美达霉素生物合成途径中的新型转录调控因子Med-ORF10的作用机制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美达霉素是由包括链霉菌AM-7161(Streptomyces sp. AM-7161)在内的多个链霉菌积累的抗生素,具有抗菌和抗癌活性,可以作为多种肿瘤细胞的信号转导抑制剂。美达霉素生物合成基因簇中的med-ORF10是美达霉素生物合成途径中的一个功能未知基因。因为其同源基因在多个抗生素基因簇中都存在,所以推测med-ORF10及同源基因在相应抗生素合成途径中都是必须基因,可能调控抗生素的生物合成。
     本研究以美达霉素生物合成基因簇中的新型转录调节基因(med-ORF10)为研究对象,综合运用遗传学、分子生物学和分析化学等相关研究方法,通过体外和体内实验确定med-ORF10的功能,并对其作用机制展开初步研究,具体内容如下:
     1.体内遗传学实验证明med-ORF10具有调控功能
     将含有基因med-ORF10的链霉菌自主复制型质粒pHSL98经原生质体转化导入美达霉素产生菌-链霉菌AM-7161中进行超量表达(Overexpression);对超量表达菌株AM-7161/pHSL98进行发酵液及R4平板菌落产素(暗示美达霉素的积累)颜色观察,初步推断wed-ORF10的超量表达可以促进产素;然后通过对AM-7161/pHSL98发酵液进行LC/MS检测,发现基因med-ORF10的导入和过量表达使发酵上清中美达霉素产量增加大约2.3倍(并且一个中间产物的量也增加了大约6倍)。这表明med-ORF10可能是正效调控基因。
     2.通过RT-PCR初步确定在美达霉素基因簇中受med-ORF10调控的靶基因
     提取美达霉素“异源野生菌株”CH999/pIK340和“异源突变菌株”CH999/pAYT64的总RNA,以看家基因23 S rRNA基因为内参,利用半定量RT-PCR检测两个菌株中美达霉素基因簇中med-ORF12、med-ORF1、med-ORF11等基因的转录水平,发现在“异源野生菌株”和“异源突变菌株”两菌株中,这些基因转录水平存在差异,说明这几个基因的转录分别在不同程度上受到med-ORF10的调控;而且“异源突变菌株”中med-ORF10的缺失使这些靶基因的转录水平不同程度的提高。
     本实验初步确定在异源表达体系中受到med-ORF10调控的靶基因。
     3.med-ORF10与靶基因启动子的关系初步研究
     首先构建了在美达霉素产生菌-野生型链霉菌AM-7161-中进行启动子活性检测的阳性对照系统:将已知功能的链霉菌启动子PactIII克隆到启动子探针载体pIJ8660的EGFP基因上游;通过原生质体转化导入野生型链霉菌AM-7161;荧光显微镜检测到EGFP绿色荧光,说明这套启动子检测系统在AM-7161菌株中是适用的。
     利用生物信息学软件分析预测了美达霉素基因簇中几个靶基因上游的启动子;对主要的靶基因med-ORF12上游的可能的启动子进行了克隆和测序,并进一步插入到启动子探针载体pIJ8660的EGFP基因上游,将获得的质粒pHSL33导入美达霉素产生菌AM-7161(野生菌株)中。
     以上研究结果初步确定了med-ORF10的调控功能以及在美达霉素基因簇中的可能的靶基因,为抗生素高产菌遗传育种积累优势调控基因。
Medermycin is an antibiotic produced by many streptomycetes, including Streptomyces sp AM-7161. Medermycin possesses antitumor and antibacterial activity as a strong inhibitor against signal transduction pathways in many types of tumor cells. In medermycin biosynthetic gene cluster, med-ORF10 was a gene with undesignated function. Because its homologies are found in many other antibiotic biosynthetic gene clusters, we speculated that med-ORF10 and its homologous genes are essential in these antibiotics biosynthetic pathways, and they may regulate the biosynthesis of these antibiotics.
     In order to investigate the function and mechanism of a proposed transcription regulator gene (med-ORF10) in the medermycin biosynthetic gene cluster, we utilized genetics, molecular biology, analytical chemistry methods to determine med-ORF10 function in vivo, and performed a preliminary study on its action mode:
     1. Genetic experiments show that med-ORF10 possesses a regulatory function
     Firstly, we introduced a med-ORF10-containing plasmid pHSL98, derived from a streptomyces auto-replicating plasmid pWHM4*, into a medermycin-producing strain, Streptomyces sp. AM-7161, by protoplast transformation for overexpression of med-ORF10; Secondly, we determined the pigmentation level of over-expression strain AM-7161/pHSL98. Our data showed that the over-expression strain could accumulate obviouly stronger pigmentation than the wild type strain AM-7161 both on solid and liquid media, implying the over-expression of med-ORF10 can promote the production of medermycin; Thirdly, we measured the fermentation broth of AM-7161/pHSL98 by LC/MS, and found that the production of medermycin in the over-expression strain AM-7161/pHSL98 was promoted by about 2.3-fold as well as the production of an intermediate increased by about 6-fold. These data show that med-ORF10 may be a regulatory gene as an activator.
     2. Target genes located in the medermycin gene cluster and regulated by med-ORF10 were determined using RT-PCR
     Firstly, we extracted total RNAs respectively from two strains ("heterologous-expression mutant strain Streptomyces coelicolor CH999/pAYT64" and "heterologous-expression wild-type strain Streptomyces coelicolor CH999/pIK340); Secondly, we performed half-quantiative RT-PCR using these total RNAs as templates and 23 S rRNA as control. Our data showed that the transcription of some genes including med-ORF12, med-ORF1 and med-ORF11 in the mutant CH999/pAYT64 was promoted at different levels, comparing to that in CH999/pIK340, suggesting that the expression of these genes might be regulated by med-ORF10 in a direct or indirect way.
     3. Preliminary study on the mechanism of med-ORF10 regulating target genes
     Firstly, we constructed a positive control system for promoter-detection in the wild-type Streptomyces sp AM-7161 using a proved constitutive promoter PactⅢwhich was cloned onto a streptomyces-promoter-probe vector pIJ8660 (the resultant plasmid was named as pHSL32). We introduced pHSL32 into AM-7161 by protoplast transformation, and could detect green fluorescence from GFP expression in AM-7161/pHSL32 under the fluorescence microscopy. Secondly, we analyzed the proposed promoter regions on the medermycin gene cluster and cloned the proposed promoter (Pmed-ORF12) of a main target gene med-ORF12 onto the same promoter-probe vector pIJ8660, and obtained a new plasmid pHSL33. The transformation of pHSL33 into AM-7161 was under the way.
引文
1. Arias P., FernandezMoreno M. A., and Malpartida F. Characterization of the pathwayspecific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol,1999,181: 6958-6968,
    2. Anton N, Mendes MV, Martin JF, Aparicio JF. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol,2004, 186(9):2567-2575.
    3. Brodhagen M, Henkels MD, Loper JE. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Applied and Environment Microbiology,2004, 70(3):1758-1766.
    4. Bailey J E, B irnbaum S, Galazzo J L, et al. Strategies and challenges in metabolic engineering. [J] Ann NYA cad Sci,1990,589:1-15.
    5. Bentley S. D., Chater K. F., CerdenoTarraga A. M.,40 other authors. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002,417:141-147.
    6. Bassler BL, Losick R. Bacterially speaking. Cell,2006,125:237-246.
    7. Chater, K.F.. The improving prospects for yield increase by genetic engineering in antibiotic producing Streptomyces. Biotechnology,1990 8:115-121.
    8. Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H. The complex extracellular biology of Streptomyces. FEMS Microbiology Review,2010,34(2):171-198.
    9. Corre C, Song L, O'Rourke S, Chater KF, Challis GL 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proceedings of the National Academy of Sciences of the United States of America,2008,105:17510-17515.
    10. Corre C, Haynes SW, Malet N, Song L, Challis GL. A butenolide intermediate in methylenomycin furan biosynthesis is implied by incorporation of stereospecifically 13C-labelled glycerols. Chemical communications (Cambridge, England),2010, 46(23):4079-4081.
    11. Dickschat JS. Quorum sensing and bacterial biofilms. Natural Product Reports,2010, 27(3):343-369.
    12. Deng HQ, Cai XF, Peng JX, Hong HZ,Ichinose K, Li AY. Practical procedures for genetic manipulation systems for medermycin-producing Streptomyces sp. AM-7161. Journal of Basic Microbiology,2010,50(3):299-301.
    13. Distler J, Mansouri K, Mayer G, Stockmann M and Piepersberg W. Streptomycin biosynthesis and its regulation in Streptomycetes. Gene,1992,115:105-111.
    14. Feinberg A. P. and Vogelstein B. Anal Biochem,1984,137(1):266-267.
    15. Funa N, Ohnishi Y, Fujii I, et al. A new pathway for polyketide synthesis in microorganisms. Nature,1999,400:897-899.
    16. Gang Liu, Yuqing Tian, Haihua Yang, Huarong Tan. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in S. ansochromogenes that also influences colony development. Mol Microbiol,2005,55 (6):1855-1866.
    17. Hopwood,D.A Genetic manipnlation of streptomayces a laboratory manual 1988.
    18. Hopwood D.A. And Malpartida F. DNA sequence and functions of the actⅥ region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). J Biol Chem,1994,269(40):24854-24863.
    19. Hopwood DA. Genetic contributions to understanding polyketide synthases. J Chem Rev,1997,97 (7):2465-2498.
    20. Hopwood DA, Malpartida F, Kieser HM, et al. Production of 'hybrid' antibiotics by genetic engineering. Nature,1985,314(6012):642-644.
    21. Hopwood DA. Forty years of genetics with Streptomyces:from in vivo through in vitro to in silico.Microbiology,1999,145:2183-2202.
    22. Ichinose K, Bedford DJ, Tornus D, Bechthold A, Bibb M, Revill WP, Floss HG, Hopwood DA. The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tu22: sequence analysis and expression in a heterologous host. Chem Biol,1998,5:647-659.
    23. Ichinose K, Taguchi T, Ebizuka Y, Hopwood D A. Biosynthetic gene clusters of benzoisochromanequinone antibiotics in Streptomyces sp.-identification of genes involved in post-PKS tailoring steps. Actinomycetologica,1998,12:99-109.
    24. Ichinose K, Ozawa M, Itou K, Kunieda K and Ebizuka Y. Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161:towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiology,2003,149:1633-1645.
    25. Ikeda H, Ishikawa J, Hanamoto A, Shinose M.,Kikuchi H.,Shiba T.,Sakaki Y,Hattori M and Omura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol,2003,21:526-531.
    26. Kieser T, Bibb M J, Buttner MJ. Practical Streptomyces Genetics. Norwich, The John Innes Foundation,2000.
    27. Kitani S, Iida A, Izumi TA, Maeda A, Yamada Y, Nihira T. Identification of genes involved in the butyrolactone autoregulator cascade that modulates secondary metabolism in Streptomyces lavendulae FRI-5. Gene,2008,425(1-2):9-16.
    28. Kleerebezem M. Quorum sensing control of antibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides,2004,25(9):1405-1414.
    29. Lee YJ, Kitani S, Nihira T. Null mutation analysis of an afsA-family gene, barX, that is involved in biosynthesis of the{gamma}-butyrolactone autoregulator in Streptomyces virginiae. Microbiology,2010,156(Pt 1):206-210.
    30. Liu T, Cane DE, Deng Z. The enzymology of polyether biosynthesis. Methods in Enzymology,2009,459:187-214.
    31. Li A., Itoh T., Taguchi T., Xiang T., Ebizuka Y, and Ichinose K. Functional studies on a ketoreductase gene from Streptomyces sp. AM-7161 to control the stereochemistry in medermycin biosynthesis. Bioorg & Med Chem,2005,13(24):6856-6863.
    32. Mendes MV, Recio E, Anton N, Guerra SM, Santos-Aberturas J, Martin JF, Aparicio JF. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chemistry and Biology,2007,14(3):279-290.
    33. Malpartida F, Hopwood D A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature,1984, 309:462-464.
    34. Martin JF, Aparicio JF. Enzymology of the polyenes pimaricin and candicidin biosynthesis. Methods in Enzymology,2010,459(B):215-242.
    35. Martin JF, Liras P. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Current Opinion in Microbiology,2010,13: 263-273.
    36. Ohnishi Y, Ishikawa J, Hara H, et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO13350. J Bacteriol,2008, 190(11):4050-4060.
    37. O'Rourke S, Wietzorrek A, Fowler K, Corre C, Challis GL, Chater KF. Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Molecular Microbiology,2009,71(3):763-778.
    38. Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Bioscience Biotechnology and Biochemistry,2005,69(3):431-439.
    39. Ou X, Zhang B, Zhang L, Zhao G and Ding X. Characterization of rrdA, a TetR family protein gene involved in the regulation of secondary metabolism in Streptomyces coelicolor. Appl Environ Microbiol,2009,75(7):2158-2165.
    40. Recio E, Aparicio JF, Rumbero A, Martin JF. Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes. Microbiology,2006,152(Pt10):3147-3156.
    41. Rui Li, Gang Liu, Zhoujie Xie, Xihong He, Wenqing Chen, Zixin Deng and Huarong Tan. PolY, a transcriptional regulator with ATPase activity, directly activates transcription of polR in polyoxin biosynthesis in Streptomyces cacaoi. Mol Microbiol.,2010,75(2):349-364.
    42. Recio E, Colinas A, Rumbero A, Aparicio JF, Martin JF. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. Journal of Biological Chemistry,2004,279:41586-41593.
    43. Rix U., Fischer C., Remsing L. L., Rohr J. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep,2002,19,542-580.
    44. Shikura N, Yamamura J, Nihira T. barS1, a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species Journal of Bacteriology,2002, 184(18):5151-5157.
    45. Song JY, Kim ES, Kim DW, Jensen SE and Lee KJ. A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production. Ind Microbiol Biotechnol,2009,36(2):301-311.
    46. Taguchi T, Itou K, Ebizuka Y, Malpartida F, Hopwood DA, Surti CM, Booker-Milburn KI, Stephenson GR, Ichinose K. Chemical characterisation of disruptants of the Streptomyces coelicolor A3 (2) actVI genes involved in actinorhodin biosynthesis. J Antibiot,2000,53:144-152.
    47. Takano E. Gamma-butyrolactones:Streptomyces signalling molecules regulating antibiotic production and differentiation. Current Opinion in Microbiology,2006,9: 287-294.
    48. Taguchi T, Okamoto SA, Lezhava A, Li A, Ochi K, Ebizuka Y and Ichinose K. Possible involvement of ActVI-ORFA in transcriptional regulation of actVI tailoring-step genes for actinorhodin biosynthesis. FEMS Microbiol Lett,2007 269:234-239.
    49. Takano E., H. C. Gramajo, E. Strauch, N. Andres, J. White, and M. J.Bibb. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3 (2). Mol Microbiol,1992,6:2797-2804.
    50. Vicente CM, Santos-Aberturas J, Guerra SM, Payero TD, Martin JF, Aparicio JF. PimT, an amino acid exporter controls polyene production via secretion of the quorum sensing pimaricin-inducer PI-factor in Streptomyces natalensis. Microbial Cell Factories,2009,8:33-41.
    51. Wang L, Tian X, Wang J, Yang H, Fan K, Luan Z, Qian D, Tan H. Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proceedings of the National Academy of Sciences of the United States of America,2009,106:8617-8622.
    52. Xu G, Wang J, Wang L, Tian X, Fan K, Yang K, Tan H.'Pseudo' gamma-butyrolactone receptors respond to antibiotic signals to coordinate antibiotics biosynthesis. Journal of Biological Chemistry,2010,285:27440-27448.
    53. Yim G, Wang HH, Davies J. The truth about antibiotics. International Journal of Medical Microbiology,2006,296:163-170.
    54. Yunt Z, Reinhardt K, Li A, Engeser M, Dahse HM, Gutschow M, Bruhn T, Bringmann G, Piel J. Cleavage of four carbon-carbon bonds during biosynthesis of the griseorhodin a spiroketal pharmacophore. Journal of the American Chemical Society,2009,131 (6):2297-2305.
    55. Z. Deng and L. Bai,Antibiotic biosynthetic pathways and pathway engineering--A growing research field in China, Natural Product Reports,2006,23,811-827.
    56.白林泉,邓子新.微生物次级代谢产物生物合成基因簇与药物创新. 中国抗生素杂志,2006,2(31):80-86.
    57.王琳淇,谭华荣.微生物次生代谢的分子调控.微生物学报(Acta Microbioogica Sinica),2009,49(4):411-416.
    58.邓子新,第十二届全国环境微生物学年会大会报告,2009.
    59.吴杭,张部昌,查向东,孔小卫,马清钧一种新的链霉菌表达载体启动子.中国抗生素杂志,2007,32(11):647-652.
    60.蔡晓凤.芳香聚酮抗生素美达霉素生物合成基因的功能研究.华中师范大学硕士学位论文.2009.
    61.吴雪昌,缪克排,钱凯先链霉菌基因组及次生代谢研究进展遗传学报,200532(11):1115-1127.
    62.李佳,向四海,杨秀山,杨克迁.报告基因法比较两种放线菌启动子的活性微生物学报,2009,49(11):1454-1458.
    63.孙锐,美达霉素生物合成基因med-ORF12的原核表达及多抗血清的制备.华中师范大学学士学位论文.2010.
    64.宫彩霞,李爱英.链霉菌次生代谢中双因子调控系统的研究进展.微生物学通报.37(5):,2010.
    65.赫卫清,雷健,刘玉瑛,王以光.格尔德霉素生物合成的调控基因.生物工程学报,2008,24(5):717-722.
    66.雷健,赫卫清,王以光.链霉菌形态分化和次级代谢调控机制的研究进展.药物生物技术,2007,14(3):225-229.
    67.李爱英,变铅青链霉菌DNA异常修饰系统的分子生物学研究.华中农业大学博士学位论文.2000.
    68.刘明李爱英.群感效应与链霉菌次生代谢调控.微生物学报,2011,51(5):571-578.
    69.刘志恒,姜成林.主编.《放线菌现代生物学与生物技术》.科学出版社.北京,2004.
    70.孙宇辉,邓子新.聚酮化合物及其组合生物合成.中国抗生素杂志,2006,1(31):6-18.
    71.王以光 主译.抗生素多学科研究入门,人民卫生出版社.1997
    72.宫彩霞.美达霉素产生菌菌种鉴定及调控基因med-ORF10的功能研究.华中师范大学硕士学位论文.2010.
    73.张碧乾.美达霉素生物合成中糖基转移酶Med-ORF8定点突变及功能分析.华中师范大学硕士学位论文.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700