微胶囊固定化细胞色素P450 BM-3的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞色素P450BM-3来源于Bacillus megaterium,能催化长链脂肪酸(C_(12)-C_(20))的次末端(ω-1,ω-2,ω-3)羟化及不饱和脂肪酸的环氧化,其突变体催化的底物拓展到中链的脂肪酸(C_8-C_(10))、烷烃、环烷烃、杂环烃、多环芳烃等,因此在医药工业、环境检测和修复及化学工业具有广阔的前景。
     论文首先合成P450 BM-3的酶活检测试剂10-对硝基苯氧基癸酸(10-pNCA),其合成是以10-溴代癸酸为原料,与甲醇反应生成10-溴代癸酸甲酯,接着对硝基酚钠反应生成10-对硝基苯氧基癸酸甲酯,最后用固定化脂肪酶水解得到10-pNCA。经紫外光谱、~1H-NMR、~(13)C-NMR和酶分析应用表明成功合成出10-pNCA,总收率达到71.6%。
     其次将已构建的质粒转入大肠杆菌DH5α中发酵培养,考察了硫酸铵沉淀前后P450 BM-3酶活的变化,结果表明,经硫酸铵沉淀后,粗酶的酶活、蛋白含量和比活分别是破胞上清液的2.73、1.72和1.61倍,硫酸铵沉淀起了初步分离和浓缩的作用,所制粗酶作为后续固定化的原料。
     研究了NaCS-PDMDAAC微胶囊的制备装置和制备方法,考察了不同PDMDAAC分子量、成胶囊时间对形成的微胶囊膜的强度、膜厚、粒径等物理性质的影响,并确定了微胶囊的制备条件:PDMDAAC的分子量为400,000~500,000,成胶囊时间为40~60min。
     对NaCS-PDMDAAC生物微胶囊作为P450 BM-3固定化材料的一些必需性质进行研究,结果表明,BSA不能从溶液中扩散进入空白的微胶囊,P450 BM-3催化所需的辅酶NADH、底物10-pNCA均能顺利地扩散至微胶囊内部,NaCS-PDMDAAC生物微胶囊与P450 BM-3酶具有良好的生物相容性。这些表明该胶囊体系比较适合P450 BM-3的固定化。
     NaCS-PDMDAAC微胶囊固定化P450 BM-3的最佳条件:pH为8.0、50mM的Tris-HCl缓冲液、0.5~1mgPro/(mL NaCS)的加酶量、分子量400,000~500,000的PDMDAAC、4.0%的NaCS溶液、胶囊固化40~60min。在此条件下,蛋白包埋率可达85~90%,相对酶活达30~35%,酶活回收率达30%左右。
     对固定化P450 BM-3酶学性质的研究表明,固定化酶的最适温度为42℃,比游离酶37℃有所提高,固定化酶的最适pH为7.8,比游离酶pH8.0略有降低,还发现固定化酶对有机溶剂、pH及热稳定性均比游离酶大大提,而贮存稳定性也有了明显的提高,游离酶在4℃下保存酶活下降50%的时间为5~7天,而用NaCS-PDMDAAC微胶囊固定化的酶则长达60~100天。这表明NaCS-PDMDAAC
    
    微胶囊固定化P450 BM一3具有良好的发展前景。
    关键词:细胞色素P450 BM一3;固定化;微胶囊;NaCS一PDMDAAC;10一对硝基
     苯氧基癸酸
    夕
Cytochrome P450 BM-3 (CYP102) from Bacillus megaterium catalyzes the subterminal hydroxylation of long-chain fatty acids (C12 to C20) at the positions ω-1, ω-2, ω-3 and the epoxidation of unsaturated fatty acids. Artificial mutants of P450 BM-3 also hydroxylate substrates like short-chain fatty acids (C8 to C10), alkanes, cycloalkanes, heteroarenes and polycyclic aromatic hydrocarbons, which offers potential applications in the pharmaceutical industry, environmental measurement and bioremediation and chemical industry.Firstly, The synthesis of p-nitrophenoxydecanoic acid used in P450 BM-3 assay was studied. 10-bromodecanoic acid was reacted with methanol to get methyl 10-bromodecanoate, which was reacted with sodium p-nitrophenolate to produce ester, then hydrolyzed with immobilized lipase to obtain p-nitrophenoxydecanoic acid. Structure of final product was confirmed by UV-IV spectrum, 1H-NMR, 13C- NMR and application to enzyme assay. p-Nitrophenoxydecanoic acid was successfully synthesized by using this method with an yield rate of 71.6%.Then, the plasmid containing CYP102 was transformed into E.coli. DH5α and the activity of enzyme solution precipitated by (NH4)2SO4 and cell extract was compared. After precipitation, the activity, protein content and specific activity were 2.73, 1.72 and 1.61 folds, and the crude enzyme was prepared as immobilization metarial.The preparation device and method for NaCS-PDMDAAC microcapsule as well as the effects of preparation conditions (molecular weight of PDMDAAC and gelation time) on the diameter, membrane thickness and compression intensity of the microcapsule were studied. The optimal operation conditions for microcapsule preparation were determined at molecular weight of PDMDAAC of 400,000-500,00 and gelation time of 40~60min.The feasibility of using NaCS-PDMDAAC microcapsule for P450 BM-3 immobilization was explored. Results showed that no permeation of bovine albumin bovine (BSA) from solution into the microcapsule was observed, and co-factor NADH and substrate 10-pNCA can diffuse into the microcapsule successfully. Also NaCS-PDMDAAC microcapsule has a good biocompatibility to P450 BM-3.The conditions of preparation for P450 BM-3 immobilization with NaCS-PDMDAAC were investigated. The results of optimal conditions were that pH was
    
    8.0, ionic strength was 50mM Tris-HCl buffer liquid, the mount of enzyme was 0.5-1mgPro/(mL NaCS), the molecular weight of PDMDAAC was 400,000-500,000, the concentration of NaCS was 4.0% (w/w) and the gelation time was 40~60min. In this condition, residual protein reached 85-90%, relative activity reached 30-35% and residual activity reached about 30%.The enzyme characteristics of immobilized P450 BM-3 was also investigated. It was found that the optimum temperature for immobilized and free P450 BM-3 were 42℃and 37℃ respectively, and the optimum pH for immobilized and free P450 BM-3 were 7.8 and 8.0 respectively. Furthermore, The immobilized P450 BM-3 was more stable to organic solvent, pH and temperature than free enzyme. Investigations on long-term storage stability revealed advantages of the immolibized P450 BM-3. At 4℃, the immobilized enzyme has a half-life of 60~100days, but the free enzyme only 5~7days.
引文
[1] Wislocki P G, Miwa GT, Lu A Y H, In: Enzymatic Bask of Detoxication (ed. Jakoby W B), Academic Press, New York, pp135-182, 1980.
    [2] Garfinkel D, Arch. Biochem. Biophys., 1958, 77: 493-509.
    [3] Klingenberg M, Arch. Biochem. Biophys., 1958, 75: 376-386.
    [4] Gunsalus I C, Lpederson T C, et al, Oxygenase-catalyzed biological hydroxylations, Annul Rev. Biochem., 1975, 44: 377-407.
    [5] Ortiz de Montellano, Cytochrome P450: Structure, Mechanism and Biochemistry, Plenum, New York, 1995.
    [6] Omura T, Cytochrome P450, VCH, New York, 1993.
    [7] Guengerich F P, Cytochrome P450 Enzymes in the Generation of Commercial Products, Nature Piblishing Group, 2002, 1: 359-365.
    [8] Omura T, Forty Years of Cytochrome P450, Biochem. Biophys. Res Commun., 1999, 263(3): 690-698.
    [9] Stegeman J J, Livingstone D R, Forms and Functions of Cytochrome P450, Comp. Biochem. Physiol. Part C, 1998, 121: 1-3.
    [10] Gonzalez F J, Cytochrome P450 evolution and nomenclature, In: Schenkman J B, Greim H (Eds.), Handb. Exp. Pharmacol, 105, pp 211-219, Springer, Berlin, Germany, 1993.
    [11] Omura T, Ishimura Y, Fujii K Y, Cytochrome P450, Kodansha, VCH, Tokyo, 1993.
    [12] Porter T D, Coon M J, Cytochrome P450: Multiplicity of Isoforms, Substrates, and catalytic and regulatory mechanisms, J. Biol. Chem., 1991, 266 (21): 13459-13472.
    [13] Lewis D F V, Cytochrome P450 Structure, Function and Mechanism, pp79-88, Taylor of Francis, 1996.
    [14] Guengerich F P, Common and Uncommom cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity, Chem. Res. Toxicol., 2001, 14:611-650.
    [15] Miura Y, Fulco A J, (ω-2) Hydroxylation of Fatty Acids by a Soluble System from Bacillus megaterium, J. Biol. Chem., 1974, 249(6):1880-1888.
    [16] Narih L O, Fulco A J, Characterization of a Catalytically Self-sufficient 119,000-Dalton Cytochrome P-450 Monooxygenase Induced by Barbiturates in Bacillus Megaterium, J. Biol. Chem., 1986, 261: 7160-7169.
    [17] Narih L O, Fulco A J, Identification and Characterization of Two Functional Domains in Cytochrome P-450_(BM+3), a Catalytically Self-sufficient Monooxygenase Induced by Barbiturates in Bacillus Megaterium, J. Biol. Chem., 1987, 262: 6683-6690.
    [1
    
    [18] Wen L P, Fulco A J, Cloning of the gene encoding a catalytically self-sufficient cytochrome P-450 fatty acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous (Bacillus megaterium) hosts, J. Biol. Chem., 1987, 262 (14): 6676-6682.
    [19] Munro A W, Leys D G, McLean K J, et al, P450 BM3: the Very Model of a Modern Flavocytochrome, Trends Biochem. Sci., 2002, 27(5): 250-257.
    [20] Fulco A J, Ruettinger R T, Occurrence of a Barbiturate-Inducible Catalytically Self-Sufficient 119,000 Dalton Cytochrome P-450 Monooxygenase in Bacilli, Life Sci., 1987, 40 (18): 1769-1775.
    [21] Ruettinger R T, Wen L P, Fulco A J, Coding Nucleotide, 5'Regulatory, and Deduced Amino Acid Sequences of P-450 BM-3, a Single Peptide Cytochrome P-450:NADPH-P-450 Reductase from Bacillus megaterium, J. Biol. Chem., 1989, 264 (19): 10987-10995.
    [22] Sevrioukova I F, Li Huiying, Zhang Hong, Peterson J A, Poulos T L, Structure of a cytochrome P450-redox partner electron-transfer complex, Proc. Natl. Acad. Sci. USA., 1999, 96(5): 1863-1868.
    [23] 姚昕,秦文,齐春梅,花生四烯酸的生理活性及其应用,粮油加工与食品机械,2004,5:57-59。
    [24] Capdevila J H, Wei Shozou, Helvig Christian, et al, The Highly Stereoselective Oxidation of Polyunsaturated Fatty Acids by Cytochrome P450BM-3, J. Biol. Chem., 1996, 271(37): 22663-22671.
    [25] Falck J R, Reddy Y K, Haines D C, et al, Practical, Enantiospecific Syntheses of 14, 15-EET and Leukotoxin B (Vernolic Acid), Tetrahedron Lett., 2001, 25: 4131-4133.
    [26] Cerniglia C E, Biodegradation of PAHs, Biodegradation, 1992, 3: 351-368.
    [27] Johnson A C, Larsen P F, Gadbois D F, et al, The distribution of polycyclic aromatic hydrocarbons in the surficial sediments of Penobscot Bay (Maine, USA) in relation to possible sources and to other sites worldwide, Mar. Environ. Res., 1985, 15:1-16.
    [28] Harford-Cross C F, Carmichael A B, Allan F K, et al, Protein Engineering of Cytochrome P450cam (CYP101) for the Oxidation of Polycyclic Aromatic Hydrocarbons, Protein Eng., 2000, 13: 121-128.
    [29] Joo H, Lin Z, Arnold F H, Laboratory Evolution of Peroxide Mediated Cytochrome P450 Hydroxylation, Nature, 1999, 339: 670-673.
    [30] Shou M, Gonzalez F J, Gelboin H V, Stereoselective Epoxidation and Hydration at the K-region of Polycyclic Aromatic Hydrocarbons by cDNA-expressed Cytochromes P450 1A1, 1A2, and Epoxide Hydrolase, Biochemistry, 1996, 35:15807-15813.
    
    [31] Carmichael A B, Wong L L, Protein Engineering of Bacillus megaterium CYP102: the Oxidation of Polycyclic Aromatic Hydrocarbons, Eur. J. Biochem., 2001, 268(10): 3117-3125.
    [32] Li Q S, Ogawa J, Schmid R D, et al, Engineering Cytochrome P450 BM-3 for Oxidation of Polycyclic Aromatic Hydrocarbons, Appl. Environ.. Microbiol., 2001, 67(12): 5735-5739.
    [33] 潘湘波,梁静娟,刘雄民,熊德元,李飘英,15-羟基十五烷酸的脂肪酶催化合成环十五内酯,应用化学,2004,21(8):850-852。
    [34] Li Q S, Schwaneberg U, Fischer P, Schmid R D, Directed Evolution of the Fatty-acid Hydroxylase P450 BM-3 into an Indole-hydroxylating Catalyst, Chem. Eur. J., 2000, 6: 1531-1536.
    [35] Farinas E T, Schwaneberg U, Glieder A, Arnold F H, Directed Evolution of a Cytochrome P450 Monoxygenase for Alkane Oxidation, Adv. Synth. Catal., 2001, 343: 601-606.
    [36] Miura Y, Fulco A J, ω-1, ω-2 and ω-3 Hydroxylation of Long-Chain Fatty Acids, Amides and Alcohols by a Soluble Enzyme System from Bacillus megaterium, Biochim. Biophys. Acta., 1975, 388: 305-317.
    [37] Mausberger S, Schunck W-H, Müller H-G, Appl. Microbiol. Biotechnol., 1984, 19: 29-35.
    [38] Amet Y, Berthou F, Menez J F, Simultaneous Radiometric and Fluorimetric Detection of Lauric Acid Metabolites Using High-Performance Liquid Chromatography Following Esterification with 4-Bromomethyl-6,7-Dimethoxycoumarin in Human and Rat Liver Microsomes, J. Chromatogr. B. Biomed. Appl., 1996, 681:233-239.
    [39] Capdevila J H, Wei S, Helvig C, et al, The Highly Stereoselective Oxidation of Polyunsaturated Fatty Acids by Cytochrome P450BM-3, J. Biol. Chem., 1996, 271(37): 22663-22671.
    [40] Schwaneberg U, Claudia S-D, Schmitt J, et al, A Continuous Spectrophotometric Assay for P450 BM-3, a Fatty Acid Hydroxylating Enzyme, and Its Mutant F87A~1, Anal. Biochem., 1999, 269: 359-366.
    [41] 俞俊棠,唐孝宣,生物工艺学,华东化工学院出版社,上海,1991。
    [42] 李荣秀,李平作,酶工程制药,化学工业出版社,北京,2004。
    [43] 邱秀宝,舒东,中性蛋白酶AS1.398固定化酶的研究,微生物学通报,1990,17(6):337-339。
    [44] 苏正定,郭勇,彭志英,固定化原生质体产谷氨酸脱氢酶的研究,生物工程学报,1993,9(2):158-162。
    [45] 胡永红,欧阳平凯,杨文革,卡拉胶混合凝胶固定化延胡索酸酶生产L—苹果酸,生物工程学报,1995,11(4):396-398。
    [46] 罗贯民,曹淑桂,张今,酶工程,化学工业出版社,北京,2002。
    
    [47] Kastl P R, Baricos W H, Cohen W, et al, In: Immobilized Microbial Cells, Venkatasubramanian K (Eds.), ACS Symp. Ser.106, Washington DC, 1979.
    [48] Salguero P F, Merino C G, Bunch A W, Effect of Immobilization on the Activity of Rat Hepatic Microsomal Cytochrome P450 Enzymes, Enzyme Microb. Technol., 1993, 15: 100-104.
    [49] Lamb S B, Lamb D C, Kelly S L, et al, Cytochrome P450 Immobilisation as a Route to Bioremediation/Biocatalysis, FEBS Lett., 1998, 431: 343-346.
    [50] Taylor M, Lamb D C, Cannell R J, et al, Cofactor Recycling with Immobilized Heterologous Cytochrome P450 105D1 (CYP105D1), Biochem. Biophys. Res. Commun., 2000, 279: 708-711.
    [51] Gilardi G, Meharenna Y T, Tsotsou G E, et al, Molecular Lego: Design of Molecular Assemblies of P450 Enzymes for Nanobiotechnology, Biosens Bioelectron., 2002, 17:133-145.
    [52] Lei C, Wollenberger U, Jung C, et al, Clay-Bridged Electron Transfer between Cytochrome P450_(cam) and Electrode, Biochem. Biophys. Res. Commun., 2000, 268: 740-744.
    [53] Schwaneberg U, Appel D, Schmid R D, P450 in Biotechnology: Zinc Driven ω-Hydroxylation of p-Nitrophenoxydodecanoic acid using P450 BM-3 F87A as a Catalyst, J. Biotechnol., 2000, 84: 249-257.
    [54] Schmid R D, Hauer B, Schwaneberg U, Electron Donor System for Enzymes and Its Use for the Biochemical Conversion of Substrates, European Patent Office CA 2379518, 2001.
    [55] Brunner G, Loesgen H, Enzyme Eng.,1979, 3: 391.
    [56] Baess D, Janig G R, Ruckpaul K, Interaction of the Components of the Cytochrome P-450 Monooxygenase System from Liver Microsomes. I. Immobilization of the Solubilized and Partially Purified Protein Components, Acta Biol. Med. Ger., 1975, 34 (11-12): 1745-1754.
    [57] Azari M R, Wiseman A, Evaluation of Immobilized Cytochrome P-448 from Saccbaromyces cerevisiae Using Permeabilized Whole Cell, Microsomal Fraction and Highly Purified Reconstituted Forms, with Benzopyrene-3-Monooxygenase Activity, Enzyme Microb. Tochnol., 1982, 4: 401-404.
    [58] Ibrahim M, Decolin M, Batt A M, et al, Immobilization of Pig Liver Microsomes Stability of Cytochrome P-450-Dependent Monooxygenase Activities, Appl. Biochem. Biotechnol., 1986, 12:199-213.
    [59] Colowick S P, Kaplan N O, Immobilized Enzyme and Cells, pp493-496, Academic Pr. Jnc, 1988.
    [60] Sugihara N, Ogoma Y, Abe K, et al, Immobilization of Cytochrome P-450 and Electrochemical Control of its Activity, Polym. Adv. Technol., 1998, 9:307-313.
    
    [61] Hara M, Iazvovskaia S, Ohkawa H, et al, Immobilization of P450 Monooxygenase and Chloroplast for Use in Light-Driven Bioreactors, J. Biosc. Bioeng., 1999, 87: 793-797.
    [62] Ivanov Y D, Kanaeva I P, Gnedenko O V, et al, Optical Biosensor Investigation of Interactions of Biomembrane and Water-soluble Cytochromes P450 and Their Redox Partners with Covalently Immobilized Phosphatidylethanolamine Layers, J. Mol. Recognit., 2001, 14: 185-196.
    [63] Schubert F, Kirstein D, Scheller F, et al, Immobilization of Cytochrome P-450 and Its Application in Enzyme Electrodes, Anal. Lett., 1980, 13:1167-1178.
    [64] Yawetz A, Perry A S, Freeman A, et al., Monooxygenase Activity of Rat Liver Microsomes Immobilized by Entrapment in a Crosslinked Prepolymerized Polyacrylamide Hydrazide, Biochem. Biophys. Acta., 1984, 798: 204-209.
    [65] Hara M, Yasuda Y, Toyotama H, et al., A Novel ISFET-type Biosensor Based on P450 Monooxygenase, in: Abstract of 11th Interna-tional Conference on Cytochrome P450, Aug. 29-Sept. 2, Sendai, Japan, 1999, pp. 152, P-142.
    [66] Yasuda Y, Hara M, Miyake J, et al., Function of Immobilized Films of Cytochrome P450s for Application of ISFET-type Biosensors, Abstract of International Symposium on Advanced Material and Tissue Engineering, Feb. 22-23.
    [67] Hara M, Yasuda Y, Toyotama H, et al, A novel ISFET-type Biosensor Based on P450 Monooxygenases, Biosens. Bioelectron., 2002, 17 (3): 173-179.
    [68] Iwuoha E I, Kane S, Ania C O, et al., Reactivities of Organic Phase Biosensors 3: Electrochemical Study of Cytochrome P450_(cam) Immobilized in a Methyltriethoxysilane Sol-Gel, Electroanalysis, 2000, 12: 980-986.
    [69] L(?)hr M, M(?)ller P, Karle P, et al, Targeted Chemotherapy by Encapsulating cells engineered to Deliver CYP2B1, an Ifosfamide Activating Cytochrome P450 Gene, Gene Ther., 1998, 5: 1070-1078.
    [70] L(?)hr M, Bago Z B, Bergmeister H, et al, Cell Therapy Using Microencapsulated 293 Cells Trans-fected with a Gene Construct Expressing CYP2B1, an Ifosfamide Converting Enzyme, Instilled Intra-arterially in Patients with Advanced-stage Pancreatic Carcinoma: a Phase Ⅰ/Ⅱ Study, J. Mol. Med., 1999, 77: 393-398.
    [71] L(?)hr M, Hummel F, Faulmann G, et al, Microencapsulated, CYP2B1-Transfected Cells Activating Ifosfamide at the Site of the Tumor: the Magic Bullets of the 21st Century, Cancer Chemother Pharmacol., 2002, 49 (1): 21-24.
    [72] Maurer S C, Schulze H, Schmid R D, et al., Immobilisation of P450 BM-3 and an NADP~+ Cofactor Recycling System: Towards a Technical Application of Heme-Containing Monooxygenases in Fine Chemical Synthesis, Adv. Synth. Catal., 2003, 345: 802-810.
    
    [73] Robert P L, John L H, William L C, Encapsulated Cell Technology, Nature Biotechnology, 1996, 14(9): 1107-1111.
    [74] Chang T M S. M, Moo-Young, (Ed.). Comprehensive Biotechnology: The principles, applications and regulations of biotechnology in industry agriculture and medicine, Pergamon Process, New York, 1985.
    [75] Cohen S, Lobel E, Trevgoda A, Peled Y, A novel in situ-forming opthabmic drug delivery system from alginates undergoing gelation in the eye, J. Control. Release., 1997, 44: 201-208.
    [76] Yang H, Iwata H, Shimizu H, Takagi T, Tsuji T, Ito F, Comparative studies of in vitro and in vivo function of three different shaped bioartificial pancreases made of agarose hydrogel, Biomaterials, 1994, 15(2): 113-120.
    [77] 梅乐和,NaCS—PDMDAAC生物微胶囊固定化微生物的基础研究,博士学位论文,浙江大学,2000。
    [78] Dautzenberg H, Lukanoff B, et al, 7th International Symposium on Microencapsulation, Glasgov, 1990.
    [79] Rickert D A, Glatz C E, Glatz B A, Improved Organic Acid Production by Calcium Alginate-Immobilized Propionibacteria, Enzyme Microb. Technol., 1998, 22 (5): 409-414.
    [80] 徐寿昌,有机化学(第二版),高等教育出版社,北京,1993。
    [81] 陈国珍,黄贤智,刘文远,郑朱梓,王尊本,紫外-可见光分光光度法(上),原子能出版社,北京,1983。
    [82] 李建武,生物化学实验原理和方法,北京大学出版社,1997。
    [83] Kurzban G P, Strobei H W, Preparation and Characterization of FAD-Dependent NADPH-Cytochrome P-450 Reductase, J. Biol. Chem., 1986, 261(17):7824-7830.
    [84] J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯,Molecular Cloning:A Laboratory Manual(分子克隆实验指南),科学出版社,北京,1999。
    [85] 黄俊,纳豆激酶液体发酵过程的优化及层析法纯化细胞色素P450 BM-3的研究,硕士学位论文,浙江大学,2004。
    [86] 柴燚,中空海藻酸钙微胶囊的性质及其固定化枯草杆菌生产纳豆激酶的研究,硕士学位论文,浙江大学,2004。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700