A/O SBR中聚磷菌合成PHB及影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以ERP-SBR工艺的逆过程为载体、模拟将来可能采用的含可利用碳源的工业废水作为进水,研究了一株聚磷菌纯培养物在不同A/O SBR培养体系长期驯化的“主体反应器”及短期条件改变的“第二批次试验”下,利用好氧段末端菌体中poly-P作为动力、厌氧条件下PHB储存行为。对起始pH、温度、碳源浓度和营养限制等主要易控的影响因子作用机理进行了分析;并将系统中PO_4~(3-)-p代谢、NaAc吸收利用与PHB合成能力相耦合;为今后以聚磷菌为主体的脱磷剩余污泥资源化利用及PHB规模化生产探索道路。试验主要结果如下:
     (1)以模拟废水为碳源、采用实验室规模的ERP-SBR工艺对活性污泥进行为期25天快速诱导驯化,系统对PO_4~(3-)-p的去除率可达80.58%;从该富集聚磷菌的活性污泥里共分离得到36株纯菌株。再结合“异染粒和PHB颗粒染色”定性观察,与“强化吸释磷试验”定量测定,简便快捷地筛选得到一株胞内同时具有PHB颗粒和异染颗粒的高效聚磷菌。结合培养形态观察、生理生化特征分析和16S rDNA分子生物学技术,鉴定该聚磷菌为鲍曼不动杆菌,并命名为Acinetobacter baumannii LB4。
     (2)通过综合考察稳定运行的PHB积累系统受起始pH和温度的影响发现:控制起始pH中性偏碱,有利于菌体合成PHB,pH8.0时PHB合成量最大为229.6 mg·L~(-1);调节温度30~35℃,细胞干重和PHB合成量均达到最大值,分别为1264.6 mg·L~(-1)和268.1 mg·L~(-1),且温度不是其限制因素。
     不同起始pH长期驯化的试验中,NaAc吸收速率、PO_4~(3-)-p厌氧释放和好氧吸收量及其快速代谢速率、PHB厌氧合成和好氧分解量及其快速代谢速率等7个指标均随pH的升高而增加。其中,厌氧结束时菌体胞内PHB含量由pH6.5的191.6 mg·L~(-1)增加到pH 8.0时的233.5 mg·L~(-1)。初始pH对PHB合成的影响主要作用在PO_4~(3-)-p快速释放速率上。
     不同温度长期驯化的试验中,除PO_4~(3-)-p的厌氧释放量和好氧吸收量未随温度呈现规律性变化外,其余5个指标均随温度升高而增加。其中,厌氧结束时菌体胞内PHB含量由20℃的179.3 mg·L~(-1)增加到35℃时的269.2 mg·L~(-1);PHB积累量与吸磷量和释磷量的差值正向相关。温度对PHB合成的影响主要作用在NaAc吸收速率上。分析可知,PO_4~(3-)-p快速释放速率影响NaAc吸收速率,进而引起PHB快速合成速率的差异,最终导致厌氧PHB积累量的不同。
     (3)在不同初始碳源浓度长期驯化的试验中,聚磷菌A.baumannii LB4积累PHB量和积累到峰值所用的时间均随初始碳源浓度的提高而增加。分析PHB合成的整个过程,COD_(4000)系统内PHB的浓度最大,为623.6 mg·L~(-1);COD_(500)系统中碳源转化率以及PHB合成速率最高,分别为41.2%和175.2 mg·L~(-1)·h~(-1);而采用COD为2000 mg·L~(-1)的碳源浓度可以驯化出积累PHB质量分数最高的菌株,可占细胞干重27.6%。根据染色观察及现有理论推测得知,本试验中NaAc吸收受阻及PHB合成中断的现象是由于菌体内糖原耗舅鸬摹?
     在不同营养条件长期驯化以及短期改变的试验中,发现通过营养平衡的主体反应器驯化得到能够正常生长并积累PHB较多的微生物种群;再采用批式补料方式短期限制营养条件对其进行单独处理,更有利于促进PHB积累量和质量分数的提高,分别可达528.6mg·L~(-1)和32.6%。
     (4)通过正交试验对PHB提取参数进行优化,得到最佳操作条件为:萃取温度50℃、萃取时间120 min、NaClO/CHCl_3(V/V)为1/1、CHCl_3为10 mL、干细胞重100 mg;提取的PHB可占细胞干重的33.2%。其中NaClO和CHCl_3体积比对PHB提取量具有显著影响,随NaClO/CHCl_3(WV)降低,PHB提取量增加。
     (5)通过紫外吸收光谱、红外光谱和元素分析等手段对提取所得PHB样品的化学结构进行表征,并与标准品比较。结果表明:提取所得样品在紫外吸收光谱215 nm处有巴豆酸共轭羰基的特征峰;在傅利叶红外光谱1723 cm~(-1)具有羰基伸缩振动引起的特征峰;并且样品的C、H元素质量百分比与理论计算值接近。综合上述结果,可鉴定从聚磷菌A.baumannii LB4胞内提取获得的薄膜状物质为聚-β-羟基丁酸。
There has been considerable in the development and production of biodegradable polymer to solve the current problem of pollution caused by the continuous use of synthetic polymer of petroleum origin.Poly-β-hydroxybutyrate(PHB) are known to be accumulated as intracellular inclusion in some bacteria,which is a close substitute for the synthetic plastic.The high cost of PHB production has restricted its application.
     This study investigates the PHB storage behavior of a poly-phosphate accumulating organism(PAO) under different growth conditions in detail.Pure culture studies in batch-growth systems were conducted in shake-flasks,using chemically defined growth media with acetate as the sole carbon source.This batch-growth system with anaerobic-aerobic cycles and varying conditions,similar to enhanced biological phosphorus removal processes(EBPR), was also employed.This paper also highly reports the advances of PHB extraction methods from cell and the PHB analytical methods.Therefore,it is a new way for PHB synthesis,which also develops a novel pathway for the reclamation of residual sludge.
     The results of this research can be summarized as follows:
     (1) Firstly,the enrichment and cultivation of poly-phosphate accumulating activated sludge were studied in a set of sequencing batch reactor(SBR) system,under A/O condition. 30 days later,the both removal rates of ammonium and phosphate were higher than 80%.Then, separation 36 strains were isolated from the activated sludge.One of them with high levels of phosphate uptake and release activities,combined poly-P and PHB granules microscopic staining,was confirmed and named LB4.
     Based on the morphological appearances,physiological and biochemical characteristics, together with analysis of 16S rDNA sequence,the activated-sludge bacterium(LB4) were identified as Acinetobacter baumannii.
     (2) In this part of the study,the effects of initial pH and temperature on the storage metabolism of A.baumannii,under repeated anaerobic-aerobic cycles on the batch growth, were investigated.
     Acinetobacter baumannii LB4 was acclimated for a long term with higher initial pH could store more PHB and release more phosphorus in the anaerobic phase,and degraded more PHB and accumulate more polyphosphate in the following aerobic phase.At the same time,the initial metabolism rate of acetate,phosphorus and poly-β-hydroxybutyrate would be faster.
     The acetate-utilization and PHB-storage behavior of Acinetobacter baumannii LB4 acclimated for a long term with higher temperature was similar to those in higher initial pH. Result also shows that,LB4's PHB storage capability was could be described with the PHB content of the cells with respect to was closely related to phosphorus removal amount.
     Effects of carbon concentration and nutrient deficiency on the PHB of the batch-growth systems are studied.With 673.6 mg·L~(-1),1355.4 mg·L~(-1),2694.6 mg·L~(-1) and 5393.3 mg·L~(-1) initial sodium acetate,the maximum PHB content of dry biomass were 12.91%,20.83%, 27.60%and 24.91%respectively,while carbon translating ratios were 41.2%,38.5%,33.3% and 22.0%.During the first 120 min of anaerobic phase,PHB forming rate were 175.2 mg·L~(-1)·h~(-1),153.8 mg·L~(-1)·h~(-1),123.9 mg·L~(-1)·h~(-1) and 114.3 mg·L~(-1)·h~(-1).The influence of nutrient deficiency on the storage metabolism of A.baumannii under repeated anaerobic-aerobic cycles on the batch growth was not evident.
     (3) Orthogonal experimental design was applied to optimize the extraction condition PHB from microorganism.The optimized parameters of extracting PHB were as follows:method of extraction strain Acinetobacter baumannii LB4:the extraction temperature 50℃,the extraction time 2 h,the volume ratio of sodium hypochlorite and chloroform 1:1,the liquid volume of chloroform 10 mL,and the dry biomass 100 mg.The extraction yield of PHB under these parameters was 33.2 mg(per 100 mg CDW).
     Ultraviolet spectrum,infrared spectrum,and elementary analysis were utilized for the characteristics of PHB structure.
引文
[1]朱博超,焦宁宁.生物降解脂肪族聚酯合成技术进展[J].合成纤维,2003,32(6):9-12
    [2]Sudesh K.,Abe H.,Doi Y..Synthesis,structure and properties of polyhydroxyalkanoates:biological polyesters[J].Progress in Polymer Science,2000,25(10):1503-1555
    [3]Lin H.R.,Kuo C.J.,Lin Y.J..Synthesis and characterization of biodergradable polyhydroxy butyrate-based polyurethane foams[J].Journal of Cellular Plastics,2003,39(2):101-116
    [4]任杰.可降解与吸收材料[M].北京:化学工业出版社,2003,79-81
    [5]洪葵,陈国强.羟基丁酸及中链羟基脂肪酸共聚物的微生物合成[J].微生物学通报,1998,25(2):10-11
    [6]田忆凯,侯丽英,俞晓东.国外生物降解聚合物应用现状[J].上海化工,1999,24(5):28-30
    [7]陈建海,陈志良.聚羟基丁酸酯缓释微球的制备及性能[J].功能高分子学报,2000,13(1):61-64
    [8]清华大学.聚羟基脂肪酸酯及其共聚物制成的血管支架及其制备方法[P].CN1410133A.2003-04-16
    [9]Tatiana V.,Ekaterina S.,Viktor S.,et al.Results of biomedical investigations of PHB and PHB/PHV fibers[J].Biochemical Engineering Journal,2003,16(2):125-133
    [10]Chen Guo-Qing,Wu Qiong.The application of polyhydroxyalkanoates as tissue engineering materials[J].Biomaterials,2005,26(33):6565-6578
    [11]欧国敏.聚羟基丁酸酯引导即刻植入种植体周围骨组织再生的研究[J].华西口腔医学杂志,2000,18(4):215-219
    [12]Carrera S.M.A..,Garcia P.J.M.,Garcia S.J.V.,et al.Selection and interation of biomaterials used in the construction of cardiac bioprostheses[J].Journal of biomedical materials research,1998,39(4):568-574
    [13]杨青,贺青.微生物发酵聚羟基烷酸(PHA)研究进展[J].工业微生物,1997,(4):44-47
    [14]陈国强,张广,赵锴,等.聚羟基脂肪酸酯的微生物合成、性质和应用[J].无锡轻工大学学报,2002,21(2):197-208
    [15]祁红兵,曹国清.聚-β-羟基丁酸酯(PHB)的研究及应用前景[J].信阳师范学院学报(自然科学版),2005,18(1):121-124
    [16]刘宝全,蒋本国.聚-β-羟基丁酸(PHB)的研究进展[J].大连民族学院学报,2000,2(4):15-20
    [17]Bruce A.R.,Juliana A.R.,David C.G..Production of Poly-β-Hydroxyalkanoic Acid by Pseudomonas cepscia[J].Applied and Environmental Microbiology,1989,55(3):584-589
    [18]于慧敏,沈忠耀.可生物降解塑料聚-β-羟基丁酸酯(PHB)的研究与发展[J].精细与专用化学品,2001,9(8):11-14
    [19]杨宇,徐爱玲,张燕飞,等.生物合成材料聚β-羟基丁酸(PHB)的研究进展[J].生命科学研究,2006,11(S3):61-67
    [20]陈国强,吴琼.生物可降解塑料—聚羟基脂肪酸酯(PHA)的生产技术研究[J].精细与专用化学品.2001,9(18):22-25
    [21]苏涛,周河治,梁静娟.微生物合成可降解塑料聚羟基链烷酸(PHA)[J].工业微生物.1997,11(3):37-44
    [22]杨金水.提高GY3细菌发酵生产PHAs的工艺条件研究[D].西北大学硕士论文,2001:6-11
    [23]Shilpi K.,Ashok K.S..Recent advances in microbial polyhydroxyalkanoates[J].Process Biochemistry,2005,40(2):607-619
    [24]Wang Y.J.,Hua F.L.,Tang Y.R,et al.Synthesis of PHAs from waster under various C:N ratios[J].Bioresource Technology,2007,98(8):1690-1693
    [25]Beom S.K..Production of Poly(3-hydroxybutyrate) from inexpensive substrates[J].Enzyme and Microbial Technology,2000,27(10):774-777
    [26]陈琦,易祖华,黄和容.利用葡萄糖发酵产聚β-羟基丁酸菌株的选育[J].微生物学通报,1994,21(6):333-335
    [27]Shilpi K.,Srivastava A.K..Repeated batch cultivation of Ralstonia eutropha for poly(β-hydroxybutyrate) production[J].Biotechnology Letters,2005,27(18):1401-1403
    [28]Helm J.,Wendlandt K.D.,Rogge G,et al.Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system[J].Journal of Applied Microbiology,2006,101(2):387-395
    [29]Salehizadeh H.,M.C.M.Van Loosdrecht.Production of polyhydroxyalkanoates by mixed culture:recent trends and biotechnological importance[J].Biotechnology Advances,2004,22(3):261-279
    [30]林东恩,张逸伟,郭世骚,等.活性污泥好氧/厌氧合成聚-3-羟基丁酸酯[J].华南理工大学学报(自然科学版),2002,30(9):100-104
    [31]吴光学,管运涛.生物积累PHB的紫色非硫光和细菌方法和活性污泥法研究[J].给水排水,2005,31(10):115
    [32]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002:343-344
    [33]Comeau Y,Hall K.J.,Hancock R.E.W.,et al.Biochemical model for enhanced biological phosphorus removal[J].Water Research,1986,20(12):1511-1521
    [34]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,2003:257-260
    [35]罗固源,许晓毅,罗宁.从细菌的生化特性看生物脱氮与生物除磷的关系[J].重庆环境科学,2003,25(5):33-35
    [36]周可新,许木启,曹宏.生物除磷活性污泥系统微生物学研究进展[J].应用与环境生物学报,2005,11(5):638-641
    [37]Zheng J.W.,Ran W.,et al,Research advance in polyphosphate-accumulating microorganisms in enhanced biological phosphorus removal process[J].The journal ecoligy,2004,15(8):1487-1490
    [38]Mino T.,Heijnen J.J..Microbiology and biochemistry of the enhanced biological phosphate removal process[J].Water Research,1998,32(11):3193-3207
    [39]吴光学,管运涛,蒋展鹏,等.强化生物除磷的机理模型研究进展[J].环境污染与防治,2004,26(4):259-263
    [40]杨幼慧,伍朝晖,钟士清,等.食品工厂活性污泥积累生物降解塑料PHA的研究[J].食品与发酵工业,2002,28(8):5-8
    [41]Adeline S.M.,Hiroo T.,Hiroyasu S.,et al.Production of polyhydroxyalkanoates(PHA)by activated sludge treating municipal wastewater:effect of pH,sludge retention time (SRT),and acetate concentration in influent[J].Water Research,2003,37(15):3602-3611
    [42]Kumar M.S.,Mudliar S.N.,Reddy K.M.K.,et al.Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant[J].Bioresource Technology,2004,95(3):327-330
    [43]马文漪,杨柳燕.环境微生物工程[M].南京:南京大学出版社,1998,187-188
    [44]Toshiyuki N.,Mayumi N.,Koji S.,et al.Photometric estimation of intracellular polyphosphate content by staining with basic dye[J].Analytical Sciences,2001,17(9):i1675-i1678
    [45]R.E.布坎南,N.E.吉本斯,等.伯杰氏细菌鉴定手册[M].中国科学院微生物研究所.第八版.北京:科学出版社,1984:636-669
    [46]东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].北京:科学出版社,2001:144-147 354-379
    [47]周德庆.微生物实验手册[M].上海:上海科学技术出版社,1983:47-49
    [48]Ausubel F M.,Brent R.,Kingston R.E.,et al.精编分子生物学实验指南[M].颜子颖,王海林.北京:科学出版社,1998,13-50
    [49]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南[M].黄培堂.第三版.北京:科学出版社,2002:1565-1594
    [50]陈德富,陈喜文.现代分子生物学实验原理与技术[M].北京:科学出版社,2006:60-65
    [51]Hemant J.P.,Atya K.,Aditi A.M.,et al.A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected from different biological effluent treatment plants[J].Jouranl Microbiological Methods,2003,52(3):315-323
    [52]Thompson J.D.,Gibson T.J.,Plewniak R,et al.The CLUSTAL-X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Research,1997,25(24):4876-4882
    [53]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002:246-249
    [54]高尚,戴兴春,陈曦,等.PHB监测A~2/O工艺除磷及负荷率耦合关系的研究[J].环境科学,2008,29(11):3093-3097
    [55]王海燕,周岳溪,蒋进元.强化生物除磷系统的微生物种群及其表征技术[J].微生物学通报,2005,32(1):118-122
    [56]梁亮.G7_y菌株生产的PHAs提取工艺方法及降解特性研究[D].西北大学硕士论文,2001:25-28
    [57]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境.2002,11(6):575-578
    [58]Dionisi D.,Majone M.,Papa V.,et al.Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding[J].Biotechnology and Bioengineering,2004,85(6):569-578
    [59]Beun J.J.,Paletta R.Stoichiometry and kinetics of poly-β-hydroxybutyrate metabolism in aerobic,slow growing,activated sludge[J].Biotechnology and Bioengineering,2000,67(4):379-389
    [60]Philip L.,Jurg K.,Linda L.,et al.Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal.A possible mechanism of intracellular pH control[J].Biotechnology and Bioengineering,1999,63(5):507-515
    [61]Jones D.T,Woods D.R..Acetone-butanol fermentation revisited[J].Microbiology and Molecular Biology Reviews,1986,50(9):484-524
    [62]田淑媛,王景峰,杨睿,等.厌氧下的PHB和聚磷酸盐及其生化机理研究[J].中国给水排水,2000,16(7):5-7
    [63]Fuhs G W.,Chen M..Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J].Microbial Ecology,1975,2(11):119-138
    [64]Daigger G T,Grady C.L.P..The dynamics of microbial growth on soluble substrates.A unifying theory[J].Water Research,1982,16(4):365-382
    [65]吴光学,管运筹.SRT及碳源浓度对厌氧/好氧交替运行SBR工艺中PHB的影响[J].环境科学,2005,26(2):126-130
    [66]Luisa S.S.,Paulo C.L.,Rui O.,et al.Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions[J].Biotechnology and Bioengineering,2004,87(2):145-160
    [67]龙妮.从生物法强化除磷后的剩余污泥中提取聚羟基脂肪酸酯的研究[D].华南理工大学硕士论文,2004:65-66
    [68]Beun J.J.,Dircks K..Poly-β-hydroxybutyrate metabolism in dynamically feed mixed cultures[J].Water Research,2002,36:1167-1180
    [69]Romanski J.,Heider M.,Wiesmann U..Kinetics of anaerobic orthphosphate release and substrate uptake in enhanced biological phosphorus removal from systhetic wastewater[J].Water Research,1997,31(12):3137-3145
    [70]Smolders G.J.F.,J.van der Meij,M.C.M.van Loosdrecht,et al.Model of the anaerobic metabolism of the biological phosphorus removal process:Stoichiometry and pH influence[J].Biotechnology and Bioengineering,1994,43(6):461-470
    [71]Brdjanovic D.,M.C.M.van Loosdrecht,Hooijmans C.M.,et al.Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus-accumulating microorganisms[J].Applied Microbiology Biotechnology,1998,50(8):273-276
    [72]Maurer M.,Gujer W.Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems[J].Water Research,1997,31(4):907-917
    [73]郑裕东,钟青华,马文石,等.厌氧/好氧驯化活性污泥生物合成的研究[J].环境科学研究,2001,14(2):41-44
    [74]Hahn S.K.,Chang Y.K.,Kim B.S.,et al.Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform[J].Biotechnology and Bioengineering,1994,44(2):256-261
    [75]李礼尧,陈玲,王武.次氯酸钠应用于聚-β-羟基丁酸酯的提取[J].无锡轻工大学学报,1997,16(1):33-36
    [76]Hahn S.K.,et al.Recovery and characterization of poly(3-hydroxybutyric acid)synthesized in Alcaligenes eutrophus and recombinat Escheria coli[J].Applied and Environmental Microbiology,1996,61(1):34-39
    [77]李小玲,张海洋,张皓,等.表面响应曲面法优化微生物中聚β-羟基丁酸酯提取条件的研究[J].分析化学研究简报,2007,35(3):419-422
    [78]Naumann D.,Fijala V.,Labischinsk H.,et al.Microbiological characterizations by FR-IR spectroscopy[J].Nature.1991,351(2):81-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700