硫化物半导体纳米材料的制备及光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米材料所具有的量子尺寸效应、小尺寸效应和表面效应等使得它们呈现出许多新奇的特性,在非线性光学、磁介质、催化、医药、及功能材料等方面具有极为广阔的应用前景,同时亦将对生命科学和信息技术的发展以及物质领域的基础研究发生深刻的影响。在本论文中,我们选取了硫化锌和硫化镉两种非常重要的半导体材料,以不同胺为模板剂,在低温下制备了不同形貌的硫化锌、硫化镉纳米材料,并对它们的光催化活性进行的研究。
     采用乙二胺、1,3-丙二胺、丁胺和β-羟乙基乙二胺等不同胺为模板剂,它们与CS_2反应生成的H_2S为硫源,在50℃与ZnSO_4搅拌反应20分钟制备了有孔的ZnS亚微米球。用SEM表征了有孔ZnS亚微米球的形貌、粒子大小为100~850nm以及孔的大小为250~600nm,XRD和HRTEM阐明了其为β型立方晶系,并由2~5纳米的ZnS纳米晶构成,UV-vis最大吸收峰蓝移表明其在室温下具有一定的量子尺寸效应。通过实验分析可知,所制备的有孔硫化锌亚微米空心球的形貌是可控的:陈化时间可控制球的粒径的大小,反应物二硫化碳和乙二胺的摩尔比可控制球的形状。对产物光催化实验降解可溶性染料曙红结果表明所制备的有孔纳米空心球均具有较强的光催化活性,而且,空心球的粒径越小,光催化活性越高。胺模板剂的两个氨基有利于与Zn~(2+)作用而形成均匀、相对光滑的有孔ZnS亚微米球,引入羟乙基则不利,提出了由H_2S冲出形成孔的合理机理。
     采用正丁胺为模板剂制备了不同形貌的CdS纳米材料。研究发现二硫化碳和正丁胺的摩尔比对反应产物的结构和形貌有较大的影响:当n_(CS2):n_(CH3CH2CH2CH2NH2)<1:2时,得到的产物是晶型较好的平均粒径约为10nm的CdS纳米颗粒,而当n_(CS2):n_(CH3CH2CH2CH2NH2)>1:2时,得到的产物是CdS(CH_3CH_2CH_2CH_2NHCSCH_2CH_2CH_2CH_3)(CS_2)配合物纳米线或纳米带。对CdS纳米颗粒的光催化研究表明,60 min内对染料直接黑EX溶液的光降解率达到了98%以上,体现了较高的光催化活性。元素分析、XRD、FT-IR、TG分析表明CdS/有机配合物结构较为稳定,不受陈化时间的改变而改变,且随着陈化时间的增长,配合物形貌发生较大的改变,逐渐由直径为10-30nm、长约1μm以上的纳米线过渡到宽约4μm、长约10μm、厚约30nm的带状纳米结构。
Semiconductive nanomaterials may exhibit lots of novel and amazing properties deriving from their effects such as quantum size, small size, and surface, which give rise to their potential use in the fields of nonlinear optics, magnetics, catalysis, medicine, and functional materials, as well as other areas. And the development of life science, information technology and even the basic research in material area can also been greatly influenced by those effects simultaneously. In this thesis, the selected two kinds of important semiconductive materials, ZnS and CdS, were synthesized with different morphology and nanostructure by employing different amine templates.
    The ZnS holey submicrospheres were prepared by reacting ZnSO_4 with the sulfide source, H_2S, formed in the reaction of CS_2 with ethylenediamine, 1,3-propylenediamine, butylamine or 2-(2-Aminoethylamino)ethanol, which acted as template agent also, at 50℃ under agitating. The shape, particle size of about 100-850nm and hole size of about 250-600nm of ZnS holey submicrospheres were shown by SEM images. ZnS holey submicrospheres with β cubic ZnS phase and composed by 2-5nm of nanocrystals were proved by XRD and HRTEM. The blue shift of λ_(max) in UV-vis displayed the effect of quantum size. The ZnS submicrospheres is controllable: the size of them can be controlled by the aging time and the shape can be controlled by the molar ratio of CS_2 and ethylenediamine. These ZnS holey submicrospheres showed high photocatalytic activity by photodegrading eosin and the smaller ZnS holey submicrospheres showed higher activity of photocatalysis. The two aminos of amine template favor to act with Zn~(2+) form uniform and relatively smooth ZnS holey submicrospheres, while hydroxyethyl take disadvantage. Rational mechanism of hole by H_2S rushing out is suggested.
    CdS nanomaterials of different morphology were prepared by template agent of butylamine. Experiment shows the structure and morphology were effected by the molar ratio of CS2 and butylamine: When n cs2:n CH3CH2CH2CH2NH2<1: 2, we obtained pure CdS nanoparticles with an average diameter of about 10nm; while n cs2:n
引文
[1] 杨澄宇,方云,蒋惠亮,陈明清,纳米技术与纳米材料(Ⅱ)—表面活性剂在纳米科技中的应用,日用化学工业,2003,33(2):115.
    [2] Rajeshwar K, Tacconi N R, Chenthamarakshan C R, Semiconductor-based composite materials: peparation, poperties, and prformance, Chem. Mater. 2001, 13: 2765.
    [3] Manna L, Milliron D J, Meisel A, Scher E C, Alivisatos A P, Controlled growth of tetrapod-branched inorganic nanocrystals, Nature Mater., 2003, 2: 382.
    [4] Peng X, Shape control of CdSe nanocrystals, Nature, 2000, 404: 59.
    [5] Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos A P, Linearly polarized emission from colloidal semiconductor quantum rods, Science, 2001, 292: 2060.
    [6] 丁秉钧,纳米材料,机械工业出版社,2004,31.
    [7] Qian Y T, Su Y, Xie Y, Chen Q W, Chen Z Y, Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite, Mater. Res. Bull.,1995,30:601.
    [8] 苏宜,谢毅,陈乾旺,钱逸泰,纳米ZnS、CdS水热合成及其表征,应用化学,1996,13(5):56.
    [9] Ramsden J L, Wenbber S E,Gratzel M, Luminescence of colloidal cadmium sulfide particles in acetonitrile and acetonitrile/water mixtures, J Phys. Chem., 1985, 89: 2340.
    [10] Kumta P N, Phule P P, Risbud S H, Low-temperature wet-chemical synthesis of amorphous indium sulfide powders, Mater. Lett., 1987, 5: 401.
    [11] Variano B F, Hwang D M, Sandreff C J, Wiltzius, P, Jing T W, Ong N P, Quantum effects in anisotropic semiconductor clusters: colloidal suspensions of bismuth sesquisulfide and antimony sesquisulfide, Phys. Chem., 1987, 91: 6455.
    [12] Chinanelli R R, Dines M B, Low-temperature solution preparation of Group 4B, 5B and 6B transition-metal dichalcogenides, Inorg. Chem., 1978, 17: 2758.
    [13] Passaretti J O, Kaner R B, Kershaw R, Wold A, Synthesis of poorly crystallized platinum metal dichalcogenides, Inorg. Chem., 1981, 20: 501.
    [14] Bianconi P A, Lin J, Stzelecki A R, Crystallization of an inorganic phase controlled by a polymer matrix, Nature, 1991, 349: 315.
    [15] Martin J J, Qiang G H, Schleich D M, New low-temperature synthesis of transition-metal sulfides, Inorg. Chem., 1988, 27: 2804.
    [16] Murray C B, Norris D J, Bawendi M C, Synthesis and characterization of nearly monodisperse CdE(E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc, 1993, 115: 8706.
    [17] Brennan J G, Siest T, Carrell P J, Stuczynski S M, Brus L E, Steigerwald M L, The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor, J. Am. Chem. Soc., 1989, 111: 4141.
    [18] Stuczynski S M, Brennan J G, Steigerwald M L, Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides, Inorg. Chem., 1989, 28: 4431.
    [19] Yuan H J,Xie S S,Liu D F, Yan X Q, Zhou Z P, Ci L J, Wang J X, Gao Y, Song L, Liu L F, Zhou W Y, Wang G, Formation of ZnS nanostructures by a simple way of thermal evaporation, J.Cryst.Growth,2003,258:225.
    [20] Ye C H,Meng G W, Wang Y H,Jiang Z,Zhang L D, On the growth of CdS nanowires by the evaporation of CdS nanopowders, J.Phys.Chem.B,2002,106:10338.
    [21] Jiang Y, Meng X M, Liu J, Xie Z Y, Lee C S, Lee S T, Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale, Adv. Mater.,2003,15:323.
    [22] Meng X M, Jiang Y, Liu J, Lee C S, Bello I, Lee S T, Synthesis and characterization of ZnS bicrystal nanoribbons, Appl.Phys.Lett.,2003,83: 2244.
    [23] 杨富国,朱琼霞,方正,快速均匀沉淀法制备纳米微粒ZnS,中南工业大学学报,2001,32(3):270.
    [24] 王大文,刘延秋,徐广智,白春礼,纳米尺寸ZnS胶体颗粒结构状态的STM研究,科学通报,1994,(16):1489.
    [25] Simmons B A, Morphology of CdS nanocrystals synthesized in mixed surfactant systems, Nano.Lett. 2002, 2: 263.
    [26] 张立德,牟季美著,纳米材料和纳米结构,科学出版社(2001),135.
    [27] Xing Y J, Xi Z H, Yu D P, Wang Y P, Xu J, Xi Z H, Feng S Q, Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism, Chem.Phys. Lett.,2000,323:224.
    [28] Bibby D M, Dale M P, Synthesis of silica-sodalite from non-aqueous systems, Nature, 1985, 317: 157.
    [29] Sheldrick W S, Wachhold M, Solventothermal Synthesis of Solid-State Chalcogenidometalates, Angew.Chem.Int.Engl,1997,36: 206.
    [30] Yang J, Cheng G H, Zeng J H, Yu S H, Liu X M, Qian Y T, Shape control and characterization of transition metal diselenides MSe2(M= Ni, Co, Fe) prepared by a solvothermal-reduction process, Chem. Mater.,2001,13:848.
    [31] Huang J X, Xie Y, Li B, Liu Y, Qian Y T, Zhang S Y, In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres, Adv.Mater.,2000,12:808.
    [32] Yang J, Xue C, Yu S H, Zeng J H, Qian Y T, General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller, Angew.Chem.Int.Ed.,2002,41:4697.
    [33] 董亚杰,李亚栋,一维纳米材料的合成、组装与器件,科学通报,2002,96:41.
    [34] Gates B, Wu Y, Yin Y, Yang P, Xia Y, Single-crystalline nanowires of Ag_2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc.2001, 123:11500.
    [35] Hulteen J C, Mattm C R, A general of template-based for the preparation nanomaterials, J. Mater. Chem. 1997, 7:1075.
    [36] Li Y, Xu D S, Zhang Q M, Chen D P, Huang F Z, Xu Y J, Guo G L, Gu Z N, Preparation of cadmium sulfide nanowire arrays in anodic aluminum oxide templates, Chem. Mater., 1999,11:3433.
    [37] Peng X S, Meng G W, Zhang J, Zhao L X, Wang X F, Wang Y W, Zhang L D, Electrochemical fabrication of ordered Bi_2S_3 nanowire arrays J. Phys.D:Apply Phys.,2001,34:3224.
    [38] Gudiksen M S,Diameter-selective synthesis of semiconductor nanowires, J. Am. Chem. Soc, 2000,122:8801.
    
    [39] Jiang X, Xie Y, Lu J, Zhu L, He W, Qian Y, Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation, Chem. Mater., 2001,13:1213.
    
    [40] Shao M, Microwave-templated synthesis of CdS nanotubes in aqueous solufionat room temperature, New J. Chem. 2002, 26:1440.
    
    [41] Wang H, Lu Y N, Zhu J J,Chen H Y, Sonochemical fabrication and characterization of stibnite nanorods,Inorg.Chem., 2003, 42, 6404-6411.
    
    [42] Shionoya S, Yen W M,Phosphor Handbook,New York,Washigtion D.C.,1999.
    
    [43] Yu S H, Yoshimura M, Shape and phase control of ZnS nanocrystals: Template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS-(NH_2CH_2CH_2NH_2)_(0.5), Adv. Mater. 2002,14:296.
    
    [44] Wu Q S, Zheng N W, Ding Y P, Li Y D, Micelle-template inducing synthesis of winding ZnS nanowires, Inorg. Chem. Commun. 2002,5:671.
    
    [45] Barrelet C J, Wu Y, Bell D C, Lieber C M, Synthesis of CdS and ZnS nanowires using single-source molecular precursors, J. Am. Chem. Soc. 2003,125:11498.
    
    [46] Xu J, Li Y D. Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions, J. Colloid Interface Sci. 2003,259: 275.
    
    [47] Malik M A, O'Brien P, Revaprasadu N, A simple route to the synthesis of core/shell nanoparticles of chalcogenides, Chem. Mater. 2002,14: 2004.
    
    [48] Mokari T, Banin U Taleb M, Uri B, Synthesis and properties of CdSe/ZnS core/shell nanorods, Chem. Mater. 2003,15:3955.
    
    [49] Zhao Q T, Hou L S, Huang R I, Synthesis of ZnS nanorods by a surfactant-assisted soft chemistry method, Inorg. Chem. Commun.,2003,6[7]:971.
    
    [50] He Y J, A novel emulsifier-free emulsion route to synthesize ZnS hollow microspheres, Mater. Res. Bull. 2005,40:629.
    
    [51] Ma Y R, Qi L M, Ma J M, Cheng H M, Facile synthesis of hollow ZnS nanospheres in block copolymer solutions, Langmuir 2003,19:4040.
    [52] Xu J,Li Y D.Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions. J Colloid Interf Sci,2003,259:275.
    [53] Wang Y W, Zhang L D,Liang C H,et al.Catalytic growth and photoluminescence properties of semiconductor singke-crystal ZnS nanowires. Chem Phys Lett,2002,357:314.
    [54] 吕瑞涛,曹传宝,翟华嶂,朱鹤孙半导体ZnS纳米管的软模板法制备与表征.科学通报,2004,49(7):629.
    [55] 李彦,张庆敏,黄福志,万景华,顾镇南 模板法制备硫化物半导体纳米材料.无机化学学报,2002,18(1):79.
    [56] 孙冬梅,吴庆生,朱勇,丁亚平 仿生支撑液膜法制备硫化锌自组装纳米球链.化学学报,2005,63(16):1479.
    [57] Routkevitch D,Bigioni T, Moskovits M,Blectrochernical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates, J. Phys. Chem. 1996, 100:14037.
    [58] Li Y, Wan J, Gu Z, The formation of cadmium sulfide nanowires in different liquid crystal systems, Mater. Sci. Eng. A, 2000, 286:106.
    [59] Li Y, Xu D S, Zhang Q M, Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates, Chem. Mater. 1999, 11:3433.
    [60] Zhang P, Gao L, Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langrnuir, 2003, 19: 208.
    [61] Chen C Ch, Chao C Y, Lang Z H, Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods, Chem. Mater., 2000, 12: 1516.
    [62] Wu J, Jiang Y, Li Q, Liu X M, Qian Y T, Using thiosemicarbazide as starting material to synthesize CdS crystalline nanowhiskers via solvothermal route, J.Cryst.Growth, 2002, 235: 421.
    [63] Su Y Z, Gong K C, Template Synthesis of Nanomaterials. Materials Science and Engineering 1999.17(4): 18.
    [64] Nanda J, Sapra S, Sarma D D, Chandrasekharan N, Hodes G, Size-selected zinc sulfide nanocrystallites: Synthesis, structure, and optical studies, Chem. Mater. 2000,12(4):1018.
    [65] 程能林,溶剂手册,第二版,北京化学工业出版社,1994,p778.
    [66] Li B, Xie Y, Huang J X,Qian Y, Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles, Adv. Mater. 1999,11:1456.
    [67] Yin H B, Wada Y, Kitamura T, Yanagida S, Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts, Environ. Sci. Technol., 2001, 35:227.
    [68] Kho R, Torres-Martinez C L, Mehra R K, A simple colloidal synthesis for gram-quantity production of water-soluble ZnS nanocrystal powders, J. Colloid Interface Sci., 2000, 227:561.
    [69] Dai J, Jiang Z J, Li W G, Bian G Q, Zhu Q Y, Solvothermal preparation of inorganic-organic hybrid compound of[(ZnS)(2)(en)](infinity) and its application in photocatalytic degradation, Mater. Lett., 2002, 55:383.
    [70] Hu J S, Ren L L, Guo Y G, Liang H P, Cao A M, Wan L J, Bai C L, Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles, Angew. Chem. Int. Ed. 2005, 44(8):1269.
    [71] 蒋正静,戴洁,张志兰,卞国庆,汤德祥,锌、镉掺杂纳米级钛酸铅的制备及对活性翠蓝的光催化降解,应用化学,2001,18(7):552.
    [72] 沈永丰,功能化CdS纳米晶的制备及其与聚合物的组装研究,南京工业大学学位论文[硕],2005,06.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700