几种双壳贝类ITS区序列分析与遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用聚合酶链式反应(PCR)对采自日本半岛、俄罗斯海参葳地区以及中国威海等三个自然群体的魁蚶样本的核糖体RNA两个转录间区域(ITS-1和ITS-2)进行了扩增,电泳检测在500bp左右都得到了清晰的扩增产物条带。PCR产物纯化后与T载体连接,进行了克隆、测序。分别得到了长度为421bp和495bp(不含引物)的碱基序列,其中A,C,G,T含量分别为21.85%,25.87%,27.23%,25.04%;26.66%,22.18%,24.04%,27.13%。ITS2片段序列中的AT含量明显高于ITS1。魁蚶7个个体ITS2片段序列经Gendoc软件排序后检测到两个多态位点,3种单倍型;魁蚶7个个体间的遗传距离为0-0.2%。魁蚶16个个体的ITS1片段去除引物排序后检测到了9个多态性核苷酸位点,共7种单倍型;其中发生转换突变的核苷酸位点数为4个,颠换突变位点2个。在三个群体中,通过计算不同个体间的遗传距离构建NJ和MP系统树,16个个体没有明显的聚类现象。ITS1和ITS2片段的在魁蚶中的成功扩增,再次证实两对引物在贝类中通用性良好,而且对小样本量中个体间两个片段的遗传特征的分析比较,为该区域在魁蚶群体遗传多样性研究中的应用提供了基础并展现了良好的应用前景。
     通过PCR扩增得到了太平洋牡蛎、近江牡蛎、大连湾牡蛎、褶牡蛎、美洲牡蛎(外群)五种牡蛎的ITS1和ITS2及部分核糖体RNA基因片段,通过序列测定及碱基相应长度处理得到了403-524bp长度的ITS1片段和585-651bp的ITS2片段。五种牡蛎的33个个体得到的ITS1片段的32种单倍型,检测到193个多态位点(包括插入/缺失多态位点),其中95个(49.2%)为美洲牡蛎与其他四种牡蛎之间特有的变异位点;我国四种牡蛎比较多态位点有98个。五种牡蛎的21个个体得到的ITS2片段的21种单倍型,共检测到331个多态位点(包括插入/缺失多态位点),其中210个(63.4%)为美洲牡蛎与其他四种牡蛎之间特有的变异位点;我国四种牡蛎所有的多态位点有121个。用MEGA2软件计算出ITS1和ITS2片段不同单倍型间的遗传距离构建NJ和MP系统树,两个片段得到的结果一致:太平洋牡蛎和大连湾牡蛎牢固聚为一支,褶牡蛎和近江牡蛎牢固聚为另一支。分析表明大连湾牡蛎和太平洋牡蛎应为同一种类;褶牡蛎可能是生活与较
    
    几种双壳贝类ITs区序列分析与遗传多样性研究
    高盐度生境的近江牡蜗,这一点有待于进一步的工作证实。
     PCR扩增来自黄渤海(青岛和大连)、东海(宁波)和东南沿海(厦门)四种小型
    牡砺的ITSI和ITSZ片段,序列测定及碱基相应长度处理得到493一510的ITSI片段和
    585一65lbp的ITSZ片段。四组小型牡蜘38个个体的ITSI序列中检测到36种单倍型,
    81个多态位点;24个个体的ITSZ序列中检测到24种单倍型,120个多态位点。通过计
    算ITSI和ITSZ序列不同单倍型间的遗传距离构建NJ和MP系统树,两个片段得到的结
    果基本一致。宁波组群的牡蝠单独成一支,其它三个组群的牡蝠聚为一支,结果显示,
    我国沿海这四种均被称作“褶牡蜘”的小型牡蜗,并非全部都是褶牡蜗,应属于不同种
    类。从四个地理位置的小型牡蜘、太平洋牡蜘、大连湾牡砺、近江牡蜘的ITSI和工TSZ
    序列的单倍型中随机选取2一3个单倍型,计算单倍型间的遗传距离,并以美洲牡蜘为外
    群构建NJ和MP系统树。结果显示宁波的小型牡蜗与近江牡蜘亲缘关系较近;而青岛、
    大连、厦门三地的小型牡砺则与大连湾牡砺或太平洋牡蝠亲缘关系较近。综合本文研究
    结果和实验室已有的线粒体基因片段的研究结果得出:青岛和大连的小型牡砺可能是大
    连湾或太平洋牡蜘早期个体;因两方面研究结果不同,对厦门组群的分类地位尚有待于
    研究。
Robosomal RNA gene internal Inscribed spacers ITS1 and ITS2 fragments of bloody clam (Scapharca broughtonif) coming from Japanese, Russion and Wei Hai city of China were amplified via Polymerase Chain Reaction. The PCR products were ligated into T-vector, cloned and sequenced. 421bp and 495bp nucleotide sequences were got respectively, and the contents of A, C, G, T is 21.85%, 25.87%, 27.23%, 25.04% in ITS1; 26.66%, 22.18%, 24.04%, 27.13% in ITS2. The content of A+T in ITS2 is higher than that in ITS1 obviously. 2 polymorphic sites and 3 haplotypes were found in ITS2 sequences from 7 bloody clams. Genetic distance between 7 clams is 0-0.2%. 9 polymorphic sites and 7 haplotypes were found in ITS1 sequences from 16 bloody clams, and 4 transition sites and 2 transvertion sites were involved. NJ and MP molecular phylogenetic trees were constructed which showed that there is no obvious clustering phenomenon between all the 16 specimens coming from different geographic populations. The primers of ITS-1 and ITS-2 p
    roved to be very universal in a variety of mollusk species. The potential uses of the two sequences for genetic variation studies and phylogenetic research in Bloody Clam species were discussed.
    It has been presumed that there are four common Crassostrea oyster species along the coast of China: Pacific oyster (Crassostrea gigas), Zhe oyster (C.plicacula), Suminoe oyster(C. rivularis) and Dalianwan oyster (C. talienwhanensis). Classification and species identification of these oysters have been difficult because of morphological plasticity. In this article, phylogenetic analysis was performed to clarify taxonomic status of these species using ribosomal Internal Transcribed Spacer regions ITS-1 and ITS-2. Nucleotide sequences of 403-524bp ITS1 and 585-65 Ibp ITS2 after excluding the primer combined sequences and partial sequences at the two end of the fragments.32 haplotypes and 193 polymorphic sites were found in ITS1 sequences of 33 specimens coming from 5 Crassostrea oyster species (including C. virginica as outgroup) , in which 98 polymorphic sites were found in 4 Chinese oyster species. 21 haplotypes and 331 polymorphic sites were found in ITS2 sequences of 21 specimens coming from 5 Crassostrea
    oyster species (including C. virginica as outgroup), in which 121 polymorphic sites were found in 4 Chinese oyster species. The divergence between C. gigas and C. talienwhanensis was very low, as was that between C. plicatula and C. rivularis . Phylogenetic analysis showed that haplotypes of C gigas and C. talienwhanensis clustered in one clade and those of C. plicatula and C. ariakensis in another one. Our molecular data suggests that C. gigas and C. talienwhanensis may be the same species. However, the lack of divergence between C. plicatula and C, rivularis samples may indicate that the C. plicatula specimens we sampled
    
    
    
    could actually be a morph of C. rivularis living in higher salinity habitats. More work is needed for confirmation.
    It has been presumed that there are several common Crassostrea oyster species and they are difficult to classify and identify clearly because of their morphological plasticity. There exists a lot of dispute especially on classification of C.plicacula. In this paper, phylogenetic analysis was performed to identify these small oyster species from different sites along the coast of China (QingDao, DaLian, NingBo, XiaMen) using ITS1 and ITS2 fragments. 493-510 bp ITS1 sequence and 585bp-651bp ITS2 sequence were amplified and sequenced. 36 haplotypes and 81 polymorphic sites were found in ITS1 sequences; 24 haplotypes and 120 polymorphic sites were found in ITS2 sequences. Phylogenetic analysis showed that haplotypes of QD (QingDao), DL(DaLian), XM(XiaMen) clustered in one clade and those of NB (NingBo) in another one, which showed the small oysters called "Zhe oyster" coming from different geographic sites may be different species. 2 or 3 haplotypes were chosen to do phylogenetic analysis based on the two fragme
    nts ITS1 and ITS2 between the small oysters mentioned above, C. gigas,
引文
1.王献溥.生物多样性保护与利用的主要研究方向.自然资源.1994(4):1-6
    2.邱高峰等,中国对虾16S rRNA基因序列多态性的研究.动物学研究,2000,21(1):35-40
    3.张亚平等,动物线粒体多态研究概况.动物学研究,1992,13(2):280-298
    4.薛钦昭、Sheila Stiles、张福绥等,海湾扇贝不同种群在磷酸葡萄糖变位酶基因位点的遗传结构与性状.海洋与湖沼,1999,30(4):381-390
    5.李刚、金启增、姜卫国等,合浦珠母贝和长耳珠母贝的生化遗传变异.遗传学报,1985 12:204-212
    6.张国范,张福绥,中国近海栉孔扇贝分子群体遗传变异.淡水渔业,1994,24:1-2
    7.刘保忠,相建海,张首临,栉孔扇贝同工酶的生化遗传结构分析.《贝类学论文集》WIII,学苑出版社,1999,143-148
    8.李红蕾,宋林生,刘保忠等栉孔扇贝不同种群的遗传结构及其杂种优势.海洋与湖沼,2002.33(2):100-195
    9.刘亚军、喻子牛、姜艳艳等,栉孔扇贝16S rRNA基因片段序列的多态性研究,海洋与湖沼,2002,33:478-483
    10.张喜昌,梁玉波等,海湾扇贝养殖群体遗传多样性研究,海洋学报,2002,24(2):107-113
    11.邱芳、伏建民等,遗传多样性的分子检测,生物多样性,1998,6:143-150
    12.喻子牛、姜艳艳、孔小瑜等,栉孔扇贝核糖体DNA转录间隔子序列研究及其前在应用,中国水产科学,2001,8(1):6-9
    13.孔晓瑜、庄志猛等,牙鲆、石鲽和川鲽16S rRNA基因序列片段的序列比较研究,青岛海洋大学学报(自然科学版),2001,31(5).-713-717
    14.孙红英、周开亚、景开颜等,从16S Rdna部分序列探讨厚蟹属的系统学位置,南京师大学报(自然科学版),2002,25:15-19
    15.刘保忠.海湾扇贝群体遗传学和扇贝科分子系统演化的研究.青岛:中国科学院海洋研究所博士论文.2003
    16.王如才,王昭萍,张建中,1993.海水贝类养殖学.青岛:青岛海洋大学出版社,p156
    17.齐钟彦、马绣同、王桢瑞等,1989,黄渤海的软体动物,农业出版社,pp.172-174
    18.王桢瑞,2002,中国动物志:无脊椎动物(第31卷):软体动物门:双壳纲:珍珠贝亚目,科学出版社,北京,2002
    19.杨锐,喻子牛等,2000,山东近海褶牡蛎和太平洋牡蛎等位基因酶遗传变异研究,水产学报,24(2):130-133.
    20.喻子牛,孔晓瑜,同工酶电泳技术与遗传变异研究.海洋湖沼通报,1997,2:32-42
    21.李孝绪,中国牡蛎的比较解剖,系统学和进化研究。海洋科学集刊,1995,35:193-197.
    22.刘必谦,戴继勋,巨蛎属牡蛎的遗传多样性研究。水产学报,1998,22(3):193-198
    23.刘必谦,戴继勋,喻子牛,The investigation of populations by RAPD markers on oyster,Crassostrea talienwhanensis.青岛海洋大学学报,1998,28(1):82-88.
    
    
    24.张玺等,中国牡蛎研究。动物学报,1956,8(1):65-94.
    25.唐伯平等,核rDNA ITS区序列在无脊椎动物分子系统学研究中的应用,动物学杂志,2002 37(4)67-73.
    26.阙华勇,刘晓等,中国近海牡蛎系统分类研究的现状和对策,动物学杂志,2003 38(4)110-113.
    27.李孝绪,中国常见牡蛎外套腔的形态比较,海洋与湖沼,1989 20(6)502-507.
    28. Adema CM, Comparative study of cytoplasmic actin DNA sequence from six species of Planorbidae (Gastropoda: Basommatophora). JOURNAL OF MOLLUSCAN STUDIES, 2002.68:17-23
    29. Ana Insua, Maria J. Lopez-Pinon, Ruth Freire, and Josefina Mendez. Sequence analysis of the ribosomal DNA internal transcribed spacer region in some scallop species (Mollusca: Bivalvia: Pectinidae). 2003. Genome. 2003.46:595-604
    30. Arnaud-Haond, S., V. Vonau, F. Bonhomme et al., Spat collection of the pearl oyster (Pinctada margaritifera cumingii) in French Polymesia: an evaluation of the potential impact on genetic variability of wild and farmed populations after 20 years of commercial exploitation. Aquaculture. 2003.219:181-192
    31. Balnc F., Jaziri H., 1990, Variation of allozymic polymorphism in Ostrea angasi and O. edulis, Aquaculture, 85:331-332
    32. Banks, M.A., D. Hedgecock & C. Waters, 1993, Discrimination between closely related Pacific oyster spp. (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA, Mol. Mar. Biol. Biotech: 2:129-136..
    33. Beaumont A. R. Variations in :heterozygosity at the loci between year classes of Chlamys opercularis from a Scottish sea-loch. Mar. Biol Letters. 1982, 2:5-14
    34. Boudry, P., S. Heurtebise, B. Collet et al., Differentiation between population of the Portuguese oyster Crassostrea angulata (Lamark) and the Pacific oystetr Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J.Exp. Mar. Biol. Evol. 1998. 226:279-291
    35. Boulding, E. G, J. D. G. Boom and A. T. Beckenbach, Genetic variation in one bottlenecked and two wild populations of the Japanese scallops (Patinopecten yessoensis): Empirical parameter estimates from coding regions of mitochondrial DNA. CAN. J. FISH. AQUAT. SCI. 1993.50:1147-1157
    36. Canapa A., I. Marota, F. Rollo et al., Phylogenetic analysis of Veneridae (Bivalvia): Comparison of molecular and palaeontological data, J. Mol. Evol. 1996. 43(5): 517-522
    37. Daguin C. and P. Borsa. Genetic characterization of Mytilus galloprovincialis Lmk. In North West Africa using nuclear DNA markers. J. Exp. Mar. Biol. Ecol., 1999. 235:55-65
    38. Dahlgren T. G., J. R. Weinberg and K. M. Halanych. Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar. Biol. 2000. 137(3): 487-495
    39. De-xing Zhang, et al. 2003, Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects, Molecular Ecology, 12, 563-584.
    40. Eizadora T. Yu, Ma Antomette Juinio-menez, Virginia D. Monie, 2000, Sequence Variation in the Ribosomal DNA Internal Transcribed Spacer of Tridacna crocea. Mar. Biotechnol ,2:511-516.
    
    
    41. Fernández. A., Garcia. T., Asensio. I. Rodriguez. M. A., Gonzalez. L., Hernandez. P. F., and Martin. R. PCR-RFLP analysis of the internal transcribed spacer (ITS) region for identification of 3 clam species. J. Food. Sci. 2000. 66:657-661
    42. Freire. R. Analysis de seeuencias de ADX ribosomico en beberechos y mejillones de la costa curopea. PhD. Thesis, Universidade da Coruna. Coruna. Spain. 2002
    43. Fujio Y. A correlation of heterozygosity with growth rate in the Pacific oyster, Crassostrea gigas. Tohoku J. Agr. Res. 1982, 33: 66-75;
    44. Gaffney P. M., Orbacz E. A. and Yu Z., 1998, Using the D code system to identify DNA sequence variation for studies of population structure in marine organisms, Mutation Analysis. Mutation Analysis, 23-29
    45. Garcia D. K. Dhar A. K., Alcivar-Warren A., Molecular analysis of RAPD markers,genetic markers. Nucl. Acids Res., 1990, 18(22): 6531-6535
    46. Gardner, J. P. A., R. F. Eyles and A. Pande, Biochemical-genetic variation in a wild and a cultured population of the greenshell mussel, Parna canaliculus. New Zealand Journal of Marine and Freshwater Research, 1996, 30:435-441
    47. Garton D. W., R. K. Koehn and T. M. Scott, Multiple locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population. Genetics. 1984, 108: 445-455
    48. Geller, J. B., J. T. Carlton & D. A. Powers, 1993, Inetrspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp.,(Bivalvia: Mollusca). Mol. Mar. Biol. Biotechnol, 2(1): 44-50.
    49. Heath, D. D., Hatcher, D. R., and Hilbish, T. J. Ecological interaction between sympatric Mytilus species on the west coast of Canada investigated using PCR markers. Mol. Ecol. 1996, 5:443-447
    50. Heath, D. D., Rawson. P. D., and Hilbish, T. J. PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada. Can. J. Fish. Aquat. Sci. 1995. 52:2621-2627
    51. HedgecocK, D. and D. Slly, Genetic drifts and effective population size hatchery propagated stocks of the Pacific oyster, Crassostrea gigas. Aquaculture. 1990. 88:21-28
    52. Hedgecock, D., G. Li., M. A. Banks and Z. Kain, Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea. Japan. Mar. Biol., 1999. 133:65-68
    53. Heipel, D. A., J. D. D. Bishop, A. R. Brand and J. P. Thorpe. Population genetic differentiation of the great scallop Pecten maximus in western Britain investigated by randomly amplified polymorphic DNA. Mar. Ecol. Prog. Ser., 1998.162:163-171
    54. Hirschfeld B. M., Dhar A. K., Rask K., et al., 1999, Genetic diversity in the oyster (Crassostrea virginica) from massachusetts using the RAPD technique. J. Shell. Res., 18(1): 121-125
    55. Iveta Matejusová, et al. 2001. Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Telesostei), International Journal for Parasitology, 31: 738-745.
    56. Iyahana, 1992 Iyahana H., Yoshimoto K., Itakura M., Detection of point, mutations by SSCP of
    
    PCR-amplified DNA after endonuelease digestion, Biotechniques, 1992, 12:64-66;
    57. Jetvaj B. G., Ball R. M., et al. Amounts of Polymorphism at Microsatellites Loci in Sea Scallop Placopecten Magellanicus. J. Shellfish Res., 1997, 16(2):547-553
    58. Jozefowicz, C. J. & D. O'Foighil, 1998, Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochondrial 16S rDNA gene sequences. Mol. Phylogenet. Evol. 10(3): 426-435.
    59. Kathleen M. F. and E. Zouros, Dispersed discrete length polymorphism of mitochondrial DNA in the scallop Placopecten magellanicus (Gmelin). Current Ganetics. 1993.23:265-369
    60. Kenchington, E., Bird, C.J.Osborne, J. and Reith, M., 2002, Novel repeat elements in the nuclear ribosomal RNA operon of the flat oysters Ostrea edulis C. Linnaeus and O. angasi Sowerby, J. Shell. Res., 21: 697-705
    61. King, T. L., Eachles, M. S., Gjetvaj, B., and Hoeh, W. R. Intraspecific phylogeography of Lasuigona subviridis (Bivalvia: Unionidae): conservation implications of range discontinuity. Mol. Ecol. 1999. 8: S65-S78
    62. Kohen R.K., Hall J.G., 1984, Genetic differentiation of Mytilus edulis in eastem North America. Marine Biology, 79:117-126
    63. Kojima S., R. Segawa, T. Kobayashi et al, Phylogenetic relationships among species of Calyptogena (Bivalvia, Vesicomyidae) collected around Japan revealed by nucleotide sequences of mitochondrial genes. Mar. Biol. 1995. 122(3): 401-107
    64. Kumur S, Tamura K, Jakobsen I B et al, 2001.MEGA2:Molecular Evolutionary Genetics Analysis software, Arzona State University, Tempe, Arizona, USA.
    65. Lin J.J., Kuo J., Ma J., A PCR-based DNA fingerprinting technique: AFLP for r typing for bacteria, Nucl. Acids Res., 1996,24:3649-3650;
    66. Littlewood, D. T. J., 1994, Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Mol. Phylogenetic. Evol., 3:221-229.
    67. Littlewood, D. T., Molecular Phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Molecular Phylogeneties and Evolution. 1994.3(3): 221-229
    68. Liu Q., Sommer S.S.,Restriction endonuclease fingerprintion: a sensitive method for screening mutations in long, contiguous segments of DNA. B iotechniques, 1995, 18:470-477
    69. López-Pión. M. J., Insua. A., and Mendez. J. Identification of four scallop species using PCR and restriction analysis of the ribosomal DNA internal transcribed spacer region. Mar. Biotechnol. 2002.4: 495-502
    70. Manue,J. L., S. Burbridge and E. L. Kenchington et al., Veligers from two populations of scallop Placopecten magellanicus exhibit different vertical distributions in the same mesoeosm. Journal of Shellfish Research. 1996. 15:251-257
    71. Mariela A. Gonzàlez, Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences, J.Phycol. 37, 604-611.
    72. Merrell D. J., Ecological Genetics. Longman, London. 1981.
    73. Naciri, Y., Y. Vigouroux, J. Dallas et al., Identification and inheritance of(GA/TC) sbu(n) and (AC/GT)
    
    sub(n) repeats in the European flat oyster Ostrea edulis (L.). Molecular Marine Biology and Biotechnology. 1995.4:83-89
    74. Navajas M., Lagnel J., Gutierrez J., et al., 1998, Species-wide homogeneity of nuclear ribosomal ITS-2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitoehondrial COI polymorphism, Heredity, 80:742-752
    75. O'Foighil, D., P. M. Gaffney & T. J. Hilbish, 1995, Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American (Crassostrea virginica) and Asian (C. gigas, C. ariakensis) oyster species, J. Exp. Mar. Biol. Ecol., 192:211-220.
    76. O'Foighil, D., P. M. Gaffney & T. J. Hilbish, 1995, Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American (Crassostrea virginica) and Asian (C. gigas, C. ariakensis) oyster species,J. Exp. Mar. Biol. Ecol., 192: 211-220.
    77. O'Foighil, D., P. M. Gaffney & W.A. Wilbur., 1998, Mitochondrial cytochrome oxidase Ⅰ gene sequence support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar. Biol. 131: 497-503.
    78. Patwary, M.U., E. L. Kenchington, C. J. Bird et al., The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Palacopecten magellanicus (GMELIN, 1971). J. Shellfish. Res. 1994. 13:547-553
    79. Paul J. De Barro, 2000, Phylogentic relationship of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1, Molecular Phylogenetics and Evolution, Vol.16, No. 1. July, 29-36.
    80. Pogson G. H. and E. Zouros, Allozyme and RFLP Heterozygusities as correlates of growth rate in the scallop Placopecten magellanicus: A test of the associative overdominance hypothesis. Genetics. 1994. 137:221-231
    81. Reeb, C.A. & J. C. Avise. A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics. 1990. 124:397-406
    82. Rice, E. L., D. Roddick and K.K. Singh. A comparison of molluscan (Bivalvia) phylogenetics based on palaeontological and molecular data. Mol. Mar. Biol. Biotechnol. 1993.2:137-146
    83. Sarkar G., Yoon H.S., Dideoxy fingerprinting ddF: A rapid and efficient screen for the presence of mutations. Genomics, 1992,13:441-443
    84. Savedra, C & A. Guerra Allozyme heterozygosity, founder effect and fitness traits in a cultivated population of the European oyster, Ostrea edulis. Aquaculture, 1996. 139:203-224
    85. Schneider & Foighil (1999) Schneider, J. A. & D. O. Foighil. Phylogeny of giant clam (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Mol. Phyl. Evol., 1999. 13: 59-66
    86. Small, M. P. & R. W. Chapman,1997, Intraspecific variation in the 16S ribosomal gene of Crassostrea virginica. Mol. Mar. Biol. Biotechnol. 6(3): 189-196.
    87. Southworth, J., M. Brown, S. Stiles and L. Strausbaugh, Methodology for the generation of polymorphic molecular tags in the bay scallop, Argopecten irradians, Journal of Shellfish Research. 1999. vol. 18, no. 1.
    
    
    88. Steiner G. and M. Muller. What can 18S rDNA do for bivalve phylogeny? J. Mol. Evol. 1996.43(1): 58-70
    89. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D.G. Higgins, 1997, The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 24: 4876-4882.
    90. Thompson, J.D., D.G. Higgins & T. J. Gibson, 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4672-4680.
    91. Toro. J.E. Molecular identification of four species of mussels from southern Chile by PCR-based nuclear markers: the potential use in studies involving planktonic surveys. J. Shellfish Res. 1998. 17: 1203-1205
    92. Tyler-Walters, H. and A. R. Hawkins, The application of RAPD markers to the study of the bivalve mollusc Lasaea rubra. J. Mar. Biol. Ass. U.K., 1995.75:563-569
    93. Valèrie Stiger, et al. 2003, Phylogenetic relationships within the genus Sargassum (Fucales, Phaeophyceae), inferred from ITS-2 nrDNA, with an emphasis on the taxonomic subdivision of the genus, Phycological research, 51:1-10
    94. Vos P., Hogers R., Bleeker M. et al., AFLP: a new technique for DNA ary primers, fringerprinting, Nucl. Acids Res., 1995,23:4407-4414
    95. Xiaoyu Kong, et al. 2003, Intraspecific genetic variation in mitochondrial 16S ribosomal gene of zhikong scallop Chlamys farreri. Journal of shellfish research, 22 (3): 1-5
    96. Yoshimoto, Role of P53 mutations in endocrine tumorigenesis: Mutation detection by polymerase chain reaction-single strand conformation polymorphism, Cancer Res., 1995,52:5061-5064
    97. Yu, E.T., Juinio-Meez, M.A., and Monje, V.D. 2000. Sequence variation in the ribosomal DNA internal transcribed spacer of Tridacna crocea. Mar. Biotechnol. 2:511-516.
    98. Yu, Z., and X. Guo, 2003, Genetic Linkage Map of the Eastern Oyster Crassostrea virginica Gmelin. Biol. Bull., 204: 327-338.
    99. Yu, Z., X. Kong, L. Zhang, X. Guo & J. Xiang. 2003. Taxonomic status of four Crassostrea oysters from China as inferred from mitochondrial DNA sequences. J. Shellfish Res., 22: 31-38.
    100. Zhang X., & Z. Lou, 1956. Studies on oysters in China, Acta Zool. 8 (1): 65-94.
    101. Zhang, G. F. & F. S. Zhang. 1997, The genetic structure and variation of five populations in the Chinese scallop, Chlamys farreri. Proceedings of the fourth Asian fisheries forum, China Ocean Press, Beijing, pp422-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700