生物可降解聚丁二酸丁二醇—共—对苯二甲酸丁二醇酯(PBST)纤维的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着固体废弃物所带来的环境污染问题的日益严重,生物可降解高分子材料越来越引起人们的重视。脂肪族/芳香族共聚物结合了脂肪族聚酯的生物可降解性能和芳香族聚酯优良的机械性能已成为可降解材料中的研究热点,共聚酯聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)就是其中之一。目前,PBST共聚酯的研究仅限于薄膜,如能利用PBST共聚酯制备纤维,将极大地扩展其应用领域。在此背景下,本文通过缩聚反应合成PBST共聚酯,着重研究了PBST的流变性能、成纤性能,分析了纺丝工艺对PBST纤维的结构和性能的影响,成功研制出力学性能优良的PBST纤维,为PBST纤维工业化生产提供了理论依据和实践经验。
     首先,以对苯二甲酸二甲酯、丁二酸二甲酯、1,4-丁二醇为原料,以四异丙氧基钛为催化剂合成PBST共聚酯。通过氢谱核磁共振(~1H NMR)表明共聚物结构中芳香族BT链锻含量约为70%,与投料比例相近;凝胶渗透色谱仪(GPC)表明所合成的PBST共聚酯重均分子量分布在9×10~4~1.4x10~5;通过乌氏粘度计测试其特性粘度η分布在0.7~1.1dL/g;熔融指数测定仪测试其熔融指数MI分布在23~50/10min;采用密度梯度法测定共聚物密度ρ分布在1.28~1.29g/cm~3,为聚合物的应用提供了的重要参数。
     其次,利用差示扫描量热仪(DSC)、热重分析仪(TGA)、广角X衍射仪(WAXD)、偏光显微镜(POM)等研究了PBST共聚酯的热学及结晶性能,结果表明共聚物有良好的热性能,熔融温度T_m、热分解温度T_d分别可达180℃、380℃;共聚物为半结晶高聚物,有着近似PBT的晶体结构。利用毛细管流变仪分析了PBST共聚酯的流变性能,研究结果表明PBST的表观粘度随剪切速率的增加而降低,是典型的切力变稀型非牛顿流体;随着熔体温度的上升,表观粘度对剪切速率的依赖性下降;PBST熔体的粘流活化能随剪切速率的上升而降低,故其温度敏感性也随着剪切速率的上升而下降;在相同的剪切速率下,分子量越大,PBST熔体的剪切应力σ,表观粘度η_a和结构粘度指数△η增大,非牛顿指数n减小。
     通过对不同分子量PBST共聚物进行熔融纺丝实验,分析了分子量对PBST成纤性能的影响,研究并优化了PBST共聚酯的熔融纺丝工艺。研究结果表明,当PBST共聚酯重均分子量大于1.1×10~5时,纺丝稳定性好,成纤性能优良;PBST共聚物具有较宽的可纺温度范围,其中在210~225℃时最为合适;PBST纤维适合较高的纺速,纺速可达1000m/min;基于反复实验,探索PBST纤维较佳的后牵伸工艺为牵伸温度80℃,定型温度160℃,牵伸倍数在1.5~205。通过最优纺丝工艺所纺PBST纤维强度可达3.5cN/dtex。
     此外还利用脂肪酶PS(?)、活性污泥和不同pH值的磷酸盐缓冲溶液对PBST纤维进行了降解实验,通过对降解前后纤维的分子量、质量、强力、热性能及表面形态等的比较初步研究了PBST纤维的降解行为。结果发现:随着降解时间的延长,纤维样品的分子量、质量、单丝强力等呈现稳定的下降;PBST纤维降解速率几乎不受分子量的影响;PBST纤维只有在特定生物酶的环境中降解显著,在一般的酸碱环境中变化很小。
In recent years, biodegradable polymers have received more and more attention due to the global concern about the increasing synthetic nonbiodegradable waste pollution. Among them, aliphatic/aromatic copolymer is an important category for the balance of its biodegradability and physical properties. Poly (butylene succinate-co-butylene terephthalate) (PBST) just belongs to this kind of copolymers. In addition, there are increasing demands of biodegradable fibers in both agricultural and medical fields, however, all the researches on PBST focused on film samples until now. In the above cases, this investigation is expected to yield information on biodegradable fiber processing and resultant fiber properties.
     Firstly, the aliphatic/aromatic poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters with different molecular weight were efficiently synthesized from the starting materials of dimethyl succinate, dimethyl terephthalate and 1,4-butanediol in the presence of tetraisopropoxide titanium as the bulk polycondensation catalyst. ~1H NMR results proved the molar fraction of BT comonomers of the prepared products were almost 70%. GPC results showed that the weight average molecular weights (M_w) of the PBST copoyesters were in the range of 9×10~4~1.4×l0~5. In addtion the intrinsic viscosity was in the range of 0.7~1.1dL/g,melt index was in the range of 23~50g/10min and the density was in the range of 1.28~1.29g/cm~3, which were respectively determined by Ubbelohde, Melt indexer and Density-Gradient Technique. According to DSC, TGA and WAXD investigations, it was found that good thermal properties were entitled to PBST copolyesters, whose melting peak temperatures at about 180°C and decomposion temperatures at about 380°C, and the crystal structure of PBST similar as that of PBT. In order to study the spinnability, the rheological behavior of different molecular weights PBST copolyesters was investigated by capillary rheometer. The results showed that the apparent viscosity of PBST decreased with the increase of shear rate and temperature. The shear-thinning results indicated the PBST melts belonged to non-Newtonian pseudoplastic fluid. The flow activation energy of PBST decreased with the increasing of shear rate, so the sensitivity to temperature decreased. With the increase of temperature, structural viscosity index of PBST tended to decrease, however, the possibility of thermal decomposition increased. In the same shear rate, the higher molecular weight of PBST was, the larger shear stress, apparent viscosity and structural viscosity index were, but the smaller non-Newtonian index became.
     Furthermore the melt-spinning process of PBST copolymer was investigated as the key point. Based on the studies, the molecular weight plays a dominant role in spinnability of PBST. When the molecular weight exceeded 1.1×10~5, the PBST copolyesters appeared the good spinnability. Moreover, there was a wide range of melt-spinning temperature for PBST copolyesters and the optimum was 210~225°C. The mechanical properties of PBST fiber was improved by increasing take-up velocity, the optimum spinning speed was 1000m/min. From the experiments, the suitable drawn processing temperatures were selected for 80°C and heat-setting for 160°C. In the above parameters, the strength of last drawn PBST fibers can get maximum of 3.5cN/dtex.
     In addition the enzymatic degradation of PBST fiber was carried out in the presence of a lipase originated from Pseudomonas cepacia (Lipase PS(?)), activated sludge and other environment. The difference of molecular weight, strength, weight and the surface between the orignal and degraded fibers were studyed. The results showed that clearly degradation of PBST fiber was observed under enzymatic environment and the degradable rate was independent of the molecular weight of PBST fiber.
引文
[1] 野中矩仁.新素材 1996,2:19
    [2] 杨惠娣.国内外生物降解塑料标准化现状和动向.中国塑料1999,2:13~20
    [3] 苏家齐.Biopol细菌合成塑料.化工科技动态.1995,2,4
    [4] 陈礼跷,魏金芳,赵玲.利用甲壳素制取生物降解塑料的探讨.中国塑料.1996,2,6~7
    [5] Masahiko Okada. Chemical Synthesis of Biodegradable Polymers. Progress in Polymer Science. 2002(27): 87~133
    [6] 王学川,张铭让,魏玉娟.有机物的生物降解性及其检测.中国皮革,2001 (30):30~34
    [7] 任东.塑料的生物降解性及其检测方法.塑料工业,1994(2):65~67
    [8] 柏柳清,柏玉莲,聚合物生物降解AS7M测试中的问题及其标准测试方法.塑料.1995,(24):45~48
    [9] 郭大成、王文科.聚酯纤维科学与工程.北京,中国纺织出版社,2003,6
    [10] 戈进杰,生物降解高分子材料及其应用.北京,化学工业出版社,2002,268
    [11] 陈龙.聚羟基丁酸戊酸共聚酯(PHBV)/无机添加剂(有机添加剂)共混体系基本性能研究及其纺丝性能优化.[学位论文],上海,东华大学,2006
    [12] 黄发荣,环境可降解塑料的研究开发,材料导报,2000,14(7):40~44
    [13] MooreG. F, SaunderS. M. AdvancesinBiodegradablePolymers[M]. Shroshire, UK: RapraTechbologyLimited, 1997. 3~31
    [14] Moreno M, Magos F J, et al. Comparison of the performance of the Gea extxaeorporeel knot with the Roder extracorporeel knot and the classical knot. Surgieel Endoscopy. 2004, 18: 157~160
    [15] 王文举,宋婧怡.一种新型生物降解性高分子材料(PGA)合成进展研究.通话师范学院学报.2005,26(2):55~56
    [16] 杨庆,沈新元,郯志清等.聚乙交酯纤维纺丝工艺研究.合成纤维.2006,2,18~21
    [17] 魏淳,李光.聚乳酸纤维的发展过程及现状.产业用纺织品.2005,7,8~12
    [18] 王胜东.聚乳酸的合成与纺丝成形.[学位论文],上海,东华大学,2003
    [19] 徐超武,王雪华.聚乳酸(P L A)纤维的生产和开发应用.2006,1,26~28
    [20] 瞿丽曼,肖沪卫.聚乳酸领域国内外专利特点分析及我国发展对策.化工进展.2005,24(7),818~819
    [21] 任杰.可降解与吸收材料.北京.化学工业出版社.2003,90~95
    [22] 张幼维,吴承训,张斌,赵炯心.可生物降解纤维(下).纺织科学研究,2001,3.39~47
    [23] 俞昊,张瑜,朱美芳.生物可降解聚酯纤维进展。合成纤维.1999,28(2):33~38
    [24] Uniuka. Biodegradable Conjugate Monofilament and Its Production.1995, JP7278965, 1995/10/24
    [25] Unitika. Biodegradable Conjugate Monofilament. 1996, JP8144127, 1996/06/04
    [26] Unitika, Biodegradable Three-layered Conjugated Monofilament. 1996, JP8209453, 1996/08/13
    [27] Unitika. Biodegradable Laminated Nonwoven Structure. 1995, JP7109659, 1995/04/25
    [28] Unitika. Biodegradable Staple Fiber Nonwoven Fabric and Its Production. 1997, JP9013259, 1997/01/14
    [29] Unitika. Biodegradable Wet Nonwoven Fabric and Its Production. 1997, JP9310292, 1997/12/02
    [30] 中国科学院理化技术研究所.制备脂肪族二元酸二元醇酯的方法.中国.发明专利.142430,2001/12/12
    [31] 中国科学院理化技术研究所.制备聚丁二酸丁二醇酯的方法.中国.发明专利.1424339,2003/06/18
    [32] Okiwa, Y.: Suzuki, T. J Appl Polym Sci 1981, 26, 441
    [33] Tokiwa, Y.; Ando, T.; Suzuki, T.; Takeda, K. ACS Symp Ser 1990, 433, 136
    [34] Witt, U.; Muller, R. J.; Deckwer,, W. D. J Environ Polym Degrad 1995,, 3,, 215
    [35] Yamadera,, R.; Murano,, N. J Polym Sci 1967, 5, 2259
    [36] Devaux, J.; Godard, P.; Mercier,, J. P. J Polym Sci, Polym Phys Ed 1982, 20,, 1881
    [37] Briber, R. M.; Thomas, E. L. Polymer 1985, 26, 8
    [38] Zhu, I. L.; Wegner,, G. MacromolChem 1981, 182, 3625
    [39] 戈进杰,生物降解高分子材料及其应用.北京.化学工业出版社,2002
    [40] KiHC, ParkOO. Polymer 2001, 42, 1849—1861
    [41] Witt U, Muller RJ, Deckwer WD. JEnviron Polym Degrad 1997, 5, 81—89
    [42] Muller RJ, Kleeberg I, Deckwer WD. J Biotechnol 2001, 86, 87~95
    [43] Witt U, Muller RJ, Deckwer WD. JEnviron Polym Degrad 1997, 5, 81~89
    [44] Rantze E, Kleeberg I, Witt U, Muller RJ, Deckwer WD. Macromol Symp 1998, 130, 319—326
    [45] Muller RJ, WittU, RantzeE, DeckwerWD. PolymDegradStab 1998, 59, 203—208
    [46] 郭宝华,丁慧鸽,徐晓琳等.生物可降解共聚物聚丁二酸/对苯二甲酸丁二醇酯(PBST)的序列结构及结晶性研究.高等学校化学学报.2003(24):2312~2316
    [47] HondaN, TaniguchiI, MiyamotoM, etc. Macromol Biosci 2003, 3, 189—197
    [48] Li Faxue, Xu Xinjian, Hao Qinghui, etc. Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly (butylene succinate-co-butylene terephthalate)s. Journal of Polymer Science Part B: Polymer Physics 2006, 44, 1635~1644
    [49] Li Faxue, Zhang Haiyun, Yu Jianyong. Studies on sequential structure of the biodegradable poly ( butylene succinate-co-butylene terephthalate ) s (PBST). Proceedings of 2005 International Conference on Advanced Fibers and Polymer Materials (ICAFPM 2005) ) 2005, 2, 987~990
    [50] Li Faxue, Yin Lingzhi, Yu Jianyong. DSC study of thermal properties of biodegradable poly(butylene succinate-co-terephthalate)s. Journal of Donghua University2006, 23, 5—7
    [51] Sung Hyo Lee, Sung Wook Lira, Kwang Hee Lee. Properties of Potentially Biodegradable Copolyesters of (succinate acid—1, 4-butanediol) / (dimethyl terephthalate—1, 4—butanediol). Polymer Intenational, 1999 (48): 861~867
    [52] 邓力民.PBS及其共聚物的结构与表征.[学位论文],四川大学,2004
    [53] 李发学,成纤用生物降解聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)的合成及结构性能研究.[学位论文],东华大学,2006
    [54] 郭宝华,丁慧鸽,孙元碧.生物可降解聚丁二酸丁二醇醋及其共聚物的合成与性能.2002全国高分子材料工程应用研讨会论文集
    [55] 张阳德,曹兴生物.可降解材料的临床应用,中国现代医学杂志.2003,13(2)29~31
    [56] 辛银花.医疗缝合线用生物降解纤维.纺织科技进展.2005,3,17~21
    [57] 罗以喜.农用可生物降解纤维与织物.福建纺织.1999.(8).9
    [58] 赵耀明,麦杭珍.可生物降解聚乳酸非织造布.产业用纺织品.2001,(4).33
    [1] Yang J, Zhang SP, Liu XY, Cao. Polym Degrad Stab 2003, 81, 1—7
    [2] 冯新德等.饱和聚酯和缩聚反应.北京.科学出版社,1986
    [3] NagataM, GotoH, SakaiW, TsutsmiN. Polymer2000, 41, 4373—4376
    [4] Sung HL, Sung WL., Kwang HL. Polym Int 1999, 48, 861
    [5] Nozomi H, Ikuo T. Matsatoshi M, Yoshiharu K. Macromole Biosci 2003, 3, 189
    [6] 张师民.聚酯的生产及应用.北京.中国石化出版社,1997,346
    [7] 邓利民.PBS及其共聚物的合成与表征.[学位论文],四川大学,2004
    [8] FujinakiT. Polym Degrad Stab 1998, 59, 209—214
    [9] Mochizuki M, Mukai K, Yamada K. Macromoleculares 1997, 30, 7403—7407
    [10] IhnKJ, YooES, Im SS. Macromolecules 1995, 28, 2460—2464
    [11] Otton J, Ratton S, Vasnev V. J Polym Sci PartA: Polym Chem 1988, 26, 2199—2124
    [12] Ishihara K, Ohara S, YamamotoH . Science2000, 29, 1140
    [13] Giorgio M, Paola R. Polym Degrad Stab 2000, 70, 305—314
    [14] Cao AM, Okamura T, Ishiguro C, etc. Polymer 2002, 43, 671—679
    [15] Cao AM, Okamura T, Nakayama K, etc. Polym DegradStab 2002, 78, 107—117
    [16] Sung HL, Sung WL, Kwang HL. Polym Int 1999, 48, 861—867
    [17] Shirahama H, Kawaguchi Y, Aludin MS, etc. J Appl Polym Sci 2001, 80, 340—347
    [18] 张海云.可生物降解PBS的合成、表征、降解性研究及枝化改性.[学位论文],东华大学,2005
    [19] 何曼君,陈维孝,董西侠.高分子物理(修订版).上海.复旦大学出版社,1998
    [20] 赵藻藩,周性尧,张悟明等.仪器分析.高等教育出版社,北京.1998,109
    [21] 陈稀,黄象安.化学纤维实验教程.北京.纺织工业出版社,1988
    [1] 何曼君,陈维孝,董西侠.高分子物理(修订版).上海.复旦大学出版社,1998
    [2] 杨始昆等.聚酯化学物理工艺.中山大学出版社,1995,162—188
    [3] 李发学,成纤用生物降解聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)的合成及结构性能研究.[学位论文],东华大学,2006
    [4] 董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(第二版,上册).北京.中国纺织出版社,1996,98—99
    [5] 张美珍,柳百坚,谷晓昱,聚合物研究方法.北京。中国轻工业出版社.2001,68—78
    [6] IhnKJ, YooES, ImSS. Macromolecules 1995, 28, 2460
    [7] Iehikawa Y, Kondo H, Igarashi Y. Polymer 2000, 41, 4719—4727
    [8] Briber RM, Thomas EL. Polymer 1985, 26, 8
    [9] 陈稀,黄象安.化学纤维实验教程.上海.东华大学出版社,2000,29—38
    [10] 马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能.北京.科学出版社.1999年1月,122—126
    [11] 李文刚,戴钧明,黄象安.PET-PBT共聚酯的流变性能的研究.合成纤维.2001,30(4),13—15
    [12] 金日光,华幼卿.高分子物理.北京.化学工业出版社.1991,195—205
    [13] 沈新元,高分子材料加工原理.北京.中国纺织工业出版社.2002,135—40
    [14] 陈克权,张伟,张飚.聚对苯二甲酸丙二酯熔体拉伸流变性能研究.合成纤维.2003,6:19
    [15] 臧昆,臧己.纺丝流变学基础.北京.纺织工业出版社.1993
    [1] 董纪震,罗鸿烈,王庆瑞等.合成纤维生产王艺学(第二版,下册).北京.中国纺织出版社,1996,98—99
    [2] Uniuka. Biodegradable Conjugate Monofilament and Its Production. 1995. JP7278965, 1995/10/24
    [3] Unitika. Biodegradable Conjugate Monofilament. 1996, JP8144127, 1996/06/04
    [4] Unitika, Biodegradable Three-layered Conjugated Monofilament. 1996, JP8209453, 1996/08/13.
    [5] Unitika. Biodegradable Laminated Nonwoven Structure. 1995, JP7109659, 1995/04/25
    [6] Unitika. Biodegradable Staple Fiber Nonwoven Fabric and Its Production. 1997, JP9013259, 1997/01/14
    [7] 王鹏,聚羟基丁酸戊酸共聚酯(PHBV)/无机添加剂(有机添加剂)共混体系基本性能研究.[学位论文],东华大学,2005
    [8] 陈稀,黄象安.化学纤维实验教程.北京.纺织工业出版社.1988,201—205
    [9] 郭大成,王文科.聚酯纤维科学与工程.北京.中国纺织出版社.2003,20—23
    [10] 董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(第二版,上册).北京.中国纺织出版社,1996,98—99
    [1] Witt U, Muller R J, Deckwer WD. JEnviron Polym Degrd 1996, 4, 9
    [2] Kleegerg I, Hetz C, Kroppenstedt RM, etc. Appl Environ Microbiol 1998, 64, 1731
    [3] Muller RJ, Kleegerg I, Deckwer WD. JBiotechno12001, 86, 87
    [4] WittU, EinigT, YamamotoM, KleegergI, etc. Chemosphere 2001, 44, 289
    [5] Honda N, Taniguchi I, Miyamoto M, etc. Macromol Biosci 2003, 3, 189—197
    [6] 戈进杰,生物降解高分子材料及其应用.化学工业出版社.北京,2002
    [7] 张海云.可生物降解PBS的合成、表征、降解性研究及枝化改性.[学位论文],东华大学,2005
    [8] Field RD, RodriguezF, Film RK. JApplPolym Sci 1974, 18, 3571--3579
    [9] Tokiwa Y, Jarerat A. MacromolSymp2003, 20, 283—290
    [10] Song DK, Sung YK. J Appl Polym Sci 1995, 56, 1381—1395
    [11] Marija SN, Jasna D. Polym DegradStab 2001, 74, 263—270
    [12] MochizukiM, MukaiK, YamadaK, etc. Macromolecules 1997, 30, 7405
    [13] Cook WJ, Cameron JA, Bell JP, etc. J Polym Sci Polym Lett Ed 1989, 19, 159—165
    [14] Huang JC, Shetty AS, Wang MS. Adv Polym Technol 1990, 19, 23
    [15] Jarrett P, Huang SJ, Bell JP, etc. Org Coat Appl Polym Sci Proc 1982, 47, 45
    [16] Zhao JH, Wang XQ, Zeng J, etc. Polym Degrad Stab 2005, 90, 178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700