Schiff碱及功能配合物的合成与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属与Schiff碱配体所形成的配合物越来越受到人们的广泛关注。该类配合物结构多样、性质特殊,在化学、生物以及材料等科学领域都具有广泛的研究前景。作者综合大量的文献,合成了300多种化合物,得到了15种新的过渡金属配合物(其中12种Schiff碱配合物),并通过X射线衍射仪对这些配合物的结构进行了测试,同时也对其生物活性进行了研究。
     合成了水杨醛缩α-萘胺(HL1)、水杨醛缩2-腈基-4-氯苯胺(HL2)、水杨醛缩邻甲基苯胺(HL3)、水杨醛缩环戊胺(HL4)、水杨醛缩N-(2-氨乙基)吗啉(HL5)、3-羧基水杨醛缩N-(2-氨乙基)吗啉(HL6)、水杨醛缩苯甲胺(HL7)、3-羧基水杨醛缩苯甲胺(H2L8)、3-羧基水杨醛缩2-羟乙基乙二胺(HL9)、水杨醛缩正丁胺(HL10)及12,24-二羟基-1,6-二氧-2,5,14,17-四氮[6.6]间苯环-13,17-二烯(H2L11)11种Schiff碱配体。得到了HL1、HL2和HL3配体的单晶;培养出了HL3~HL6、H2L11的Cu配合物,HL7~H2L11的Co配合物和H2L11的Ni配合物的单晶。此外,以5-溴水杨酸(5-bsa)、2-氨基苯甲酸(2-aba)、六次甲基四胺(hmt)等为原料,合成了3种过渡金属Ag(I)配合物,并培养出了其单晶。用X-射线衍射法测定了它们的结构,Cu(L3) 2、Cu(L5) N3·2H2O、Co(L7) 3、Co(L9)3·NO3为单核配合物;Cu2 (L4) 2(C6H5COO)2、Cu2 (L4) 2(o-F-C6H5COO)2、Cu2 (L6) 2 (N3) 2为双核配合物;[Co3(L8)2(C5H5N)6·2(ClO4)]n和[Ag(5-bsa)]n为一维链状聚合物; [Ag(2-aba)]n和[Ag(μ3-hmt)( C6H5COO)·H2O]n为二维网状结构。
     其晶胞参数如下:HL1 C17H13NO正交晶系,空间群为Pbca, a=10.582(7) ?, b=12.538(1) ?, c=12.538(1) ?,α=β=γ=90.00 o;HL2 C14H9ClN2O单斜晶系,空间群为P21/c,,a=4.706(1) ?, b=14.372(4) ?, c=18.225(2) ?,β=91.22(1) o ;HL3 C14H13NO,单斜晶系,空间群为P21/n, a=4.693(1) ?, b=19.140(3) ?, c=12.682(2) ?,β=97.973(2) o;1 Cu(L3) 2,C28H24CuN2O2,单斜晶系,空间群为P21n,a=10.931(2) ?, b=9.149(2) ?, c=12.522(1) ?,β=110.94(2) o; 2 C38H38Cu2N2O6单斜晶系,空间群为P21/n,a=9.476(2)?, b=15.126(3)?, c=12.589(3)?,β=111.35(3)o; 3 C38H34Cu2F2N2O6单斜晶系,空间群为P21/n,a=9.475(2)?, b=15.293(2)?, c=12.666(2)?,β=111.62(3)o; 4 C13H21CuN5O4单斜晶系,空间群为P21/c, a=15.317(6)?, b=26.113(6)?, c=23.622(6)?,β=99.65o; 5 C28H34Cu2N10O8三斜晶系,空间群为P-1, a=8.486(2)?, b=9.387(2)?, c=19.267(5)?,α=86.69(4)o,β=89.95(3)o,γ=89.87(4)o; 6 C42H36CoN3O3三斜晶系,空间群为P-1, a=9.3970(19)?, b=10.923(2)?, c=16.816(3)?,α=95.35(3)o,β=96.49(3)o,γ=94.23(3)o; 7 C70H62Co3N10O14Cl2三斜晶系,空间群为P-1, a=11.2732(13)?, b=11.4640(13)?,c=13.6745(15)?,α=83.406(2)o,β=76.081(2)o,γ=89.742(2)o; 8 C24H30CoN5O11单斜晶系,空间群为P21/c, a=16.3208(17)?, b=9.6618(10)?, c=17.1750(18)?,β=95.180(2)o; 9 C66H84Co2N6O6单斜晶系,空间群为P21/c, a=10.562(2)?, b=30.728(6)?, c=19.265(4)?,β= 90.69(3)o; 10 C20H18N4NiO4单斜晶系,空间群为C2/c, a=13.9697(18)? , b=18.2347(18)?, c=6.8393(8)?,β=91.667(3)o; 11 C20H18N4CuO4单斜晶系,空间群为C2/c, a=13.9697(18)?, b=18.2347(18)?, c=6.8393(8)?,β=91.667(3)o; 12 C20H18N4CoO4单斜晶系,空间群为C2/c, a=13.9697(18)?, b=18.2347(18)?, c=6.8393(8)?,β=91.667(3)o; 13 [C7H3O3BrAg] n单斜晶系,空间群为P21/n, a=7.3160(15)?, b=8.1710(16)?,c=13.051(3)?,β=95.14(3)o;14[C7H6NO2Ag]n正交晶系,空间群为Pna21, a=5.9486(8)?, b=24.227(3)? , c=4.9042(6)? ; 15 [C13H19AgN4O3]n正交晶系,空间群为Pca21, a=11.724(4)?, b=11.752(6)?,c=10.487(7)?。
     以11种配体(HL1~11)和15种配合物为酶抑制剂,测试了它们抑制脲酶(Urease)和黄嘌呤氧化酶(Xanthine Oxidase,简写为XO,下同)的生物活性。研究了它们的结构与抑制脲酶活性的关系,分析出了过渡金属原子的种类、金属离子的配位数目、配合物中游离的小分子及配合物分子量的大小对抑制脲酶和XO的活性影响显著。结果表明:11种有机配体本身均没有抑制脲酶和黄嘌呤氧化酶的生物活性;同样仅仅Cu、Ni、Co、Ag四种游离的金属离子,其生物活性也是很有限的。但当有机配体和金属元素作用,形成配合物时,其稳定性大大增强,抑制生物活性也有较大的变化。Cu、Ni元素的配合物都有抑制脲酶和黄嘌呤氧化酶的活性;Co和Ag所形成的配合物,对脲酶有抑制作用,而对黄嘌呤氧化酶却起不到抑制作用。Cu和Ag均属于IB族元素,其相似的核外电子构型表现出相当的对脲酶的抑制能力。未参与配位的游离水分子越多、能与溶剂形成氢键的官能团越多、聚合度越大,其抑制两种酶的活性越强。
     结构决定性质,性质影响功能。过渡金属配合物分子结构具有先天的稳定性、多样性等优点,深入分析研究其结构与脲酶和XO的活性之间的关系,有助于获得理想的脲酶抑制剂,具有重大的理论和现实意义。
The complexes, synthesized with transition metal and Schiff bases as reactants, are more and more becoming the focus of contemporary research. Owing to their various structures and peculiar properties, the use foreground of these complexes is also promising in many fields, such as catalysis, bioactivity and material. After going over and analyzing a great deal of the relevant literatures, we have synthesized more than 300 kinds of compounds and 15 new transition metal complexes including 12 complexes of Schiff bases and studied their crystal structures by x-ray and studied their bioactivities also.
     Eleven Schiff base ligands have been designed and synthesized. They are derived from the condensation of salicylaldehyde with naphthalidine, 2-cyano-4-chloroaniline, o-Toluidine, N-aminoethylmorpholine, benylamine, butylamine, cyclopentylamine and 3-carboxysalicylidene with N-aminoethylmorpholine, benylamine, 2-hydroxyaminoethylamine, ethylenediamine, respectively.
     We have obtained the crystal structures of HL1、HL2 and HL3; synthesized the copper(II) complexes with HL3, HL4, HL5, HL6 and H2L11; synthesized the cobalt(II) complexes with HL7, H2L8, HL9, HL10 and H2L11; also the nickel(II)complex with H2L11. Besides, we have designed and synthesized three silver(I) complexes with 5-bromoslicylic acid, 2-aminobenzoic acid, hexamethylenetereamine as raw materials. All the structures have been determined by via the X-ray test. The mononuclear complexes are Cu(L3) 2、Cu(L5) N3·2H2O、Co(L7) 3、Co(L9)3·NO3;The dinuclear complexes are Cu2 (L4) 2(C6H5COO)2、Cu2 (L4) 2(o-F-C6H5COO)2、Cu2 (L6) 2 (N3)2; and [Co3(L8)2(C5H5N)6·2(ClO4)]n and [Ag(5-bsa)]n are one-dimensional chain structure. The X-ray disclosed [Ag(2-aba)]n and [Ag(μ3-hmt)( C6H5COO)·H2O]n are all present as a two-dimension net-work configuration.
     Using eleven ligands (HL1~H2L11) and 15 complexes as enzyme inhibitors, we have tested their inhibitory bioactivities against Urease and Xanthine Oxidase(XO). Studied the relative between their structure and bioactivities and found that the kind of metal ions, coordinated ligands, the uncoordinated molecules and the weignt of molecular are have great influence to the inhibitory bioactivities against Urease and XO. We find that none of these organic ligands exhibited ability to inhibit Urease and XO. At the same time, merely Cu2+、 Ni2+、Co2+、Ag+, the bioactivities is limited. While they coordinated with the organic ligands, the stability of the ion is greatly advanced and the bioactivities have great changes. Nearly all the copper(II) and nickel(II) complexes could inhibit the activities of Urease and XO. However, bioactivity of Urease could be inhibited by the complexes containing Co2+ and Ag+, which failed to inhibit the bioactivity of XO. Cu and Ag belong to the IB, analogous electronic shell configuration lead to the similar inhibit activities against Urease. The more the uncoordinated water molecules, more group can forming hydrogen bonds and the great degree of polymerlization, the more inhibit bioactivities against Urease.
     Structure determine the quality while quality influence the function. The structures of transition complexes have the inherent stability and diversity. The study of structure-activity relationship with Urease and XO can help us to find a ideal inhibitor, which have signality progress both in theory and realism.
引文
[1] Schiff, H. [J]. Annis. Chem. 1864, 131: 118-119.
    [2] Smith, J. W.; Patai, S. The Chemistry of Carbon-Nitrogen Bond [M]. London: Interscience Publisher Ltd, 1970, Chapter 5.
    [3] Dutt, N. K.; Nag, K. J. [J]. Inorg. Nucl. Chem. 1968, 30: 2493-3495.
    [4] Dutta, R. L.; Das, B. R. [J]. J. Scient. Ind. Res. 1988, 47: 547-548.
    [5] (a) You, Z. L.; Zhu, H. L.; Liu, W. S. [J]. Acta Crysta. 2004, E60: m805-806; (b) You, Z. L.; Zhu, H. L.; Liu, W. S. [J]. Acta Crysta. 2004, E60: m794-796.
    [6] Forsberg, V. H. Gemeline Handbuch der Anorgenishen Chime D2. [M]. German: German Ltd, 1980. 25-30.
    [7] Daneshvar, N.; Entezami, A. A.; Khandar, A. A.; Saghatforoush, L. A. [J]. Polyhedron, 2003, 22: 1437-1440.
    [8] Hirota, S.; Kosugi, E.; Marzilli, L. G.; Yamauchi, O. [J]. Inorg. Chim. Acta. 1998, 90: 275-276.
    [9] Reger, T. S.; Janda, K. D. [J]. J. Am. Chem. Soc. 2000, 122: 6929-6930.
    [10] Kim, G. J.; Kim, S. H. [J]. Catal. Lett. 1999, 57: 139-141.
    [11] 孙伟,夏春谷. [J]. 化学进展,2002,14: 8-9.
    [12] 何秀英,吴纪梅,严振寰等. [J]. 无机化学学报,1995, 11(3): 320-321.
    [13] (a) Belokon, Y. N.; Maleyev, V. I.; Vitt, S. V. [J]. J. Chem. Soc. Dalton Trans. 1985: 17-18; (b) Belokon, Y. N.; Bulychev, A. G.; Pevlov, V. A. [J]. J. Chem. Soc. Perkin Trans. 1988: 2075-2076.
    [14] (a) Dilworth, J. R. [J]. Coord. Chem. Rev. 1976, 21: 29-32; (b) Mahapatra, B. B.; Dash, S. S.; Pujari, S. K. [J]. J. Indian Chem. Soc. 1980, 57: 95-97.
    [15] Yang, Z. Y.; Zhang, L. Y.; Hu, A. G. [J]. Polyhedron, 1999, 18: 1247-1250.
    [16] Nawar, N.; Hosny, N. M. [J]. Transition Met. Chem. 2000, 25: 1-3.
    [17] (a) Ranford, J. D.; Vittal, J. J.; Wang, Y. M. [J]. Inorg. Chem. 1998, 37: 1226-1228; (b) Ainscough, E. W.; Brodie, A. M.; Dobbs, A. J. [J]. Inorg. Chim. Acta. 1998, 267: 27-29.
    [18] Wang, D. B.; Chen, B. H.; Ma, Y. X. [J]. Syn. React. Inorg. Met-Org. Chem. 1997, 27: 479-450.
    [19] Chohan, Z. H.; Rauf, A. [J]. Syn. React. Inorg. Met-Org. Chem. 1996, 26: 591-593.
    [20] Tian, Y. P.; Duan, C. Y.; Zhao, C. Y. [J]. Inorg. Chem. 1997, 36: 1247-1250.
    [21] Ueno, K.; Martell, A. E. [J]. J. Phys. Chem. 1957, 61: 257-260.
    [22] Dutt, N. K.; Nag, K. J. [J]. Inorg. Chem. 1968, 30: 3273-3275.
    [23] 姚克敏,吴大庆,杨红卫. [J]. 应用化学,1992,9(4): 8-9.
    [24] Hodnett, E. M.; Dunn, W. J. [J]. J. Med. Chem. 1970, 13: 768-770.
    [25] 毕思玮,刘树祥. [J]. 无机化学学报,1996,12(4): 423-425.
    [26] 王长凤,杨光明,徐静颖等. [J]. 应用化学,1997,14(3): 29-30.
    [27] 焉翠蔚,李延团,廖代正等. [J]. 应用化学,1995,12(5): 37-38.
    [28] 祝心德,党元林,王成刚等. [J]. 应用化学,1997,12(1): 68-69.
    [29] 杨正银,王流芳. [J]. 化学学报,1993,51(2): 184-190.
    [30] 陈德余,姚克敏. [J]. 中国科学(B),1993,23(7): 696-701.
    [31] 姚克敏,陈德余,王晓南. [J]. 中国科学(B),1995,25(11): 1144-1148.
    [32] 王长凤,杨光明,徐静颖等. [J]. 应用化学,1997,14(3): 29-32.
    [33] 马玉翔,范玉华,王党生等. [J]. 济南大学学报,2003,17(3): 292-294.
    [34] 陈德余. [J]. 化学研究与应用,2001,13(2): 145-148.
    [35] Zhu, H. L.; Zheng, L. M.; Fu, D. G.; Huang, X. Y.; Tang, W. X. [J], J. Inorg. Biochem. 1998, 70: 211-218.
    [36] Patani, G. A.; Lavoie, E. [J]. J. Chem. Rev. 1996, 96: 3147-3149.
    [37] 魏丹毅,李冬成,姚克敏. [J]. 无机化学学报,1998,14(2): 209-310.
    [38] Bu, X. R.; You, X. Z.; Meng, Q. J. [J]. Comm. on Inorg. Chem. 1990, 9: 21-23.
    [39] 明阳福,黄震年,许宝安等. [J]. 中国科学(B 辑),1997,27(2): 120-121.
    [40] You, X. Z.; Kubota, T.; Feng, W. H. [J]. J. Chem. Soc. Chem. Commun. 1994, 2391-2393.
    [41] 田颜清,林凤,赵英英等. [J]. 应用化学,1993,12(4): 90-91.
    [42] 邹克渭,章竹君,吕九如等. [J]. 高等学校化学学报,1996, 17(2): 219-223.
    [43] Zhu H. L.; Tong Y. X.; Chen X. M. [J]. J. Chem. Soc., Dalton Trans. 2000, 4182-4186.
    [44] 计亮年,彭小彬,黄锦汪. [J]. 自然科学进展,2002,2: 2-3.
    [45] Fiabane. A. M.; Williams. D. R. Principle of Bioinorganic Chemistry. [M]. London: The Chemical Society, 1997, 3-5.
    [46] 殷开梁,徐瑞钧,徐元植等. [J]. 化学进展,1997,9(4): 337-348.
    [47] Tong, M. L.; Chen, X. M.; Ye, B. H. [J]. Inorg. Chem.,1998, 37: 5278-5281.
    [48] You. Z. L.; Yang, L.; Zou, Y. [J]. Acta Cryst., 2004, C60: m117-118.
    [49] Zhu, H. L.; Zhang, X. M.; Liu, X. Y. [J]. Inorg. Chem. Comm., 2003, 6: 1113-1116.
    [50] Batten, S. R.; Robson, R. [J]. Angew. Chem. Int. Ed. Engl., 1998, 11: 1460-1494.
    [51] Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. [J]. Acc. Chem. Res., 1997, 30: 330-337.
    [52] (a) Zheng, P.; Cleemput, O.; Demeyer, P. [J]. Biol. Fertil. Soil, 1991, 11: 41-47; (b) Mulvancy, R. L.; Bremner, J. M. [J]. Soil Biochem., 1981, 5: 153-196.
    [53] Mobley, H. L. T.; Island, M. D.; Hausinger, R. P. [J]. Microbiol. Rev., 1995, 59: 451-480.
    [54] Benini, S.; Rypniewski, W. R.; Wilson, K. S. [J]. J. Am. Chem. Soc., 2004, 126: 3714-3715.
    [55] Todd, M. J.; Hausinger, R. P. [J]. Biochemistry, 2000, 39: 5389-5396.
    [56] Tanaka, T.; Kawase, M.; Tani, S. [J]. Bioorgan. Med. Chem., 2004, 12: 501-505.
    [57] (a) Park, I. S.; Hausinger, R. P. [J]. Biochemistry, 1996, 35, 5345-5352; (b) Zaborska, W.; Krajewska, B.; Leszko, M. [J]. J. Mol. Catal. B-Enzym., 2001, 13: 103-108.
    [58] Benini, S.; Rypniewski, W. R.; Wilson, S. K. [J]. J. Biol. Inorg. Chem., 2001, 6: 778-790.
    [59] Tarun, E. I.; Rubinov, D. B.; Metelitza, D. I. [J]. Appl. Biochem. Micro., 2005, 41: 12-17.
    [60] Reddy, P. A. N.; Nethaji, M.; Chakravarty, A. R. [J]. Eur. J. Inorg. Chem., 2004, 1440-1446.
    [61] Hodnett, E. M.; Dunn, W. J. [J]. J. Med. Chem., 1972, 15(3): 339.
    [62] Mukhopadhyay, S.; Mandal, D.; Ghosh, D. [J]. Inorg. Chem., 2003, 25: 8439-8445.
    [63] Maurya, M. R.; Khurana, S.; Rehder, D. [J]. Transit. Metal Chem., 2003,28: 511-517.
    [64] Bruker, SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA. 1998.
    [65] Sheldrick GM, SADABS. Program for Empirical Absorption Correction of Area Detector, University of G?ttingen, Germany, 1996.
    [66] Tanaka, T.; Kawase, M.; Tani, S. [J]. Life Sci., 2003, 73: 2985-2990.
    [67] Zaborska, W.; Krajewska, B.; Olech, Z. [J]. J. Enzyme Inhib. Med. Chem., 2004, 19: 65-69.
    [68] VanSlyke, D. D.; Archibald, R. M. [J]. J. Bio. Chem., 1944, 154: 623-642.
    [69] Kong, L. D.; Zhang, Y.; Pan, X. [J]. Mol. Life Sci., 2000, 57: 500-505.
    [70] You, Z. L.; Chen, B.; Zhu, H. L.; Liu, W. S. [J]. Acta Cryst., 2004, E60, m884–886.
    [71] Emsley, J. The Elements; Clarendon: Oxford, 1989, p174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700