翡翠贻贝(Perna viridis)线粒体COI片段序列特性和香港巨牡蛎(Crassostrea hongkongensis)线粒体基因组全序列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在双壳贝类中(M. trossulus, M. edulis,M. galloprovincialis, M. californianus,菲律宾蛤仔,罗纹贻贝(Geukensia demissa),以及珠蚌科的Pyganodon grandis, P. fragilis,和Fusconaia flava)存在双单性遗传现象,因此本文拟初步探讨一下与紫贻贝位于同一个科的翡翠贻贝Perna viridis是否具有双单性遗传现象,并对翡翠贻贝的三个近缘种(P.viridis,P.canaliculus和P.perna)进行了初步的系统分析。
     应用通用引物COIL 1490和COIH 2198对翡翠股贻贝的性腺和体细胞线粒体DNA进行PCR扩增,获得661bp长度的COI基因片段,经过比对性腺与体细胞的COI片段,发现雄性性腺与体细胞COI基因均为一个单倍型,即体内只有一种线粒体DNA类型,没有发现双单性遗传现象,雌、雄性腺的COI基因片段变异率很低(0.31%)。应用PAUP构建了NJ树、MP树以及贝叶斯法构建了贝叶斯树,对股贻贝属三种间的系统关系进行了分析,结果表明,P.viridis与P.canaliculus和P.perna之间的分化与分歧年代的估算是相吻合的。
     香港巨牡蛎(Crassostrea hongkongensis)隶属于软体动物门(Mollusca)双壳纲(Bivalvia)珍珠贝目(Pterioida)牡蛎科(Ostreidae)巨牡蛎属(Crassostrea),为中国南方沿海广泛分布的物种。根据太平洋牡蛎(C.gigas, NC_001276)和美洲牡蛎(C.virginica, AY905542)全序列,用Primer Premier 5.0设计并筛选了10对引物,获得了10个片段,测序并拼接,得到了香港巨牡蛎线粒体基因组全序列,其长度为16475bp。识别了22个tRNA基因、2个rRNA基因和12个蛋白编码基因和1个主要非编码区的完整序列,除主要非编码区外,测定序列中还存在1546bp的间隔子分散在线粒体基因组中。确定了各基因在线粒体上的排列位置。与太平洋牡蛎和美洲牡蛎相比,香港巨牡蛎线粒体基因组中没有发现基因重排。
     计算了全序列的碱基组成,蛋白编码基因,tRNA,rRNA以及间隔子和非编码区的碱基组成,在全序列中A+T含量为65.4%,蛋白编码基因的A+T含量为64.6%,tRNA基因的A+T含量为64.2%,rRNA基因的A+T含量为60.5%,间隔子的A+T含量为72.1%,主要非编码区的A+T含量为77.8%。以轻链核酸序列为标准计算的GC-skew =-0.207,AT-skew=0.134。12个蛋白编码基因,rRNA基因以及tRNA基因均为H链编码,没有L链编码的情况。除了tRNA-His与ND4蛋白编码基因有一个碱基的重叠外,其他的基因均被tRNA基因和间隔子间隔,间隔子从1到294bp不等。
     分析了各基因的片段的序列特征,发现线粒体基因组中蛋白编码基因存在ATG、ATA两种常见的起始密码子,Cyt b基因的起始密码子为ATA,和美洲牡蛎以及太平洋牡蛎的略有不同。终止密码子只有TAA和T(仅有ND4L基因)两种。研究tRNA基因潜在的二级结构发现氨基酸接受臂和反密码子环在种间没有较大变异,变异主要集中在TΨC环和臂。
     对线粒体基因组中各基因的进化速率进行了比较。结果表明,各基因进化速率为脱氢酶亚基基因和细胞色素b基因﹥ATP酶亚基基因﹥细胞色素氧化酶亚基基因﹥tRNA基因﹥rRNA基因。在细胞色素氧化酶基因中,COIII是进化速度最快的基因,而在NADH中进化最快的则是ND2和ND6基因。
     Heteroconchia亚纲的菲律宾文蛤为外类群,研究了翼型亚纲牡蛎目牡蛎科巨牡蛎属的香港巨牡蛎、太平洋牡蛎和美洲牡蛎与贻贝目贻贝科的紫贻贝(M.edulis)以及Pectinoida目海扇蛤科扇贝属的海湾扇贝(Argopecten irradians)之间的系统关系。采用从单一基因到多基因结合到线粒体基因组的方式对系统关系进行多方位分析。用软件paup和MrBayes构建了MP、NJ、ML和BI系统树。在系统树中,香港巨牡蛎和太平洋牡蛎首先聚为一支,且随着基因数的增加支持率增加,用所有基因构建系统树时支持率达到100%。这表明了多基因相结合用作系统分析可以弥补单一基因由于功能、进化方式等方面的限制而带来的弊端,多基因能较全面的揭示研究种之间的系统关系。因此线粒体基因组可以比较准确的揭示物种间的系统关系,对于分类地位相差较远的物种间的系统分析,线粒体基因组是非常有用的标记。
     与牡蛎属现有研究结果相比,用16s rRNA基因和COI基因计算的种间遗传距离与其他研究者所计算的遗传距离基本一致。随着系统分析所用基因的增多,计算的种间遗传距离趋向于用线粒体中单一基因计算的遗传距离的平均值。因此认为基因结合适合用于属间系统关系的研究。当所有基因都用于系统分析时,种间遗传距离在0.15~0.368之间。
It is known that doubly uniparental inheritance (DUI) mitochondrial DNA are present in the species M. trossulus, M. edulis,M.galloprovincialis, M.californianus, Geukensia demissa, R. philippinarum, Pyganodon grandis, P. fragilis and Fusconaia flava. In this study, we examined whether the phenomenon of double uniparental inheritance exist in mussel Perna viridis, a species in the same family with M. galloprovincialis. We also analyzed the phylogenetic relationship of the three species from the same genus (P. viridis, P. canaliculus and P. perna) based on partial mitochondrial COI gene data.
     Partial mt COI gene sequences from the gonads (male and female) and somatic tissue of Perna viridis were separately amplified using the universal primers COIL 1490/COIH 2198. A 661bp nucleotide sequence of COI gene was obtained. It is found that this sequence was identical among different tissues of male individual, and low divergence (0.31%) was detected between male and female sequences. Only one haplotype was found in both female and male sequences. No doubly uniparental inheritance (DUI) was detected. Together with available COI sequences of other Perna species from GenBank, NJ tree, MP tree and Bayesian inference (BI) tree were constructed respectively with PAUP and MrBayes, and phylogenetic relationships among them were analyzed accordingly. Results showed that the sequence divergence among these 3 species was consistent with the estimation of time of differentiation.
     The oyster Crassostrea Hongkongensis, belongs to Mollusca-Bivalvia-Pterioida- Ostreidae-Crassostrea, is one of the most important cultured oysters along the South China Sea. Ten pairs of genus-specific primers were designed in this study based on analysis of the complete mitochondrial DNA sequences of Pacific oyster (Crassostrea gigas, NC_001276) and eastern oyster (Crassostrea virginica, AY905542). Ten large fragments were amplified by long PCR accordingly. Through primer walking sequencing and sequnce assembly, the complete mitochondrial sequence of 16,475bp was obtained. The genome contains 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), 12 protein-coding genes, 1 dominating noncoding region, and 1562 bp noncoding inter-genic sequences. In comparison with other mitochondrial genome of Crassostrea species, no protein-coding gene rearrangement was found in C. hongkongensis.
     The nucleotide compositions were calculated for the complete sequence, protein-coding genes, tRNA genes, rRNA genes, Intergenic nucleotide and dominating noncoding region, respectively. The AT content of dominating noncoding region is the highest, with the value of 77.8%, and that of Intergenic nucleotide was 72.1%. The AT content of complete sequence, protein-coding genes, tRNA genes and rRNA genes are 65.4%, 64.6%, 64.2% and 60.5%, respectively. As for the criterion of L-strand, GC-skew=-0.207, AT-skew=0.134.All of the genes are encoded in H-strand. Most of the protein-coding genes are separated by tRNA genes or spacer with size range from 1bp to 294bp in length, except for tRNA-His and ND4 genes which have 1bp overlapped.
     In protein-coding genes, only two type of start codon are found: ATG and ATA. The start codon exist at the CytB gene in Crassostrea hongkongensis is CTA, which are CTA and TTA in the Pacific oyster and eastern oyster respectively. The start codon CTA and TTA both code for the amino acid Leu. Two type of stop codon are found, they are TAA and T(only ND4L gene for T). In tRNA genes, anticodon loop and the amino acid arm are the most conserved regions among species.
     Evolutionary rate of different genes are compared. Results show that NDAH dehydrogenase subunits (ND1-ND6) and Cyt B genes are the fastest evolved genes, ATP6 subunits gene take second place, and then followed by Cytochrome c oxidase subunits gene and then are the tRNA genes. Evolutionary rate in small and large subunits rRNA genes (12s rRNA and 16s rRNA) are the lowest. In Cytochrome c oxidase subunits, COIII has a higher evolutionary rate than the other two.In NDAH dehydrogenase subunits, evolutionary rate are higher in ND6 and ND2.
     Phylogenetic relationship among three oyster species Crassostrea hongkongensis, C. gigas, C. virginica and M. edulis (Mytiloida: Mytilidae) and Artemia franciscana (Pectinoida: Pectinidae) are analyszed. Ruditapes philippinarum (Heteroconchia: Veneridae) is used as out-group. Every single gene, genes encode the same protein group, all protein-coding genes, all rRNA genes, all tRNA genes and all genes as one fragment are used respectively to construct NJ phylogenetic tree, MP phylogenetic tree, ML phylogenetic tree and BI phylogenetic tree by the program Paup and MrBayes. Most of the results show that C .hongkongensis is close to C. gigas, and is different from C. virginica. When single gene is used, the bootstrap supporting rate is low. When genes are used together, the bootstrap supporting rate is up to 100%. This result indicates that genes used together can complement the defect of each other’s, hence it is more resolvable in phylogenetic research. Therefore it is evident that mitochondrial genome can be used to research relationship among far-related species .Pairise distances among the three oysters calculated with COI gene and 16s rRNA gene sequence are consistent with the results from others..
     Pairwise distance is also estimated with different gene sequences. The values between species calculated with rRNA genes and tRNA genes are low. But it is very high when calculated by ATP subunit genes and NADH subunit genes.When different genes are combined, species with distance can be seen as different genera. When all genes are combined, the pairwise distances are ranged between 0.15 and 0.368.
引文
卜云郑哲民. CoII基因在昆虫分子系统学研究中的作用和地位.昆虫知识,2005,42:18~22
    陈丽梅,孔晓瑜,喻子牛等。3种蛏类线粒体16S rRNA和COI基因片段的序列比较及其系统学初步研究,海洋科学,2005,29(8):27-32
    陈士超,杨红,李珊,祝建,傅承新.贝叶斯推论及其在百合目分子系统学中的应用.云南植物研究2007 ,29(2):161~166
    李石柱,马雅军,郑哲民.我国多斑按蚊复合体mtDNA-CoII基因序列分析及系统发育关系研究(双翅目:蚊科),陕西师范大学学报:自然科学版,2003,31(2):84~88
    李孝绪,齐钟彦,1994。中国牡蛎的比较解剖学及系统分类和演化的研究,海洋科学集刊,35 :143-178
    廖顺尧,鲁成.动物线粒体基因组研究进展.生物化学与生物物理进展.2000;27(5):508-512.
    刘亚军喻子牛姜艳艳等。栉孔扇贝16S rRNA基因片段序列的多态性研究。海洋与湖沼,2002,33(5):477-483
    刘忠权.中国泽蛙线粒体基因组结构及种群系统地理学研究.南京师范大学博士学位论文,2003
    孔晓瑜,喻子牛,刘亚军,等.中华绒螯蟹与日本绒螯蟹线粒体COI基因片段的序列比较研究.青岛海洋大学学报,2001,31(6):861 - 866.
    孔晓喻,张留所,喻子牛,刘亚军,王清印。太平洋牡蛎核糖体DNA转录间隔子和线粒体基因片断序列测定。中国水产科学,2002,9(4):304-308
    邱扬.杭州七纺蛛和虎纹捕鸟蛛的线粒体全序列研究,南京师范大学硕士论文,2004,P21.
    阙华勇,刘晓,王海艳,张素萍,张国范,张福绥.中国近海牡蛎系统分类研究的现状和对策.动物学杂志,2003,38,(4):110-113
    施燕峰,单祥年,李健等.赤鹿线粒体全基因组的序列和结构.动物学报,2003,49(5):629~636.
    孙红英,周开亚,龚美容,同宗中.中华绒鳌蟹线粒体CoII基因全序列测定.南京师大学报(自然科学版),2001,24(4):88-92
    王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究.昆虫知识,2002,39(2):88-92
    王祯瑞.中国动物志贻贝目[M],北京:科学出版社,1997,59-62.
    吴孝兵,王义权,周开亚等.扬子鳄的线粒体全基因组与鳄类系统发生.科学通报,2003,48(18):1954~1958.
    余勉余,梁超愉,李茂照,管世权,梁沛文.广东省浅海滩涂养殖渔业环境及资源.1990.103-104
    翟中和。细胞生物学。北京:高等教育出版社。2007
    张方,米志勇。动物线粒体DNA的分子生物学研究进展。生物工程进展,1998,18(3):25-32。
    张国范,常亚青,宋坚,丁君,王子臣.不同方法制备的三倍体长牡蛎养殖效果的比较.水产学报.2000, 24(4):324-328
    张际峰.中国大头蛙群系统关系研究及大头蛙和脆皮大头蛙线粒体全基因组测定.安徽师范大学硕士学位论文,2005
    张晓梅,张海军,李健,单祥年.鹿属动物小鹿线粒体DNA文库的建立和序列分析.南京师范大学学报,2003,26(1):74~77.
    张玺,楼子康,1956。中国牡蛎的研究。动物学报,8(1):65-94
    张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究,1992,13(3):289~298.
    郑芳,吕秀玲,孙红英,等.基于线粒体COI基因序列探讨长江华溪蟹的遗传分化.南京师大学报(自然科学版),2006,29 (2):103-105
    郑冬,刘学东,马建章. 12S rRNA基因及其二级结构在系统学研究中的应用.东北林业大学报,2003,31(3):59-61
    周茂德,高允田,吴融,1982。太平洋牡蛎与近江牡蛎、褶牡蛎人工杂交的初步研究。水产学报,6(3):235-241
    Ahmed, M. Cytogenetics of oysters.Cytologia, 1973.38:337-346.
    Al-Mahrouki AA, Irwin DM, Graham LC, Youson JH: Molecular cloning of preproinsulin cDNAs from several osteoglossomorphs and a cyprinid. Mol Cell Endocrinol. 2001, 174:51-58.
    Anne L. McMillen-Jackson and Theresa M.Bert.. Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. Journal of Crustacean Biology, 2004, 24(1):101~109.
    Anderson F E, Phylogeny and historical biogeography of the loliginid squids (Mollusca :Cephalopoda) based on mitochondrial DNA sequence data . Molecular Phylogenetic and Evolution,2000,15(2):191-214.
    Anderson S.,De Burjin M.H.L.,Coulson A.R. et al. Complete sequence of bovine mitochondrial DNA. J. Mol. Biol.,1982,156:683-717
    Anderson S. Sequenee and organization of the human mitochondrial genome. Nature,1981, 290:457-465
    Apostolos P. Apostolidis, Zissis Mamuris, Costas Triantaphyllidis. Phylogenetic relationships among four species of Mullidae (Perciformes) inferred from DNA sequences of mitochondrial cytochrome b and 16s rRNA genes. Biochemical Systematics and Ecology, 2001, 29: 901~909.
    Apte S and Gardner JPA, Gene order for a segment of the mitochondrial genome of the greenshell mussel, Perna canaliculus (Mytilidae: Bivalvia). Journal of Molluscan Studies,2002,68: 283-286.
    Artur Burzyn ski, Malgorzata Zbawicka, David O. F. Skibinski, and Roman Wenne. Evidence for Recombination of mtDNA in the Marine Mussel Mytilus trossulus from the Baltic. Mol. Biol. Evol. 2003. 20(3):388–392.
    Avise J. C. and Lansman R. A.. Polymorphism of mitochondrial DNA in populations of high animals. In: Nei M and Koehnl, R K (eds.) Evolution of genes and proteins. Sinacer Associates, Sunderland, Mass., 1983, 65~138.
    Avise, J. C. Phylogeography. The history and formation of species. Cambridge, MA: Harvard University Press. 2000
    Banks,M.A.,Hedgecock,D.,Walters,C. Discrimination between closely related Pacific oyster species(Crassostrea)via mitochondrial DNA sequences coding for large subunit rRNA.Mol.Mar.Biol.Biotechnol.1993, 2(3):129-136.
    Beagley CT, Taylor KA, Wolstenholme DR.Gender-associated diverse mitochondrial DNA molecules of the mussel Mytilus californianus.Curr Genet.1997,31: 318–324
    Bibb M.J.,Van Etten R.A.,Wright C..T et al. Sequence and gene organism of mouse Mitochondrial DNA. Cell,1981,26:167-180
    Blair,D., Waycott,M., Byrne,L.et al. Molecular Discrimination of Perna (Mollusca: Bivalvia) Species Using the Polymerase Chain Reaction and Species-Specific Mitochondrial Primers. Mar. Biotechnol.2006, 8 (4), 380-385.
    Bucklin A , Guarnieri M , Hill R S , et al. Taxonomic and systematic assessment of planktoic copepods using mitochondrial COI sequence variation and competitive species-specific PCR . Hydrobiologia.1999, 401:239-254.
    B?ck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F. Selenocysteine: the 21st amino acid. Mol. Microbiol. 1991, 5:515–520.
    Boulding E G. Genetic variation in bottlenecked and two wild populations of the Japanese scallop (Patinopecten yessoensis):empirical parameter estimates from coding regions of mitochondrial DNA. Can Fish Aquat Sci, 1993, 50, 1147-1157
    Boudry,P.,Heurtebise,S.,Lapegue,S. Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and Crassostrea angulata specimens:a new oyster species in Hong Kong.Aquaculture, 2003. 228,15-25.
    Boyce T. M., M. E. Zwick and C. F. Aquadro. Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics, 1989, 123: 825~836
    Bresch H. F.. Hybridization and introgression among species of sunfish (Lepomis): analysis by mitochondrial DNA and allozyme markers. Genetics, 1984, 108: 237~255.
    Brown W. M.. Restriction endonuclease cleavage maps of animal mitochondrial DNAs. Proc. Natl. Acad. Sci., USA, 1974, 71: 4617~4634.
    Brown W. M. PolymoPhism in mitoehondrial DNA of humans as revealed by restriction endonuclease analysis. Proe. Natl. Aeda. Sei. USA,1980,77:3605一3609
    Brown W. M. Evolution of animal mitochondrial DNA. In: Nei M and Koehnl, R K (eds.) Evolution of genes and proteins. Sinacer Associates, Sunderland, Mass., 1983, 62~68.
    Brown J. M., Pellmyr O., Thomson J. N., Harrison R. G.. Phylogeny of Greya (Lepidoptera:Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome Oxidase I and II: congruence with morphological data. Mol. Biol. Evol., 1994, 11(1): 128~141
    Buroker,N.E., W.K.Hershberger and K.K.Chew,1979a. Population genetics of the family Ostreidae.I.Infraspecific studies of Crassostrea gigas and Saccostrea commercialis. Mar. Biol., 54:157-169.
    Caterino M. S., Sperling F. A.. Papilil phylogeny based on mitochondrial Cytochrome oxidase I and II genes. Mol. Phy. Evol., 1999, 11(1): 122~137
    Chiara Papetti,Pietro Lió,Lukas Rüber,Tomaso Patarnello,Rafael Zardoya.Antarctic Fish Mitochondrial Genomes Lack ND6 Gene. J Mol Evol,2007 ,65:519-528. DOI 10.1007/s00239-007-9030-z
    Chu K. H., Ho H. Y., Li C. P., Chan T. Y.. Molecular Phylogenetics of the mitten crab species in Eriocheir, sensu lato (Brachyura, Grapsidae). J. Crust. Biol., 2003, 23: 738~746.
    Clary D. O., and D. R. Wolstenholme. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. J. Mol. Evol., 1985, 22: 252~271 Clayton D. A. Replication of animal mitochondria DNA. Cell, 1982, 28: 693~705.
    Coren A. Milbury, Patrick M. Gaffney.Complete Mitochondrial DNA Sequence of the Eastern Oyster Crassostrea virginica. Marine Biotechnology, 2005, 7, 697–712.
    Crozier R.H.,Crozier Y. C. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome ogrnaization.Geneties,1993,113:97-117
    Crozier R H, Crozier Y C, Mackinlay A G. The COI and COⅡregion of honeybee mitochondrial DNA :evidence for variation in insect mitochondrial evolutionary rates. Molecular Biology and Evolution. 1989, 6(4):399-411
    Daniels S. R., Stewart B. A., Gouws G., Cunningham M., Matthee C. A.. Phylogenetic relationships of the southern African freshwater crab fauna (Decapda: Potamonautidae: Potamonautes) derived from multiple data sets reveal biogeographical patterning. Mol. Phy. Evol., 2002, 25: 511~523.
    De Rijk P, J. M. Neefs, Y. Van de Peer and R. De Wachter. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res., 1993, 20: 2075~2089 (suppl.)
    Desjardins P., and R. Morais. Sequence and gene organization of the chicken rnitochondrial genome. J. Mol. Biol., 1990, 212: 599~634.
    Dreyer H, Steiner G The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctical and the first record for a putative ATPase subunit 8 gene in marine bivalves. Front Zool 2006, 3:13. doi:10.1186/1742-9994-3-13
    Emmanuel D. Ladoukakis and Eleftherios Zouros. Direct Evidence for Homologous Recombination in Mussel (Mytilus galloprovincialis) Mitochondrial DNA. Mol. Biol. Evol. 2001. 18(7):1168–1175
    Farias, I.P., G. Ort, I. Sampaio, H. Schneider, and A. Meyer. Mitochondrial DNA phylogeny of the family cichlidae: monophyly and high rate of molecular evolution of the Neotropical assemblage. Journal of Molecular Evolution, 1999, 48:703-711
    Felsenstein,J. Case in which parsimony or compatibility methods will be positively misleading.Syst.Zool., 1978, 27:401-410.
    Fisher C., Skibinski DOF. Sex-biased mitochondrial DNA heteroplasmy in the marine mussel Mytilus. Proc R Soc Lond B, 1990, 242: 387~395.
    Fitch W M. On the problem of the discovering most pasimonioustree. Amer Nat,1977,111:223-257
    Flook P. K., Rowell C. H., Gellissen G. The sequence, organization, and evolution of the Locustan migratoria mitochondrial genome. J. Mol. Evol., 1995, 41(6): 928~941.
    Foighil,D.,Gaffney,P.M.,Wilbur,W.A.. Mitochondrial cytochrome oxidase Igene sequence support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar.Biol. 1998,131:497-503.
    G. Charrier, T. Chenel, J.D. Durand, M. Girard, L. Quiniou and J. Laroche. Discrepancies in phylogeographical patterns of two European anglerfishes (Lophius budegassa and Lophius piscatorius).Molecular Phylogenetics and Evolution. 2006, 38,(3):742-754
    Gray M. W. Origin and evolution of mitochondrial DNA. Annu. Rev . Cell Biol., 1989, 5: 25~50
    Gladyshev VN, Hatfield DL. Selenocysteine-containing proteins in mammals. J. Biomed. Sci 1999. 6:151–160.
    Gen Hua Yue, Woei Chang Liew and Laszlo Orban. The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae) BMC Genomics 2006, 7:242 doi:10.1186/1471-2164-7-242
    Haiyan Wang, Ximing Guo, Guofan Zhang and Fusui Zhang. Classification of jinjiang oysters Crassostrea rivularis (Gould, 1861) from China, based on morphology and phylogenetic analysis Aquaculture, 2004, 242, (20) :137-155
    Haddrath O. and A.J. Baker. Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc. R. Soc. Lond., B. Biol. Sci., 2001, 268 (1470): 939~945.
    Hale L. R., and R. S. Singh. Extensive variation and heteroplasmy in size of mitochondrial DNA among geographic populations of D. melanogaster. Proc. Natl. Acad. Sci. USA., 1986, 83: 8813~8817
    Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK. A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science , 2002, 296:1462–1466.
    Haring E., L. Kruckenhauser, A. Gamauf, M. J. Riesing, and W. Pinsker. The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Mol. Biol. Evol., 2001, 18: 1892~1904.
    Harry,H.W..Synopsis of the supraspecific classification of living Oysters. Veliger, 1985, 28 (2): 121-158.
    Hasegawa M.,H Kishino and N.Saitou.On the maximum likelihood in molecular phylogenetics. J.Mol.Evol., 1991, 32:443-445.
    Hastings,W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970,57:97-109.
    Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Mol. Cell. Biol., 2002, 22:3565–3576.
    Haye P. A., Tam Y. K., Kornfield I.. Molecular Phylogenetics of molecrabs (Hippidae: Emerita). J. Crust. Biol., 2002, 22: 903~915.
    Hedgecock,D.and N.B.Okazaki.Genetic diversity within and between populations of American oysters(Crassostrea).Malacologia, 1984, 25:535-549.
    Hedgecock,D.,G.Li.,M.A.Banks and Z.Kain. Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea.Japan.Mar.Biol., 1999,133:65-68.
    Hickerson M.J., Cunningham C. W.. Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura). Mol. Biol. Evol., 2000, 17: 639~644
    Hillis D. M., and M. T. Dixon. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol., 1991, 66: 411~453
    Hilton EJ: Comparative osteology and phylogenetic systematics of fossil and living bony-tongue fishes (Actinopterygii, Teleostei, Osteoglossomorpha). Zool. J. Linn. Soc., 2003, 137:1-100.
    Horai,S., Hayasaka,K., Kondo,R., Tsugane,K. and Takahata,N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. U.S.A., 1995, 92 (2):532-536.
    Hoeh W.R.,Blakley K.H.,Brown W.M. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science,1991,251,148-149
    Hoeh W.R.,Stewart D.T.,Saavedra C.,Sutherland B.W.,Zouros E.. Phylogenetic evidence of role-reversals of gender-associated mitochondrial DNA in Mytilus (Bivalvia:Mytilidae). Mol.Biol.Evol.,1997,14(9):959-967
    Hoeh, W.R., Stewart, D.T., Sutherland, B.W., et al. Cytochrome c oxidase sequence comparisons suggest an unusually high rate of mitochondrial DNA evolution in Mytilus (Mollusca: Bivalvia) . Mol. Biol. Evol.,1996, 13: 418–421.
    Hongying Sun, Kaiya Zhou, and Daxiang Song. Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinenesis (Brachyura: Thoracotremata: Grapsoidea) reveals a novel gene order and two target regions of the gene rearrangements. Gene, 2003, 349: 207~217.
    Horai S., Y. Satta, K. Hayasaka, R. Kondo, T. moue, T. Ishida, S. Hayashi and N. Takahata. Man’s place in the Hominoidea revealed by mitochondrial DNA genealogy. J. Mol. Evol., 1992., 35: 32~43
    Howland D.E. and Hewitt G.M. Phylogeny of the Coleptera based on mitochondrial cytochrome oxidase I sequence data.Insect Mol Bio,1995,4:203-215
    Humberto Quesada,David A.G. Skibinski,David O.F. Skibinski. Sex-biased heteroplasmy and mitochondrial DNA inheritance in the mussel Mytilus galloprovincialis Lmk. Curr.Genet,1996,29:423-426
    Inoue JG..,. Miya M,. Tsukamoto K,. Nishida M. Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for Anguilliform families. J. Mol. Evol., 2001, 52: 311~320.
    Inoue JG, Miya M, Tsukamoto K, Nishida M: Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the "ancient fish". Mol Phylogenet Evol 2003, 26:110-120.
    Irwin D. M., T. D. Elliott, V. B. Math and A. Farquharson. Evolution of the cytochrome b Gene of mammals. J. Mol. Evol., 1991, 32: 128~144
    Janke A., G. Feldmaier-Fuchs, W. K. Thomas, A. von Haeseler, and S. Paabo. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics, 1994, 137: 243~256.
    Jeanne M. Serb and Charles Lydeard . Complete mtDNA Sequence of the North American Freshwater Mussel, Lampsilis ornata (Unionidae): An Examination of the Evolution and Phylogenetic Utility of Mitochondrial Genome Organization in Bivalvia (Mollusca). Mol. Biol. Evol. 2003. 20(11):1854-1866.
    Jeffiey L.Boore. Animal mitoehondrial genomes.Nucleic Acids Research,1999,27(8):1767-1780
    Jun G. Inoue, Masaki Miya, Byrappa Venkatesh, Mutsumi Nishida. The mitochondrial genome of the Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene, 2002, 34: 227~235
    J. Scott Harrison. Evolution, biogeography, and the utility of mitochondrial 16s and CoI genes in Phylogenetic analysis of the crab genus Austinixa (Decapoda: Pinnotheridae). Mol. Phy. Evol., 2004, 743~754
    Kate Wilson, Valma Cahill, Elizabeth Ballment, and John Benzie. The complete sequence of the mitochondrial genome of the Crustacean Penaeus monodon: Are Malacostracan Crustaceans more closely related to Insects than to Branchiopods? Mol. Biol. Evol., 2000, 863~874.
    Kim KH, Eom KS, Park JK. The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. Int J Parasitol 2006.36:319-328
    Kim,K.S., Lee,S.E., Jeong,H.W. and Ha,J.H. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome.Mol. Phylogenet. Evol. 10 (2), 210-220 (1998)
    Kimura M.. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.J Mol Evol, 1980, 16: 111-120
    Koszul R., A Malpertuy, L Frangeul, et al. The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Letters, 2003, 534: 39~48.
    Kumazawa Y., Nishida M.. Sequence evolution of mitochondrial tRNA genes and deep-branchanimal phylogenetics. J. Mol. Evol, 1993, 37: 380~398
    Lam, K., Morton, B.,. Mitochondrial DNA and morphological identification of a new species of Crassostrea (Bivalvia: Ostreidae) cultured for centuries in the Pearl River Delta, Hong Kong, China. Aquaculture. 2003, 228, 1–13.
    Lam, K., Morton, B.. THE OYSTERS OF HONG KONG(BIVALVIA: OSTREIDAE AND GRYPHAEIDAE). THE RAFFLES BULLETIN OF ZOOLOGY 2004 52(1): 11-28
    Lamy,F. Revision des Ostrea vivants du Museum National d Histoire Naturlle de Paris.Journ Conchyl., 1929, 73:1-46.
    Lansmna R.A. Extensive variation in mitochondrial DNAs among geographic populations of the deer mouse. Peromysus maniculatus. Evolution,1983,37:l-16
    Lapegue S.,Boutet I.,Leitao A.,.TransAtlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analyses.Biol.Bull., 2002, 202:232-242.
    Lavoue S, Sullivan JP: Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha: Teleostei). Mol Phylogenet Evol 2004, 33:171-185.
    Lee W. J., and T. D. Kocher. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics, 1995, 139: 873~887
    Li, G., Hu, Y., Qing, N. Population gene pools of big size cultivated oysters (Crassostrea) along the Guangdong and Fujian coast of China. Proc. Mar. Biol. of South China Sea. China Ocean Press, 1988. 51– 70.
    Linsheng Song, Baozhong Liu, Jianhai Xiang, Pei-Yuan Qian. Molecular Phylogeny and Species Identification of Pufferfish of the Genus Takifugu (Tetraodontiformes, Tetraodontidae), Marine Biotechnology, 2001.3:398-406
    Littlewood,D.T.,1994.Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences.Mol.Phylogenet.Evol.,3(3):221-229.
    Liu H-P,Mitton JB,Wu S-K. Paternal mitochondrial DNA differentiation far exeeeds maternal mitochondrial DNA and allozyme differentiation in the freshwater mussel Anodonta grandis.Evolution,1996,50:952-957
    Lowe T., Eddy S. R.. tRNAscan-SE: a program for improved detection of transfer RNA in genomic sequence. Nucleic Acids Res., 1997, 25: 955~964
    L.M. Mathews, C. D. Schubart, J. E. Neigel, and D. L. Felder. Genetic, ecological, and behavioural divergence between two sibling snapping shrimp species (Crustacea: Decapoda: Alpheus). Molecular Ecology, 2002, 11: 1427~1437.
    Marian Ponce, Carlos Infante, Rosa M. Jim′enez-Cantizano, Laura P′erez, Manuel Manchado. Complete mitochondrial genome of the blackspot seabream, Pagellus bogaraveo (Perciformes: Sparidae), with high levels of length heteroplasmy in the WANCY region,doi: 10.1016/j.gene.2007.11.004
    Masahiro Matsumoto,Ltaru Hayyami. Phylogenetic analysis of the family Pectinidae (bivalvia) based on mitochondrial cytochrome c oxidase subunit I. J. Moll. Stud.,2000,66:477-488
    Masaki Miya, and Mutsumi Nishida. Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Mar. Biotechnol, 1999, 1: 416~426.
    Macey J. R., A. Larson, N. B. Ananjeva, Z. Fang, and T. G. Papenfuss. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol. Bio. Evol. 1997, 14: 30-39
    Martni A.R,Paimubi S.R. Body size, metbaolic rate, generation time and the molecular clock. Proc. Natl. Acad. sci. USA,1993,90:4087-4091
    Marlene Snyder,Alna R. Fraser,Julie LaRoche,Katherine E. Gartner-Kepkay,Eleptherios Zouros. A typical mitochondrial DNA from the deep-sea scallop Placopecten mgaellaniceus. Genetics,1987,84:7595-7599
    Marco Passamonti,Jeffrey L. Boore, Valerio Scali. Molecular Evolution and Recombination in Gender-Associated Mitochondrial DNAs of the Manila Clam Tapes philippinarum. Genetics 2003, 164: 603-611
    Marco Passamonti. An unusual case of gender-associated mitochondrial DNA heteroplasmy: the mytilid Musculista senhousia (Mollusca Bivalvia). BMC Evol Biol. 2007; 7(Suppl 2): S7,10.1186/1471-2148-7-S2-S7.
    Marco Passamonti, Vilerio Scali. Gender-associated mitochondrial DNA heteroplasmy in the venerid clam Tapes philippinarum (Mullusca Bivalvia). Curr Genet, 2001, 39: 117~124.
    Maremi Sato,Koji Nagashima. Molecular characterization of a mitochondrial DNA segment from the Japanese scallop(Patinopecten yessoensis): Demonstration of a region showing sequence polymorphism in the population. Mar. Biotechnol.,2001,3:370-379
    Masahiro Matsumoto. Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from mtDNA CoI sequences. Mol. Phy. Evol., 2003, 27: 429~440.
    Moritz C., and W. M. Brown. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. USA., 1987, 84: 7183~7187
    Moritz C., and W. M. Brown. Tandem duplications of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science, 1986, 233: 1425~1427
    Moritz C., T. E. Dowling and W. M. Brown. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu. Rev. Ecol. Svst., 1987, 18: 269~292
    Mitsugu M. Yamauchi, Masaki U. Miya, Ryuji J. Machida, and Mutsumi Nishida. PCR-based approach for sequencing mitochondrial genomes of Decapod Crustaceans, with a practical example from Kuruma Praun (Marsupenaeus japonicus). Mar. Biotechnol, 2005, 6: 419~429
    Michaclis G. S.. Mitochondrial DNA copy number in a bovine ocytes and somatic cell. Dev Biol, 1982, 97: 246~251.
    Metropolis, N.,A.W.Rosenbluth,M.N. Rosenbluth, et al. Equations of state calculations by fast computing machines.Chem.Phys,1953,21:1087-1091
    Mizi A, Zouros E, Moschonas N, Rodakis G. The complete maternal and paternal mitochondrial genomes of the Mediterranean mussel Mytilus galloprovincialis: implications for the doubly uniparental inheritance mode of mtDNA. Mol Biol Evol 2005,22, 952–967
    Mitsugu M.Yamauchi, Masaki U.Miya, Mutsumi Nishida. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura). Gene, 2003: 129~135.
    Mitsugu M.Yamauchi, Masaki U.Miya, Mutsumi Nishida. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene, 2002, 295: 89~96.
    Nei M. Molecular Evolutionary Genetics. 1987. Columbia University Press, New York. Nakamura,H.K.,1985.A review of molluscan cytogenetic information based on the computerized index system for molluscan chromosomes: Bivalve,Polyplacophora and Cephalopoda. Venus, 44:193-225.
    Nirenberg M, Caskey T, Marshall R, Brimacombe R, Kellog D, Doctor BP, Hatfield D, Levin J, Rothman F, et al. The RNA code in protein synthesis. Cold Spring Harb. Symp. Quant. Biol ,1966, 31:11–24.
    Noller, H. F., D. Moazed, S. Stern, T. Powers, P. N. Allen, J. M. Robertson, B. Weiser and T.Triman. Structure of rRNA and its functional interactions in translation, 1990. 73~92.
    óFoighil D O,Wilbur A E and Wilbur A E。Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata Marine Biology,1998, 131(03): 497-503
    óFoighil,D.,Gaffney,P.M.,Hilbish,T.J. Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American(Crassostrea virginica) and Asian (C.gigas,C.ariakensis) oyster species. J.Exp.Mar.Biol.Ecol., 1995.,192:211-220.
    Orti G,Petry P,Porto J.I.R.,Jegu M.,Meyer A. Pattenrs of nucleotide change in mitochondrial ribosomal RNA genes and polygeny of prianhas.J.Mol.Evol.1996,42:169-182
    Paabo,S.Ancient DNA:extraction,characterization,molecular cloning and enzymatic amplification. Proc.Natl.Acad.Sci.USA,1989,86:1939-1943.
    Paabo S., W. K. Thomas, KM Whitfield, Y Kumazawa, and A. C. Wilson. Rearrangements of mitochondrial transfer RNA genes in marsupials. J. Mol. Evol., 1991, 33 : 426~430
    Paul D. Rawson. Nonhomologous Recombination Between the Large Unassigned Region of the Male and Female Mitochondrial Genomes in the Mussel, Mytilus trossulus. J Mol Evol. 2005. 61:717–732.
    Peter R. M?ller, Anders D. Jordan, Peter Gravlund. Phylogenetic position of the cryopelagic codfish genus Arctogadus Drjagin, 1932 based on partial mitochondrial cytochrome bsequences. Polar Biol., 2002, 25: 342~349.
    Pierre Boudry, Serge Heurtebise, Sylvie Lapegue. Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and Crassostrea angulata specimens: a new oyster species in Hong Kong? Aquaculture, 2003, 228:15-25
    Quinn T. W., and A. C. Wilson. Sequence evolution in and around the mitochondrial control region in birds. J. Mol. Evol., 1993, 37: 417~425.
    Rand D. M. and R.G Harrison. Molecular population genetics of mitochondrial DNA size variation in crickets. Genetics, 1989, 121: 551~569
    Rigaa A, Monnerot M, Sellos D. Molecular cloning and complete nucleotide sequence of the repeated unit and flanking gene of the scallop Pecten maximus mitochondrial DNA: putative replication origin features. J Mol Evol. 1995 Aug;41(2):189-95
    Ripan S. Malhi, Gillian Rhett and Alison M.Bell. Mitochondrial DNA evidence of an early Holocene population expansion of threespine sticklebacks from Scotland. Molecular Phylogenetics and Evolution. 2006,40,(1):148-154
    Roe B. A., M. Din-Pow, R. K. Wilson and J. F. Wong . The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. Biol. Chem., 1985, 260: 9759~9774
    Ronquist,F.and J.P.Huelsenbeck. MRBAYES 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,2003,19:1572-1574
    Rvuji J. Machida, Masaki U. Miya, Mutsumi Nishida, and Shuhei Nishida. Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Decapoda). Mar. Biotechnol, 2002, 4: 406~417.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4 (5): 406-452
    Sambrook J, et al. Molecular Cloning. 2nd Ed. Cold Spring Harbor Laboratory Press, NY. 1989, 1659 pp.
    Satta Y., and Takahata N.. Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup. Proc. Natl. Acad. Sci. USA, 1990,87:9558-9562.
    Sébastien Lavoué, Masaki Miya, Jun G. Inoue, Kenji Saitoh, Naoya B. Ishiguro, Mutsumi Nishida. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: implications for higher-level relationships within the Otocephala. Mol. Phy. Evol., 2005, 37: 165~177.
    Skibinski, D.O.F., Gallagher, C., and Beynon, C.M. Sexlimited mitochondrial DNA transmission in the marine mussel Mytilus edulis. Genetics,1994, 138: 801–809.
    Tamura K, Dudley J, Nei M & Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007,24:1596-1599.
    Sneath P H A, Sokal R R. Numerical taxonomy. San Francisco: Freeman, 1973
    Solignac M., M. Monnerot and J. C. Mounolou. Mitochondrial DNA evolution in themelanogaster species subgroup of Drosophila. J. Mol. Evol., 1986, 23: 31~40
    Spicer G. S.. Phylogenetic utility of the mitochondrial cytochrome oxidase gene: Molecular evolution of the Drosophila buzzatii species complex. J. Mol. Evol., 1995, 41: 749~759
    Springer M S,Emmanuel D.Secondary structure and patterns of evolution among mammalian Mitoehondrial 12S rRNA molecules.J Mol.Evol,1996,43:357-373
    Stadtman TC. Selenocysteine. Annu. Rev. Biochem , 1996, 65:83–100.
    Stewart, D.T., Saavedra, C., Stanwood, R.R., et al. Male and female mitochondrial DNA lineages in the blue mussel (Mytilus edulis) species group. Mol. Biol. Evol.,1995,12: 735–747.
    Su T, Jiang S, Zhou F, Zhu C, Chen P: Mitochondrial 16S rRNA gene fragment sequence analysis in populations of Crassostrea rivularis. High Technol Lett 2005, 15(2):100-103.
    Sullivan J. P., Lavoue S., Hopkins C. D.. Molecular systematics of the African electric fishes (Mormyroidea: teleostei) and a model for the evolution of their electric organs. J. Exp. Biol., 2000, 4: 665~683
    Sumida, M., Y. Kanamori, H. Kaneda, Y. Kato. Complete nucleotide sequence and rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. Genes Genet. Syst., 2001, 76: 311~325.
    Sumida M., Kondo Y, Kanamori Y., et al. Iner- and intraspecific evolutionary relationships of the rice frog Rana limnocharis and the allied species R.cancrivora inferred from crossing experiments and mitochondrial DNA sequences of the 12S and 16S rRNA genes. Mol. Phy. Evol., 2002, 25: 293~305.
    Swofford,D.L. PAUP*Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4 Sinauer, Sunderland, Massachusetts,2000 
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuclear Acids Research,1997, 25: 4876–4882.
    Tzeng C.S.,C..F Hui,S.C. Shen,RC. Huang.The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variation among vertebrates. Nuel.Aeids.Res.1992,20:4853-4858
    Tzong-Der Tzeng, Shen-Yeh Yeh, and Cho-Fat Hui. Population genetic structure of the kuruma prawn (Penaeus japonicus) in East Asia inferred from mitochondrial DNA sequences. 2004, JCES Journal of Marine Science, 61: 913~920.
    Wilson K., Cahill V., Ballment E., Benzie J.. The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods? Mol. Biol. Evol., 2000, 17: 863~874
    Wolstenholme D. R. and D. O. Clary. Sequence evolution of Drosophila mitochondrial DNA. Genetics, 1985. 109: 725~744
    Wood,A.R., Apte,S., MacAvoy,E.S. et al. A molecular phylogeny of the marine mussel genusPerna (Bivalvia: Mytilidae) based on nuclear (ITS1&2) and mitochondrial (COI) DNA sequences. Mol Phylogenet Evol, United States 2007,44(2):pp.685-698
    Van de Peer, Y., J. M. Neefs, P. De Rijk and R. De Wachter. Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecule clock. J. Mol. Evol., 1993, 37: 221~232
    Xue M, Du X, Huang R, Wang Q: Biochemical genetic variation in Chinese oyster Ostea rivularis. J Zhanjiang Ocean Univ 2006, 26(3):3-7.
    Yan Zhang and Vadim N. Gladyshev. High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic deltaproteobacterium of gutless worm Olavius algarvensis. Nucleic Acids Research, 2007, Vol. 35, No. 15 4952-4963
    Yoshinori Kumazawa, Hidetoshi Ota, Mutsumi Nishida, and Tomowo Ozawa. The complete nucleotide sequences of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control region. Genetics, 1998, 150: 313~329.
    Yu Zi-niu,et al..Sequence study and potential uses of ribosomal DNA internal transcribed spacers in scallop Chlamus farreri.Journal of Fishery Sciences of China,2001,8(1):6-9.
    Yu,Z.N.,Kong,X.Y.,Zhang L.S.,Guo,X.M.,Xiang,J.H.Taxonomic status of fourCrassostrea oysters from China as inferred from mitochondrial DNA sequences. J.Shellfish.Res., 2003, 22(1):31-38.
    Zardoya R., and A. Meyer. Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona). Genetics, 2000, 155: 765~775.
    Zardoya R., and A. Meyer. On the origin of and phylogenetic relationships among living amphibians. Proc. Natl. Acad. Sci. USA., 2001, 98: 7380~7383
    Zouros E., Oberhauser Ball A, Saavedra C, Freeman K. R.. An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proe. Natl. Acad Sci. USA, 1994 b, 91: 7463~7467
    Zouros E., Oberhauser Ball A, Saavedra C, Freeman K. R.. Mitochondrial DNA inheritance. Nature, 1994 a, 368: 817~818
    Zouros, E., Ball, A.O., Saavedra, C., et al. Mitochondrial DNA inheritance. Nature (London), 1994b,368: 818
    Zouros, E., Ball, A.O., Saavedra, C.,et al. An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proc. Natl. Acad. Sci. U.S.A.,1994,91: 7463–7467
    Zouros E.,Freeman K.R., Ball A.O.,Pogson G.H.. Dierct evidence of extensive paternal mitochondrial DNA inheritance in the marine mussel Mytilus. Nature,1992,359:412-414
    ZhengX D, WangR C, WangX F,et al.Geneticvariation in population of the common Chinese cuttlefish Sepiella maindroni (Mollusca:Cephalopoda)using allozymes and mitochondrial DNA sequence analysis.Shellfish Research,2001,20(3):1159-1165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700