., Schey K. L., et al. A novel slow-tight binding serine protease inhibitorfrom eastern oyster (Crassostrea virginica) plasma inhibits perkinsin, the major extracellularprotease of the oyster protozoan parasite Perkinsus marinus. Comparative Biochemistry andPhysiology Part B: Biochemistry and Molecular Biology,2006,145(1):16-26.
    [116] Brown B. L., Butt A. J., Shelton S. W., et al. Resistance of Dermo in eastern oysters, Crassostreavirginica (Gmelin), of North Carolina but not Chesapeake Bay heritage. Aquaculture Research,2005,36(14):1391-1399.
    [117] Hoffmann J. A., Kafatos F. C., Janeway C. A., et al. Phylogenetic perspectives in innate immunity.Science,1999,284(5418):1313.
    [118] Roch P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture,1999,172(1-2):125-145.
    [119] Tincu J. A. and Taylor S. W. Antimicrobial peptides from marine invertebrates. Antimicrobialagents and chemotherapy,2004,48(10):3645.
    [120] McHenery J. G., Birkbeck T. H. and Allen J. A. The occurrence of lysozyme in marine bivalves.Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1979,63(1):25-28.
    [121] Gueguen Y., Cadoret J. P., Flament D., et al. Immune gene discovery by expressed sequence tagsgenerated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene,2003,303139-145.
    [122] Kang Y. S., Kim Y. M., Park K. I., et al. Analysis of EST and lectin expressions in hemocytes ofManila clams (Ruditapes philippinarum)(Bivalvia: Mollusca) infected with Perkinsus olseni.Developmental&Comparative Immunology,2006,30(12):1119-1131.
    [123] Wang J., Chuang K., Ahluwalia M., et al. High-throughput SNP genotyping by single-tube PCRwith T~m-shift primers. Biotechniques,2005,39(6):885.
    [124] Erali M., Palais R. and Wittwer C. SNP genotyping by unlabeled probe melting analysis. Methodsin molecular biology,2008,429199.
    [125] Lee J. H. and Guo X. Mining EST database for single-nucleotide polymorphisms in the easternoyster (Crassostrea virginica). J Shellfish Res,2006,25(2):748-749.
    [126] Zhang L. and Guo X. Development and validation of single nucleotide polymorphism markers inthe eastern oyster Crassostrea virginica Gmelin by mining ESTs and resequencing. Aquaculture,2010,302(1-2):124-129.
    [127] Karl S. A. and Avise J. C. Balancing selection at allozyme loci in oysters: implications fromnuclear RFLPs. Science,1992,256(5053):100-102.
    [128] Hare M. P. and Avise J. C. Population structure in the American oyster as inferred by nuclear genegenealogies. Molecular Biology and Evolution,1998,15(2):119-128.
    [129] Hoover C. A. and Gaffney P. M. Geographic variation in nuclear genes of the eastern oyster,Crassostrea virginica Gmelin. Journal of Shellfish Research,2005,24(1):103-112.
    [130] Liew M., Pryor R., Palais R., et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clinical chemistry,2004,50(7):1156.
    [131] Yu H., He Y., Wang X., et al. Polymorphism in a serine protease inhibitor gene and its associationwith disease resistance in the eastern oyster (Crassostrea virginica Gmelin). Fish&ShellfishImmunology,2011.
    [132] Catchen J. M., Amores A., Hohenlohe P., et al. Stacks: building and genotyping loci de novo fromshort-read sequences. G3: Genes, Genomes, Genetics,2011,1(3):171-182.
    [133] Van Ooijen J. JoinMap4. Software for the calculation of genetic linkage maps in experimentalpopulations,2006.
    [134] Launey S. and Hedgecock D. High genetic load in the Pacific oyster Crassostrea gigas. Genetics,2001,159(1):255-265.
    [135] Wang Y., Xu Z., Pierce J. C., et al. Characterization of eastern oyster (Crassostrea virginica Gmelin)chromosomes by fluorescence in situ hybridization with bacteriophage P1clones. MarineBiotechnology,2005,7(3):207-214.
    [136] Yu Z. and Guo X. Identification and mapping of disease-resistance QTLs in the eastern oyster,Crassostrea virginica Gmelin. Aquaculture,2006,254(1-4):160-170.
    [137] Wang S., Bao Z., Pan J., et al. AFLP linkage map of an intraspecific cross in Chlamys farreri.Journal of Shellfish Research,2004,23(2):491-500.
    [138] Sakamoto T., Danzmann R. G., Gharbi K., et al. A microsatellite linkage map of rainbow trout(Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates.Genetics,2000,155(3):1331-1345.
    [139] Knapik E. W., Goodman A., Ekker M., et al. A microsatellite genetic linkage map for zebrafish(Danio rerio). Nature genetics,1998,18(4):338-343.
    [140]王师.栉孔扇贝遗传图谱的构建及重复元件的进化分析.中国海洋大学博士论文,2007.
    [141] Buroker N. Population genetics of the American oyster Crassostrea virginica along the Atlanticcoast and the Gulf of Mexico. Marine Biology,1983,75(1):99-112.
    [142] Reeb C. A. and Avise J. A genetic discontinuity in a continuously distributed species:mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics,1990,124(2):397.
    [143] Hare M. P. and Avise J. C. Molecular genetic analysis of a stepped multilocus cline in theAmerican oyster (Crassostrea virginica). Evolution,1996,2305-2315.
    [144] Wakefield J. and Gaffney P. DGGE reveals additional population structure in American oyster(Crassostrea virginica) populations. J Shellfish Res,1996,15513.
    [145] Hare M. P., Guenther C. and Fagan W. F. Nonrandom larval dispersal can steepen marine clines.Evolution,2005,59(12):2509-2517.
    [146] Murray M. C. and Hare M. P. A genomic scan for divergent selection in a secondary contact zonebetween Atlantic and Gulf of Mexico oysters, Crassostrea virginica. Molecular Ecology,2006,15(13):4229-4242.
    [147] Rose C. G., Paynter K. T. and Hare M. P. Isolation by distance in the eastern oyster, Crassostreavirginica, in Chesapeake Bay. Journal of heredity,2006,97(2):158-170.
    [148] Varney R. L., Galindo-Sánchez C. E., Cruz P., et al. Population Genetics of the Eastern OysterCrassostrea virginica (Gmelin,1791) in the Gulf of Mexico. Journal of Shellfish Research,2009,28(4):855-864.
    [149] Wang Y. and Guo X. Development and characterization of EST-SSR markers in the eastern oysterCrassostrea virginica. Marine Biotechnology,2007,9(4):500-511.
    [150] Wang Y., Shi Y. and Guo X. Identification and characterization of66EST-SSR markers in theeastern oyster Crassostrea virginica (Gmelin). Journal of Shellfish Research,2009,28(2):227-234.
    [151] Lee J. and Guo X. Mining EST database for single-nucleotide polymorphisms in the eastern oyster(Crassostrea virginica). J Shellfish Res,2006,25(2):748-749.
    [152] Schuelke M. An economic method for the fluorescent labeling of PCR fragments. NatureBiotechnology,2000,18(2):233-234.
    [153] Wattier R., Engel C. R., Saumitou-Laprade P., et al. Short allele dominance as a source ofheterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locusGv1CT in Gracilaria gracilis (Rhodophyta). Molecular Ecology,1998,7(11):1569-1573.
    [154] Shinde D., Lai Y., Sun F., et al. Taq DNA polymerase slippage mutation rates measured by PCRand quasi-likelihood analysis:(CA/GT) n and (A/T) n microsatellites. Nucleic acids research,2003,31(3):974-980.
    [155] Brookfield J. F. Y. A simple new method for estimating null allele frequency from heterozygotedeficiency. Molecular Ecology,1996,5(3):453-455.
    [156] Goudet J. FSTAT (version1.2): a computer program to calculate F-statistics. Journal of heredity,1995,86(6):485-486.
    [157] Rice W. R. Analyzing tables of statistical tests. Evolution,1989,43(1):223-225.
    [158] Brown B. L., Franklin D. E., Gaffney P. M., et al. Characterization of microsatellite loci in theeastern oyster, Crassostrea virginica. Molecular Ecology,2000,9(12):2216-2218.
    [159] Reece K., Ribeiro W., Gaffney P., et al. Microsatellite marker development and analysis in theeastern oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregationratios. Journal of heredity,2004,95(4):346.
    [160] Carlsson J. and Reece K. S. Eight PCR primers to amplify EST-linked microsatellites in theEastern oyster, Crassostrea virginica genome. Molecular Ecology Notes,2007,7(2):257-259.
    [161] Callen D. F., Thompson A. D., Shen Y., et al. Incidence and origin of" null" alleles in the (AC) nmicrosatellite markers. American Journal of Human Genetics,1993,52(5):922.
    [162] Li Z., Li J., Wang Q., et al. The effects of selective breeding on the genetic structure of shrimpFenneropenaeus chinensis populations. Aquaculture,2006,258(1):278-282.
    [163] Li Q., Park C., Kobayashi T., et al. Inheritance of microsatellite DNA markers in the Pacificabalone Haliotis discus hannai. Marine Biotechnology,2003,5(4):331-338.
    [164] Hedgecock D., Li G., Hubert S., et al. Widespread null alleles and poor cross-species amplificationof microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. Journal of ShellfishResearch,2004,23(2):379-386.
    [165] Vadopalas B., Leclair L. L. and Bentzen P. Microsatellite and allozyme analyses reveal few geneticdifferences among spatially distinct aggregations of geoduck clams (Panopea abrupta, Conrad1849). Journal of Shellfish Research,2004,23(3):693-706.
    [166] Zhan A. B., Bao Z. M., Hui M., et al.(2007). Inheritance pattern of EST-SSRs in self-fertilizedlarvae of the bay scallop Argopecten irradians, Helsinki: Suomen Biologian Seura Vanamo,1964-.
    [167]战爱斌.栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用.中国海洋大学博士论文,2007.
    [168] Hubert S. and Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oysterCrassostrea gigas. Genetics,2004,168(1):351.
    [169] Cunningham C. and Collins T. Developing model systems for molecular biogeography: vicarianceand interchange in marine invertebrates. Experientia-Supplements only,1994,69405-434.
    [170] Milbury C., Meritt D., Newell R. I. E., et al. Mitochondrial DNA markers allow monitoring ofoyster stock enhancement in the Chesapeake Bay. Marine Biology,2004,145(2):351-359.
    [171] McDonald J. H., Verrelli B. C. and Geyer L. B. Lack of geographic variation in anonymous nuclearpolymorphisms in the American oyster, Crassostrea virginica. Molecular Biology and Evolution,1996,13(8):1114-1118.
    [172] Small M. and Chapman R. Intraspecific variation in the16S ribosomal gene of Crassostreavirginica.1997.
    [173] Wright S. Evolution in Mendelian Populations. Genetics,1931,1697-159.
    [174] Charlesworth B. Effective population size and patterns of molecular evolution and variation.Nature Reviews Genetics,2009,10(3):195-205.
    [175] Berthier P., Beaumont M. A., Cornuet J. M., et al. Likelihood-based estimation of the effectivepopulation size using temporal changes in allele frequencies: a genealogical approach. Genetics,2002,160(2):741-751.
    [176] Kalinowski S. T. and Waples R. S. Relationship of effective to census size in fluctuatingpopulations. Conservation Biology,2002,16(1):129-136.
    [177] Hauser L. and Carvalho G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slainby beautiful facts. Fish and Fisheries,2008,9(4):333-362.
    [178] Hedgecock D. Does variance in reproductive success limit effective population sizes of marineorganisms. in Genetics and evolution of aquatic organisms, A.R. Beaumont ed., London:Chapman&Hall,1994,122–134.
    [179] Hedgecock D. and Pudovkin A. I. Sweepstakes reproductive success in highly fecund marine fishand shellfish: A review and commentary. Bulletin of Marine Science,2011,87doi:10.5343/bms.2010.1051(3).
    [180] Buston P. M., Fauvelot C., Wong M. Y. L., et al. Genetic relatedness in groups of the humbugdamselfish Dascyllus aruanus: small, similar sized individuals may be close kin. MolecularEcology,2009,18(22):4707-4715.
    [181] Luikart G., Ryman N., Tallmon D. A., et al. Estimation of census and effective population sizes:the increasing usefulness of DNA-based approaches. Conservation Genetics,2010,11(2):355-373.
    [182] Hill W. G. Estimation of effective population size from data on linkage disequilibrium. GeneticsResearch,1981,38(03):209-216.
    [183] Waples R. S. and Do C. Linkage disequilibrium estimates of contemporary Ne using highlyvariable genetic markers: a largely untapped resource for applied conservation and evolution.Evolutionary Applications,2010,3(3):244-262.
    [184] Pudovkin A. I., Zaykin D. V. and Hedgecock D. On the potential for estimating the effectivenumber of breeders from heterozygote-excess in progeny. Genetics,1996,144(1):383-387.
    [185] England P. R., Cornuet J. M., Berthier P., et al. Estimating effective population size from linkagedisequilibrium: severe bias in small samples. Conservation Genetics,2006,7(2):303-308.
    [186] Waples R. S. A bias correction for estimates of effective population size based on linkagedisequilibrium at unlinked gene loci*. Conservation Genetics,2006,7(2):167-184.
    [187] Zhdanova O. L. and Pudovkin A. I. Nb_HetEx: a program to estimate the effective number ofbreeders. Journal of heredity,2008,99(6):694-695.
    [188] Krimbas C. B. and Tsakas S. The genetics of Dacus oleae. V. Changes of esterase polymorphism ina natural population following insecticide control-selection or drift? Evolution,1971,25(3):454-460.
    [189] Waples R. S. A generalized approach for estimating effective population size from temporalchanges in allele frequency. Genetics,1989,121(2):379-391.
    [190] Tallmon D. A., Luikart G. and Beaumont M. A. Comparative evaluation of a new effectivepopulation size estimator based on approximate Bayesian computation. Genetics,2004,167(2):977-988.
    [191] Wang J. A pseudo-likelihood method for estimating effective population size from temporallyspaced samples. Genetics Research,2001,78(03):243-257.
    [192] Wang J. and Whitlock M. C. Estimating effective population size and migration rates from geneticsamples over space and time. Genetics,2003,163(1):429-446.
    [193] Palstra F. P. and Ruzzante D. E. Genetic estimates of contemporary effective population size: whatcan they tell us about the importance of genetic stochasticity for wild population persistence?Molecular Ecology,2008,17(15):3428-3447.
    [194] Beerli P. and Felsenstein J. Maximum likelihood estimation of a migration matrix and effectivepopulation sizes in n subpopulations by using a coalescent approach. Proceedings of the NationalAcademy of Sciences of the United States of America,2001,98(8):4563-4568.
    [195] Wilson G. A. and Rannala B. Bayesian inference of recent migration rates using multilocusgenotypes. Genetics,2003,163(3):1177-1191.
    [196] Leberg P. Genetic approaches for estimating the effective size of populations. Journal of WildlifeManagement,2005,69(4):1385-1399.
    [197] Hedgecock D., Chow V. and Waples R. S. Effective population numbers of shellfish broodstocksestimated from temporal variance in allelic frequencies. Aquaculture,1992,108(3-4):215-232.
    [198] Peel D., Ovenden J. R. and Peel S. L. NeEstimator: software for estimating effective populationsize, Version1.3. Queensland Government, Department of Primary Industries and Fisheries,2004.
    [199] Galtsoff P. The american oyster Crassostrea virginica Gmelin. Journal of Experimental MarineBiology Ecology,1964,64(1):11-28.
    [200] Waples R. S. and Do C. LDNE: a program for estimating effective population size from data onlinkage disequilibrium. Molecular Ecology Resources,2008,8(4):753-756.
    [201] Tallmon D. A., Koyuk A., Luikart G., et al. ONeSAMP: a program to estimate effective populationsize using approximate Bayesian computation. Molecular Ecology Resources,2008,8(2):299-301.
    [202] Jehle R., Arntzen J. W., Burke T., et al. The annual number of breeding adults and the effectivepopulation size of syntopic newts (Triturus cristatus, T. marmoratus). Molecular Ecology,2001,10(4):839-850.
    [203] Zeller M., Reusch T. B. H. and Lampert W. Small effective population sizes in two planktonicfreshwater copepod species (Eudiaptomus) with apparently large census sizes. Journal ofEvolutionary Biology,2008,21(6):1755-1762.
    [204] Waples R. S. and Yokota M. Temporal estimates of effective population size in species withoverlapping generations. Genetics,2007,175(1):219-233.
    [205] Ford M. J., Teel D., Van Doornik D. M., et al. Genetic population structure of central Oregon Coastcoho salmon (Oncorhynchus kisutch). Conservation Genetics,2004,5(6):797-812.
    [206] Hoffman E. A., Schueler F. W. and Blouin M. S. Effective population sizes and temporal stabilityof genetic structure in Rana pipiens, the northern leopard frog. Evolution,2004,58(11):2536-2545.
    [207] Johnson J. A., Bellinger M. R., Toepfer J. E., et al. Temporal changes in allele frequencies and loweffective population size in greater prairie-chickens. Molecular Ecology,2004,13(9):2617-2630.
    [208] Consuegra S., De Leaniz C. G., Serdio A., et al. Selective exploitation of early running fish mayinduce genetic and phenotypic changes in Atlantic salmon. Journal of Fish Biology,2005,67(s1):129-145.
    [209] Jensen L. F., Hansen M. M., Carlsson J., et al. Spatial and temporal genetic differentiation andeffective population size of brown trout (Salmo trutta, L.) in small Danish rivers. ConservationGenetics,2005,6(4):615-621.
    [210] Saillant E. and Gold J. R. Population structure and variance effective size of red snapper (Lutjanuscampechanus) in the northern Gulf of Mexico. Fishery bulletin-national oceanic and atmosphericadministration2006,104(1):136-148.
    [211] Fraser D. J., Jones M. W., McParland T. L., et al. Loss of historical immigration and theunsuccessful rehabilitation of extirpated salmon populations. Conservation Genetics,2007a,8(3):527-546.
    [212] Fraser D. J., Hansen M. M., Oestergaard S., et al. Comparative estimation of effective populationsizes and temporal gene flow in two contrasting population systems. Molecular Ecology,2007b,16(18):3866-3889.
    [213] Beebee T. J. C. A comparison of single-sample effective size estimators using empirical toad (Bufocalamita) population data: genetic compensation and population size-genetic diversitycorrelations. Molecular Ecology,2009,18(23):4790-4797.
    [214] Hauser L., Adcock G. J., Smith P. J., et al. Loss of microsatellite diversity and low effectivepopulation size in an overexploited population of New Zealand snapper (Pagrus auratus).Proceedings of the National Academy of Sciences of the United States of America,2002,99(18):11742-11747.
    [215] Arnason V. Coding and consent: Moral challenges of the database project in Iceland. Bioethics,2004,18(1):27-49.
    [216] Hedrick P. Large variance in reproductive success and the Ne/N ratio. Evolution,2005,59(7):1596-1599.
    [217] Hoarau G., Boon E., Jongma D. N., et al. Low effective population size and evidence forinbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proceedings of theRoyal Society B,2005,272(1562):497-503.
    [218] Hofmann E., Bushek D., Ford S., et al. Understanding How Disease and Environment Combine toStructure Resistance in Estuarine Bivalve Populations. Oceanography (Wash. DC),2009,22212-231.
    [219] Spencer C. C., Neigel J. E. and Leberg P. L. Experimental evaluation of the usefulness ofmicrosatellite DNA for detecting demographic bottlenecks. Molecular Ecology,2000,9(10):1517-1528.
    [220] Gaffney P. M. Biochemical and population genetics. in The eastern oyster Crassostrea virginica,V.S.Kennedy, R.I.E Newell, A.F. Eble, ed., College Park: Maryland Sea Grant College,1996,423-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700