聚磷菌的筛选及其体内聚磷酸盐推动PHB积累的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PHB是细菌在不利于生长和营养失衡的条件下胞内大量积累的聚羟基酯。其作为合成聚合物的替代品具有很多优点,它不仅具有可生物降解性和生物相容性,而且还能以可再生资源作为生产原料。
     本研究以污水处理厂的活性污泥为样品,从中筛选出三株高效聚磷菌。对此三株菌从形态特征、生理生化指标、16SrDNA三方面进行鉴定,确认此三株聚磷菌分别为鲍氏不动杆菌(Acinetobacter baumannii)、Pseudochrobactrum saccharolyticum、荧光假单胞菌(Pseudomonas fluorescens),并将三株菌分别编号为YPS-1、YPS-2和YPS-3。
     选取聚磷菌YPS-2进行聚磷培养基及培养条件的优化。本试验设计好氧/厌氧两段式工艺进行微生物胞内合成与积累聚-β-羟基丁酸(PHB)。以菌体生长和聚磷能力为指标,通过摇瓶培养发酵,对培养基中碳源、氮源和磷源进行优化,试验确定的碳源为CH_3COONa、氮源为(NH_4)_2SO_4、磷源为KH_2PO_4。通过单因子试验、正交试验对好氧阶段菌体生长及聚/释磷条件进行优化,得到对聚磷菌YPS-2聚磷的最适培养基成分及其浓度为:碳源浓度1%、氮源浓度0.1%、磷源浓度100 mg/L;最佳条件为:培养基初始pH值为7、培养温度为30℃、接种量为10%、培养时间为72h。优化的聚磷条件为典型周期的研究提供了理论基础。
     厌氧培养营养成分对菌体释磷及PHB的积累有重要影响,通过对四种营养条件(缺N、缺P、缺N、P、全营养)下,菌体生长、释磷率、PHB积累情况的研究,发现营养均衡有利于菌体生长,但缺少氮源和磷源的培养有利于菌体释磷和PHB的积累,充分说明PHB需在不平衡生长条件下得以积累。
     好氧/厌氧典型周期中菌体在好氧阶段生长旺盛,厌氧阶段基本不生长;聚磷量和释磷量则随时间的增加而增加,但厌氧释磷需时较长。聚磷量、释磷量、单位质量干细胞中PHB所占比重与时间均存在一定的线形关系,随时间的增加而增加,但其增加幅度各有不同。在最佳发酵条件下,经好氧/厌氧交替培养后菌体聚磷量超过70mg/L、释磷量超过45mg/L、单位质量干细胞中PHB所占比重达55%以上。较好地实现了生物除磷与PHB的积累。
     为了提高PHB产率,对收集的菌体进行预处理发现SDS/EDTA混合液具有较好的破壁效果。通过正交试验优化PHB提取条件,优化结果为:NaClO浓度为30%、NaClO/CCl_4(V/V)=3:1、温度为40℃、时间为24h。与未优化前的PHB产率相比,优化后PHB大幅提高,大约为优化前的2倍。样品与标准品的红外分析光谱表明,样品中含有PHB,为进一步PHB的提取与定性分析提供了参考。
Poly-β-hydroxybutyrate(PHB) is a group of polyesters produced and naturally accumulated by a large number of bacteria as intracellular granules in response to unfavorable growth conditions and nutrient imbalance.Poly-β-hydroxybutyrate represent an interesting alternative to synthetic polymers due to many advantages.Not only they are biodegradable and biocompatible,but they can also be produced from renewable resources.
     This study was conducted by using the activated sludge from sewage treatment plant as a simple,three effective phosphate-accumulating organisms(PAOs) were screened.The identification of these PAOs according to their physiological,biochemical properties and 16SrDNA gene sequence,the result showed that they are Acinetobacter baumannii, Pseudochrobactrum saccharolyticum,Pseudomonas fluorescens,the strains number are YPS-1, YPS-2,YPS-3.
     YPS-2 was selected to continue the experiments of optimization.Aerobic/anaerobic twostage craft were designed for PHB compound and accumulation.Take cell growth and phosphorus accumulate rate as indicators,the experiment was advanced through the shake flask fermentation,the optimal results were as follows:carbon source is CH_3COONa,nitrogen source is(NH_4)_2SO_4,phosphorus source is KH_2PO_4.Under the aerobic stage,cell growth and phosphorus accumulate/release rate were investigated using the single-factor experiment and the orthogonal design experiment method.The optimal medium concentration was as follows: carbon source is 1%,nitrogen source is 0.1%,phosphorus source is 100 mg/L.The optimal culture conditions were as follows:medium pH value is 7,the temperature is 30℃,for 10%of volume,incubation time is 72h.The result of phosphorus accumulate conditions provides a theoretical basis for research of typical cycle.
     It is important for phosphate release and PHB in anaerobic culture.The study of cell growth,phosphorus release rate and PHB accumulation under four nutritional conditions(limit N,limit P,limit N and P,complete nutrition),found that the nutritional balance in favor of cell growth,but the condition,lack of nitrogen and phosphorus is conducive to phosphate release quantity and the accumulation of PHB.This shows that,PHB needs to be accumulated in the unbalanced growth conditions.
     During the aerobic/anaerobic bacterial growth with a typical cycle,YPS-2 grows strongly, while it has almost no growth in anaerobic stage.Phosphorus accumulation and phosphorus release increased with time,but the anaerobic phosphorus release will take longer.There are certain linear relations among phosphorus,PHB and time,they are increased with time,but the slopes of them were not same.Under the aerobic/anaerobic alternating optimum conditions, accumulation of phosphorus more than 70mg/L,phosphorus release more than 45mg/L,the quality of stem cell units in the proportion of PHB more than 55%.It better achieved biological phosphorus removal and accumulation of PHB.
     In order to improve the production of PHB,make the cells pre-treatment,found that SDS/EDTA mixture more effective than others.Conditions of PHB extraction were investigated using the orthogonal design experiment method.The optimal conditions were as follows:concentration of NaClO is 30%,NaClO/CCl_4(V/V)=3:1,temperature is 40℃,time is 24h.Compared with the non-optimized,the production of PHB increased significantly,it is two times the size of former.Infrared spectrum analysis for Samples and standards show that samples containing PHB,the result can be used to further qualitative analysis and improve the yield of PHB.
引文
[1]王禧.内外降解塑料的现状及发展方向.江苏化工,2002,30(1):7-11
    [2]张帅,辛嘉英,王冬梅.生物可降解塑料聚β-羟基丁酸酯的研究进展.科技资讯,2008,3:7
    [3]杨宇,徐爱玲,张燕飞,等.生物合成材料聚β-羟基丁酸(PHB)的研究进展.生命科学研究,2006,10(4):61-67
    [4]Shalini Porwal,Tarika Kumar,Sadhana Lal,et al.Hydrogen and Polyhydroxybutyrate Producing Abilities of Microbes from Diverse Habitats by Dark Fermentative Process.Bioresource Technology.2008,99:5444-5451
    [5]林翠花.可降解塑料的研究进展.潍坊学院学报,2006,6(4):78-81
    [6]庄国强,李爱英,文欣,等.利用Do-stat 补料分批培养的方法积累聚-β-羟基丁酸的研究.环境科学学报,1999,19(1):6-10
    [7]俞文灿.可降解塑料的应用、研究现状及其发展方向.中山大学研究生学刊(自然科学、医学版),2007,28(1):22-32
    [8]Elodie Hablot,Perrine Bordes,Eric Pollet,et al.Thermal and Thermo-mechanical Degradation of Poly(3-hydroxybutyrate)-based MultipHase Systems.Polymer Degradation and Stability.2008,93:413-421
    [9]Serafim L.S.,Lemos P.C.,Oliveira,et al.Optimization of Polyhydroxybutyrate Production by Mixed Cultures Submitted to Aerobic Dynamic Feeding Conditions.Biotechnology and Bioengineering.2004,87:145-160
    [10]汤桂兰,花日茂,孙振钧,等.高效聚磷菌的诱变选育及特性研究.激光生物学报,2006,15(4):413-417
    [11]Foster L.J.R.,Zervas S.J.,Lenz R.W.,et al.The Biodegradation of Poly-3-hydroxyalkanoates,PHAs,with Long Alkyl Substituents by Pseudomonas maculicola.Biodegradation.1995,6:67-73
    [12]Tagushi K,Tagushi S,Sudesh K,et al.Metabolic Pathways and Engineering of PHA Biosynthesis.Biopolymers.Polyesters Ⅰ:biological systems and biotechnological production.Wiley-VCH Germany.2002,3:217-248
    [13]Reddy C.S.K.,Ghai R.,Rashmi,et al.Polyhydroxyalkanoates:an overview.Bioresource Technology.2003,87(2):137-146
    [14]Lee S.Y.,Park S.J..Fermentative Production of SCL-PHAs.In:Y.Doi and A.Steinb(u|¨)chel(eds.).Biopolymers.Wiley- VCH,Germany.2002,3:263-290
    [15]Delafield F.P.,Doudoroff M.,Paileroni N.J.,et al.Decomposition of Poly-β-hydroxybutyrate by Pseudomonas.J Bacteriol.1965,90:1455-1466
    [16]Huijberts G.V.M.,Eggink G Production of Poly(3-Hydroxylkanoates) by Pseudomonas-Putida Kt2442 in Continuous Culture.Applied Microbiology and Biotechnology.1996,46(3):233-239
    [17]Lee E.Y.,Jendrosse k.D.,Schirmer A.,et al.Biosynthesis of Copolyesters Consisting of 3-hydroxybutyric Acid and Medium-chain-length 3-hydroxyalkanoic Acid.Applied Microbiology and Biotechnology.1995,42(6):901-909
    [18]刘宝全,蒋本国.聚-β-羟基丁酸(PHB)的研究进展.大连民族学院学报,2000,2(4):15-20
    [19]祁红兵,曹国清.聚-β-羟基丁酸酯(PHB)的研究及应用前景.信阳师范学院学报(自然科学版),2005,18(1):121-124
    [20]Bruce A.R.,Juliana A.R.,David G.C..Production of Poly-β-Hydroxyalkanoic Acid by Pseudomonas cepacia.Applied and Environmental Microbiology.1989,55(3):584-589
    [21]周小红,陈洪斌,何群彪.除磷微生物和新型除磷工艺.四川环境,2006,25(4):1-5
    [22]Ryoko Yamamoto-Ikemoto,Saburo Matsui.Interactions between Filamentous Sulfur Bacteria,Sulfate Reducing Bacteria and Poly-Paccumulating Bacteria in Anaerobic-oxic Activated Sludge of a Municipal Plant.Water Science and Technology.1998,37(4-5):599-603
    [23]申沛,陈银广,张超.影响聚磷菌与聚糖菌竞争的关键因素研究进展.四川环境,2008,27(1):73-75
    [24]王暄,王景峰,季民,等.聚糖菌颗粒污泥的有机物吸收及胞内储存特性.中国环境科学,2005,25(5):597-601
    [25]Yagci N.,Artan N.,Cokgor E.U.,et al.A Metabolic Model for Acetate Uptake by a Mixed Culture of Phosphate and Glycogen Aaccumulating Organisms under Anaerobic Conditions.Biotechnol.Bioeng.2003,84(3):359-373
    [26]周栋,韩宝平.废水反硝化除磷技术应用研究进展.环境科学与管理,2008,33(3):104-106
    [27]刘小英,赵红梅,彭党聪,等.SBR中生物除磷颗粒污泥的反硝化聚磷研究.环境科学,2008,29(8):2254-2259
    [28]Tsuneda S,Ohno T,Soejima K,et al.Simultaneous Nitrogen and Phosphorus Removal Using Denitrifying Phosphate-accumulating Organisms in a Sequencing Batch Reactor[J].Biochemical Engineering Journal.2006,27(3):191-196
    [29]Van veen H.W.,Abee T,Kortstee G.J.,et al.Generation of a Proton Motive Force by the Excretion of Metal-phosphate in the Polyphosphate-accumulating Acinetobacter Johnsoni Strain 210A.J Biol Chem.1994,269(11):29509-29514
    [30]Damir Brdjanovic,Mark C.M.van Loosdrecht,Christine M.H.,et al.Minimal Aerobic Sludge Retention Time in Biological Phosphorus Removal Systems.Biotechnology and Bioengineering.1998,60(30):326-332
    [31]Schuler A.J.,Jenkins D.Enhanced Biological Phosphorus Removal from Wastewater by Biomass with Different Phosphorus Contents,Part Ⅰ:Experimental Results and Comparison with Metabolic Models.Water Environment Research.2003,75(6):485-498
    [32]Shilpi Khanna,Srivastava A.K..Recent Advances in Microbial Polyhydroxyalkanoates.Process Biochem.2005,40(2):607-619
    [33]Dionisi D.,Majone M.,Vallini G.,et al.Effect of the Applied Organic Load Rate on Biodegradable Polymer production by Mixed Microbial Cultures in a Sequencing Batch Reactor.Biotechnol Bioeng.2006,93(1):76-88
    [34]Largus T.A.,Khursheed K.,Muthanna H.Al-Dahhan,et al.Production of Bioenergy and Biochemicals from Industrial and Agricultural Wastewater.Trends in Biotechnology.2004,22(9):477-485
    [35]马文漪,杨柳燕.环境微生物工程.南京:南京大学出版社,1998:187-188
    [36]彭党聪,王志盈,袁林江,等.活性污泥系统非平衡增长理论及其应用.中国给水排水,2001,17(2):19-21
    [37]Helena Pereira,Paulo C.L.,Maria A.M.Reis,et al.Model for Carbon Metabolism in Biological Phosphorus Removal Processes Based on in vivo(13)~C-NMR Labeling Experiments.Water Research.1996,30(9):2128-2138
    [38]赵炜,王佰义,张晓华.生物合成聚羟基丁酸酯(PHB)的研究现状与应用前景.甘肃科技,2006,22(3):129-130
    [39]吴光学,管运涛,王剑秋,等.碳源及氮源对紫色非硫光合细菌积累PHB的影响.环境科学,2004,25(6):102-107
    [40]贺文楠,张增民,胡平.以葡萄糖为碳源合成生物降解性聚酯的研究.高分子学报,1999,6:709-714
    [41]许旭萍,陈接锋,李惠珍.SpHaerotilus natans FQ40 合成聚β-羟基丁酸(PHB)条件的研究.食品与发酵工业,2004,30(9):23-26
    [42]钱梓文,远山正幸,花强,等.溶氧振荡对聚羟基丁酸混合培养过程的调控作用.生物工程学报,2001,17(4):441-444
    [43]刘燕,行智强,陈银广,等.聚烃基烷酸转化对强化生物除磷影响研究.环境科学,2006,17(6):1103-1106
    [44]豆俊峰,罗固源,刘翔.生物除磷过程厌氧释磷的代谢机理及其动力学分析.环境科学学报,2005,25(9):1164-1169
    [45]黄建新,杨金水,卫阳.Z_5-G 菌生产聚 β-羟基丁酸发酵动力学模型.化学工程,2005,33(1):44-47
    [46]陈梅,刘长江,李长彪.发酵生产PHB动力学模型的研究.生物技术,2000,10(6):29-31
    [47]苏涛,石海平.微生物合成的聚羟基链烷酸在细胞内的积聚及提取.高分子材料科学与工程,1999,15:173-175
    [48]沈忠耀,尹进.从微生物细胞忠分离提取PHB的方法的综述.化工时刊,1997,11(5):40-45
    [49]许旭萍,陈接锋.球衣菌胞内聚-β-羟基丁酸提取方法的研究.生物技术通报,2006,3:68-72
    [50]魏大巧,陈国强.聚羟基脂肪酸酯的鉴定及检测方法研究进展.云南化工,2007,34(4):83-86
    [51]宋昭峥,赵密福.可降解塑料生产技术.精细石油化工进展,2005,6(3):13-20
    [52]蒋凌飞,胡平.生物可降解塑料PHB的压电性能及在骨移植中的应用.功能材料,2000,31(1):33-35
    [53]许开天,赵树杰.PHB在生物医学中的应用研究进展.应用与环境生物学报,1995,1(1):85-91
    [54]刘春,张小凡.PHB在生产可降解塑料方面的应用及其微生物累积的研究进展.塑料工业,2005,33(8):1-3
    [55]李文化,谢志雄,陈向东,等.聚-β-羟基丁酸(PHB)在细菌建立感受态中的作用.微生物学杂志,2002,22(6):30-33
    [56]国家环保总局.水和废水监测方法[M].北京:中国环境科学出版社,1998:280-286
    [57]李国红.高钙废水中总磷测定方法的改进.纯碱工业,2007,6:8-9
    [58]贾陈总,秦巧燕,姜婷.水样中磷酸盐测定方法的比较.现代农业科技,2007,15:207-209
    [59]李必龙.标准曲线的绘制.合成润滑材料,2006,33(2):17-19
    [60]蔡天明,管莉菠,崔中利,等.高效聚磷菌株GMl的分离和聚磷特性研究.土壤学报,2005,42(4):635-641
    [61]陈接锋,许旭萍,佘晨兴,等.合成聚β-羟基丁酸(PHB)鞘细菌的分离、鉴定、筛选.工业微生物,2003,33(4):23-26
    [62]祁红兵,陈钧.PHB高产菌株的选育.信阳师范学院学报(自然科学版),2007,20(1):48-51
    [63]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001:62-65 370-390
    [64]沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社,1999:28-123
    [65]罗固源,张瑞雪,王丹云,等.SUFR系统进水COD浓度对反硝化除磷的影响.重庆大学学报(自然科学版),2005,28(1):121-125
    [66]John H.L.,Ralph A.S..Assay of Poly-β-hydroxybutyfic Acid.J Bacteriol.1966,82(1):33-36
    [67]孙飞云,杨成永,李久义.SBR中不同基质对好氧颗粒污泥的性状影响研究.北京交通大学学报,2007,34(1):106-114
    [68]Avishek Nath,Swapna Bhat,Jayendra Devle,et al.Enhanced Production of 3-hydroxybutyric Acid(3-HB) by in vivo Depolymerization of Polyhydroxybutyric Acid in 3-HB Dehydrogenase Mutants of Methylobacterium sp.ZP24.Annals of Microbiology.2005,55(2):107-111
    [69]由阳,彭轶,袁志国,等.富含聚磷菌的好氧颗粒污泥的培养与特性.环境科学,2008,29(8):2242-2247
    [70]袁东海,任全进,高士祥,等.几种湿地植物净化生活污水COD、总氮效果比较.应用生态学报,2004,15(12):2337-2341
    [71]王春丽,马放,王强.一株耐低温反硝化聚磷菌的筛选及其特性研究.环境工程学报,2007,1(4):21-24
    [72]苗健,高琦,许思来.微量元素与相关疾病.郑州:河南医科大学出版社,1999:106-129
    [73]Thomas M.Keenan,Stuart W.Tanenbaum,Arthur J.Stipanovic,et al.Production and Characterization of Poly-β-hydroxyalkanoate Copolymers from Burkholderiacepacia Utilizing Xylose and Levulinic Acid[J].Biotechnology Progress.2004,20:1697-1704
    [74]何争光,温晓灿.葡萄糖为碳源时生物除磷系统的影响因素研究.郑州大学学报(工学版),2008,29(6):103-106
    [75]任南琪,吴永志,王秀蘅.新型反硝化脱氮除磷工艺及其影响因素的研究.哈尔滨商业大学学报,2006,22(6):20-24
    [76]曲波,刘俊新.活性污泥合成可生物降解塑料PHB的工艺优化研究.科学通报,2008,53(13):1598-1604
    [77]田淑媛,王景峰,杨睿,等.厌氧下的PHB和聚磷酸盐及其生化机理研究.中国给水排水,2000,16(7):5-7
    [78]郑裕东,钟青华,马文石,等.厌氧-好氧驯化活性污泥生物合成PHA的研究.环境科学研究,2001,14(2):41-44
    [79]杨青,贺青.聚羟基烷酸(PHA)的回收方法.工业微生物,1999,29(2):43-46
    [80]彭菊芳,董兆麟.一种提取聚-β-羟基丁酸酯的新方法.西北大学学报,2002,32(4):406-408
    [81]李小玲,张海洋,张皓,等.表面响应曲面法优化微生物中聚-β-羟基丁酸酯提取条件的研究.分析化学研究简报,2007,35:419-422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700