面向骨组织工程的仿生支架建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于疾病、事故等原因所造成的大面积骨缺损,已经成为了临床医学治疗的重要难题之一。近年来,随着骨组织工程技术的迅速发展,利用种子细胞与仿生支架的复合体构建组织工程化骨,作为修复缺损骨的移植材料,已经成为骨缺损修复的一种全新的治疗模式,也成为了骨组织工程领域的研究热点。在组织工程化骨的构建中,仿生支架能够为新生的骨组织提供合适的生长空间和足够的机械支撑,并能够介导细胞间的信号传递和相互作用,诱导新骨的形成。因此,仿生支架的制备成为骨组织工程研究的关键,具有极为重要的研究价值。
     仿生支架的制备包括解剖外形的制造和内部微观孔的构建。传统的制备方法更多地致力于内部微观孔的构建,解剖外形主要依靠手工成型或模具成型,制造精度相当低。而且,支架内部结构性能无法在制造前进行评价,孔隙率、连通性等参数在制造过程中也难以控制。随着快速成形技术在骨组织工程领域应用的不断深入,使得利用快速成形方法制备仿生支架成为一种更为理想的途径。采用快速成形技术,不仅可以一次成型出精确的支架解剖外形和复杂的内部微观孔结构,而且可以根据支架的三维模型进行内部结构性能的加工前评价,从而制造出性能优良、结构合理的仿生支架。因此,仿生支架建模是利用快速成形方法制备仿生支架的一项关键技术。
     正是基于上述的研究背景和应用需求,本文以仿生支架为研究对象,面向骨组织工程领域展开了仿生支架的外观模型和内部结构模型的构建,以及支架内部结构性能评价等方面的研究工作。主要的研究内容及成果包括以下几个方面:
     (1)基于Delaunay三角剖分算法思想,提出了缺损骨曲面模型的重建方法。根据CT图像数据构建像素立方体,通过骨组织图像的灰度阈值的比较,实现空间点云数据的采集。运用K-近邻求解和二维Delannay近邻算法,简化了空间点集的Delannay三角化过程,加速了曲面重建的效率。利用局部可变球映射算法解决了孔洞特征拓扑重构的问题,从而获得精确的缺损骨曲面模型。同时,重构的曲面模型为仿生支架的解剖外形以及内部微观孔结构的构建,提供了良好的数字模型。
     (2)在分析骨缺损的病理特征和种类的基础上,提出了面向骨缺损修复的仿生支架外观模型的构建方法。该方法采用二面角判别算法自动搜索孔洞的边界,获取孔洞边界边所构成的三维多边形;基于面积最小原理进行多边形的三角剖分,根据边长最短原则进行网格细化,实现三维多边形的Delaunay三角剖分;利用加权伞算子控制修补曲面的曲率变化,进行曲面网格的光顺处理,保证修补曲面片与周围曲面的光滑过渡。通过各模型之间的布尔运算构建仿生支架的外观模型,大大地降低建模的复杂度。
     (3)采用多约束背包问题模型与混合遗传算法综合的方法来构建仿生支架的内部微观孔结构模型。基于多约束背包问题模型,采用椭球体作为单元体,构建支架内部微观孔结构的负模型,利用混合遗传算法进行求解。在遗传算子设计中,采用比例选择与最优保存策略相结合的混合选择算子,提高算法的运行效率和收敛性;采用均匀交叉算子避免种群多样性的退化,使得微观孔结构呈多样性;采用均匀变异算子增强算法的局部搜索能力,促进群体的多样性演化;采用扰动算子对解空间进行局部调整,提高算法的全局搜索能力。然后,通过支架的外观模型与负模型之间的布尔运算,获得含微观孔的仿生支架模型。
     (4)分析了影响仿生支架内部结构性能的因素,建立了支架微观孔结构性能的评价指标体系,包括孔隙率、连通性、均匀性、扭曲度和比表面积五项评价指标。基于支架微观孔结构的负模型,提出了各项评价指标值的计算方法。分析了各项评价指标对支架的生物活性、力学强度、降解速度等性能的影响程度,基于AHP方法确定了各项评价指标在支架结构性能综合评价中的权重值。基于灰色关联度分析的评价理论,提出了仿生支架内部结构性能的综合评价模型,并通过计算各项评价指标的灰色关联度来综合评判支架内部结构性能的优劣。
     (5)根据上述的理论和方法,采用面向对象技术和可视化技术开发了仿生支架建模的原型系统,初步实现了缺损骨曲面模型的三维重建、修复体模型的构建、支架内部结构建模及性能评价等功能,验证了所提出的建模方法的科学性、合理性和正确性。
The large defect of bone is one of the key problems of clinical medicine treatment, due to disease, accident, and so on. The technology of bone tissue engineering is developing quickly in recent years. A new treatment pattern of bone defect repairing is that the defective bone is repaired with tissue-engineered bone as transplant, and the tissue-engineered bone is generated by co-combining with cultured osteogenic cells and bionic scaffold in vitro. This is a hotspot in the research field of bone tissue engineering too. The bionic scaffold provides suitable growth space and enough mechanical support for regenerating bony tissue, mediates the signal and the interaction between osteocytes, and induces the regeneration of osteocytes in the tissue-engineered bone regeneration. Therefore, the fabrication of bionic scaffold is the key technology of bone tissue engineering and most important research.
     The fabrication of bionic scaffold includes the fabrication of anatomical shape and the generation of inner porous structure. The traditional method focuses much more on the generation of inner porous structure, and anatomical shape is fabricated by die or handcraft. The precision of scaffold is fairly low. Moreover, the performance of inner structure of scaffold can not be evaluated before being fabricated, and some parameters, such as porosity and connectivity, are difficult to be controlled. With the continuous development of applying the technology of Rapid Prototyping (RP) to the field of bone tissue engineering, a better method to fabricate bionic scaffold using RP is set up. Not only precise anatomical shape and complicated inner porous structure of scaffold can be synchronously generated by using RP, but also the performance of inner structure of scaffold can be evaluated on the basis of three-dimensional model information before being fabricated. Therefore, the modeling is a key technology of fabricating bionic scaffold by using RP.
     According to the research background and application requirement above, bionic scaffold is chosen as research object in this paper, and a series of research oriented to bone tissue engineering are developed, including modeling of anatomical shape and inner structure of scaffold, performance evaluation of inner structure, and so on. The main research contents and contributions are described as following.
     Firstly, based on the theory of Delaunay triangulation, three-dimensional reconstruction method of surface model of defective bone is set up. The pixel cube model is constructed based on data of CT images. The data of space point cloud is acquired by comparing the gray threshold of image of bone tissue. The algorithm of k-nearest neighbors and 2D-Delaunay neighbors are applied to simplify Delaunay triangulation of space point set and accelerate the surface reconstruction. It is better to adopt the algorithm of local deformable spherical map to solve the problem of topological structure reconstruction of holes, and then the precise surface of defective bone is generated. Moreover, the reconstructed surface provides a more precise digital model for modeling of anatomical shape and inner porous structure of bionic scaffold. Secondly, on the basis of analyzing clinicopathological characteristics and type of bone defect, the modeling method of shape model of bionic scaffold is set up. The boundary edge of hole is automatically searched to generate 3D polygons by adopting the dihedral angle criteria algorithm. Delaunay triangulation of 3D polygon is finished based on the minimum area principle, and the mesh is refined based on the shortest edge principle. The weighted umbrella-operator is applied to control the curvature transformation of the patching mesh to smooth it, and the fairing surface patch is merged into the surface around it. Then, the shape model of bionic scaffold is generated by Boolean operation between every two key models. Thus, the complexity of modeling is greatly reduced.
     Thirdly, the modeling method of inner porous structure of bionic scaffold is set up by combining the structure of multi-constrained knapsack problem model with hybrid genetic algorithm. Based on the structure of multi-constrained knapsack problem model, and using ellipsoid as the basic unit, the inverse model of porous structure is generated, and hybrid genetic algorithm is used to solve this model. In the design of genetic operators, the hybrid selection operator of combining proportional selection with optimal Elitist Model is adopted to improve the operating efficiency and the convergence. The uniform crossover operator is adopted to avoid the diversity deterioration of population, and then to improve the bio-diversity of porous structure. The uniform mutation operator is adopted to enhance the local searching ability of hybrid genetic algorithm, and then to promote the bio-diversity evolution of population. The perturbation operator is adopted to locally adjust the solution space, and then to enhance the overall searching ability of hybrid genetic algorithm. Then, the model of bionic scaffold containing porous structure is generated by Boolean operation between the shape model and the inverse model.
     Fourthly, according to factors influencing the performance of inner structure of bionic scaffold, the evaluation index system of porous structure performance of scaffold is constructed, including porosity, connectivity, uniformity, twist degree and specific surface area. The calculation method of every evaluation index is set up based on the inverse model of porous structure of scaffold. Every evaluation index influencing bioactivation, biomechanical strength and degradation rate is analyzed, and the weight value of every evaluation index is calculated based on the theory of AHP. The integrated evaluation model of inner structure performance of bionic scaffold is constructed based on the theory of gray relation grade, and the gray relation value of every evaluation index is calculated to synthetically evaluate inner structure performance of bionic scaffold.
     Lastly, according to the theory and method above, the modeling prototype system of bionic scaffold is designed by adopting object-oriented technology and visualization technology. This system can perform three functions, including three-dimensional reconstruction of surface model of defective bone, prosthesis modeling, inner structure modeling of bionic scaffold and evaluation of its performance. The scientificity, rationality and validity of the described modeling theory and method are validated.
引文
[1]黄凯.我国人工骨消费市场抽样调研报告节选. http://www.maydeal.com/news/19120. html,(引用验证有效时间2010.11.20).
    [2]戴春祥.面向缺损骨的组织工程支架构建的关键技术研究.上海:上海大学,2007.
    [3]中国人工骨行业市场深度调研及中期发展预测报告(2009-2012年度). http://www.chinaeir. com.cn/html/2008121144232.html,(引用验证有效时间2010.11.20).
    [4]李娟,戴文达,董健.骨组织工程研究进展.中国骨伤,2008,21(11):880~882.
    [5]金岩.组织工程学原理与技术.西安:第四军医大学出版社,2005.
    [6]曹民干,张永福.组织工程多孔支架材料和制备方法.塑料,2006,35(4):91~95.
    [7]吴林波,丁建东.组织工程三维多孔支架的制备方法和技术进展.功能高分子学报,2003,16(1):91~95.
    [8]秦绪佳.医学图象三维重建及可视化技术研究.大连:大连理工大学,2001.
    [9]张太发.基于CT医学图像的三维表面重建算法的研究.西安:西安理工大学,2006.
    [10]梁秀霞.医学影像数据可视化中若干问题研究.济南:山东大学,2006.
    [11] Marco Attene,Michela Spagnuolo. Automatic surface reconstruction from point sets in space. EUROGRAPHICS’2000,2000,19(3):491~500.
    [12] M. Gopi,S. Krishnan,C.T. Silva. Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation. EUROGRAPHICS’2000,2000,19(3):467~479.
    [13]单东日,柯映林.基于二维Delaunay近邻的空间散乱数据曲面重建算法.中国机械工程,2003,14(9):756~759.
    [14] G. K. Knopf,A. P. Sangol. Freeform Surface Reconstruction from Scattered Points Using A Deformable Spherical Map. International Journal of Image and Graphics,2006,6(3):341~356.
    [15]耿生玲,康宝生.基于SOFM与RBF神经网络的自由曲面重建.计算机工程与设计,2007,28(12):2925~2927.
    [16] Hoppe H,DeRose T,Duchamp T,et al.. Surface Reconstruction from Unorganized Points.SIGGRAPH'92 Proceedings,Chicago,USA:1992,2(2):71~78.
    [17]黄雪梅,陈吉红,王平江.微切平面逼近三维散乱数据的研究.华中理工大学学报,1997,25(4):16~17.
    [18]李宇鹏,罗里荣.用三维局切面族逼近法实现逆向精确造型.燕山大学学报,2004,28(3):214~217.
    [19]熊邦书,何明一,俞华璟.基于空间连通性的快速曲面重建算法.系统仿真学报,2005,17(1):75~78.
    [20] Lin Liulan,Liu Hanqing,Hu Qingxi,et al.. Research of the method of reconstructing the repair bionic scaffold based on tissue engineering. International Technology and Innovation Conference 2006,Hangzhou,China:2006,11:1275~1279.
    [21]王悦.三维构建生物材料修复下颌骨连续性缺损的实验研究.上海:第二军医大学,2005.
    [22]赵亚群,周敬安,刘广涛. 75例颅骨缺损患者个性化颅骨修补术的临床疗效分析.解放军医学杂志,2006,31(4):354~355.
    [23] T.B.F. Woodfield,et al.. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Engineering, 2005,11(9):1297~1311.
    [24] I. Manjubala,et al.. Biomimetic mineral-organic composite scaffolds with controlled internal architecture. Journal of Materials Science:Materials in Medicine,2005,16(12):1111~1119.
    [25] J. M. Williams,et al.. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials,2005,26(23):4817~ 4827.
    [26]张庆福.计算机辅助个体化功能性修复下颌骨缺损的研究.上海:第二军医大学,2005.
    [27]张庆福,吕春堂等.犬下颌骨节段性缺损的个体化再生修复实验研究.口腔颌面外科杂志,2006,16(4):313~316.
    [28]宋乐.不同材料行颅骨缺损修补90例临床观察.中国实用神经疾病杂志,2006,9(2):39~41.
    [29]归来,夏德林等.山羊颅骨缺损个体化修复体CAD设计与精密铸造的实验研究.第4届中国美容与整形医师大会论文汇编,沈阳,中国:2007,8:359~361.
    [30] http://www.materialise.be/materialise/view/en/92506-Simulation.html(引用验证有效时间2010.11.20)
    [31]王开林,李莉敏,胡庆夕.基于快速成形的仿生骨建模技术.中国机械工程,2005,16(3):196~198.
    [32] Hanqiang Liu,Qingxi Hu,et al.. A Study of the Method of Reconstructing the Bionic Scaffold for Repairing Defective Bone Based on Tissue Engineering. Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management, International Federation for Information Processing,2006,207:650~657.
    [33] Xusheng Yuan,Qingxi Hu,et al.. Modeling Technology and Application of Repairing Bone Defects Based on Rapid Prototyping. Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management, International Federation for Information Processing,2006,207: 643~649.
    [34] Lin Liulan,Huang Xianxu,et al.. Fabrication of tissue engineering scaffold via rapid prototyping machine. International Technology and Innovation Conference 2006 ,Hangzhou,China:2006,11:1280~1285.
    [35] Hu Qingxi,Yuan Xusheng,et al.. Development and application of repairing bone defect visualization system. International Technology and Innovation Conference 2006,Hangzhou,China:2006,11:1243~1246.
    [36] Chunxiang Dai,Ying Jiang,Qingxi Hu,et al.. Efficient Topological Reconstruction for Medical Model Based on Mesh Simplification. Life System Modeling and Simulation International Conference,Shanghai,China:2007,9:526~535.
    [37] Qingxi Hu,Hongfei Yang,Yuan Yao. A Software Method to Model and Fabricate the Defective Bone Repair Bio-scaffold Using in Tissue Engineering. Life System Modeling and Simulation International Conference,Shanghai,China:2007,9:445~452.
    [38] Hu Q.,Yang H.,Lin L.,Fang M.. Modeling the Defective Bone Repair Bio-Scaffold Using RP-Based Tissue Engineering. Tissue Engineering,2007,13(7):1728~1728.
    [39] Mario Botsch,Mark Pauly,et al.. Geometric Modeling Based on Triangle Meshes. Report ofInternational Conference on Computer Graphics and Interactive Techniques. New York:ACM,2006.
    [40] J. C. Carr,R. K. Beatson,et al.. Reconstruction and representation of 3D objects with radial basis functions. Proceedings of the 28th annual conference on Computer graphics and interactive techniques,Los Angeles,USA:2001,8:67~76.
    [41]王宏涛,杜佶,刘胜兰,张丽艳.基于径向基函数的多种类型孔洞修补算法研究.机械科学与技术,2005,24(6):744~747.
    [42]杜佶,张丽艳,王宏涛,刘胜兰.基于径向基函数的三角网格曲面孔洞修补算法.计算机辅助设计与图形学学报,2005,17(9):1976~1982.
    [43] J. Davis,S.R. Marschner,M. Garr,M. Levoy. Filling holes in complex surfaces using volumetric diffusion. First International Symposium on 3D Data Processing, Visualization, and Transmission,Padua,Italy:2002,6:428~439.
    [44] Joshua Podolak,Szymon Rusinkiewicz. Atomic Volumes for Mesh Completion. Proceedings of the third Eurographics symposium on Geometry Processing,2005,255(33):33~41.
    [45] F.S. Nooruddin,G. Turk. Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics,2003.9(2):191~205.
    [46]吴玉波,周来水.能量法在C-C细分曲面N边孔洞填充中的应用.机械制造与自动化,2005,34(2):11~13.
    [47]陈文亮,张胜,金修宝.有限元网格的孔洞修补算法研究.计算机学报,2005,28(6):1068~1071.
    [48] Peter Liepa. Filling holes in meshes. Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing,2003,43(1):200~205.
    [49] Jean-Philippe Pernot,George Moraru,Philippe Véron. Filling holes in meshes using a mechanical model to simulate the curvature variation minimization. Computers and Graphics,2006,30(6):892~902.
    [50]张洁,岳玮宁,王楠,汪国平.三角网格模型的各向异性孔洞修补算法.计算机辅助设计与图形学学报,2007,19(7):892~897.
    [51]蒋跃华,陈志杨,陈飞舟,叶修梓,张二元.残缺网格模型的快速B样条曲面重建.计算机辅助设计与图形学学报,2007,19(12):1569~1575.
    [52]田庆国,葛宝臻,郁道银.基于灰色预测GM(1,1)模型的网格孔洞填补算法.工程图学学报,2007,(3):78~83.
    [53]王乾,程筱胜,戴宁,袁大然,刘大峰.基于变分隐式曲面的三角网格孔洞修补.中国制造业信息化,2006,35(23):75~81.
    [54]李根,陈志杨,张二元,叶修梓.网格曲面中复杂孔洞的自动修补算法.浙江大学学报,2007,41(3):407~411.
    [55] C. Liu,Z. Xia,J. T. Czernuszka. Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design,2007,85(7),1051~1064.
    [56]许建中.骨组织工程临床研究现状与展望.组织工程与重建外科杂志,2007,3(2):61~64.
    [57]刘波,崔磊.骨组织工程研究进展.组织工程与重建外科杂志,2005,1(4):234~236.
    [58]马婷婷,王春梅.骨组织工程研究进展及对其临床应用的展望.整形再造外科杂志,2006,3(6):114~118.
    [59]曹谊林.骨组织工程在骨科的应用.临床外科杂志,2008,16(1):21~24.
    [60]吴雪晖,罗飞,谢肇,许建中.组织工程技术修复骨缺损的研究现状及进展.创伤外科杂志,2008,10(2):183~185.
    [61]吴王喜,周磊.骨组织工程生物活性支架研究进展.中华创伤骨科杂志,2006,8(2):165~168.
    [62]雷万军,李秉哲,曹谊林等.组织工程骨和外科人工植入物的仿生技术研究.中国组织工程研究与临床康复,2008,12(14):2721~2726.
    [63]姚晖,李俊杰,濮礼臣等.组织工程技术仿生构建颅颌骨组织的研究.中国组织工程研究与临床康复,2007,11(40):8047~8051.
    [64]戴江华,罗军,朱美兰.骨组织工程由基础研究向临床应用过渡.基础医学与临床,2008,28(44):411~413.
    [65]邹霓.骨组织工程人工合成支架材料的研究现状.中国组织工程研究与临床康复,2008,12(23):4481~4484.
    [66]李祥,王成焘.快速成形技术制造组织工程支架研究进展.生物工程学报,2008,24(8):1321~1326.
    [67]王簕,裴国献.快速成型技术在骨组织工程支架制备中的应用.国际骨科学杂志,2007,28(5):278~280.
    [68]马红梅.骨缺损重建的实验研究.沈阳:中国医科大学,2008.
    [69]朱晓龙.人工活性骨内部微细结构建模方法研究.西安:西安科技大学,2003.
    [70]白峰.支架内部结构对多孔生物陶瓷人工骨体内血管化的影响.西安:第四军医大学,2007.
    [71]雷荣昌.异种松质骨支架构建组织工程骨实验研究.长沙:中南大学,2006.
    [72]许建中.骨组织工程产品发展的现状与展望.第三军医大学学报,2008,30(13):1215~1218.
    [73]刘杰,吴雪晖,许建中.骨组织工程进展研究.重庆医学,2008,37(10):1050~1052.
    [74] S.J. Hollister,R.D. Maddox,J.M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials,2002,23(20):4095~4103.
    [75] S.J. Hollister,Y.L. Cheng. Computational design of tissue engineering scaffolds. Computer methods in applied mechanics and engineering,2007,196(31):2991~2998.
    [76] Y.L. Cheng,S.J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. Journal of Biomechanics,2004,37(5):623~636.
    [77] B. Starlya,W. Laub,et al.. Internal architecture design and freeform fabrication of tissue replacement structures. Computer-Aided Design,2006,38(2):115~124.
    [78] K.F. Leong,C.K. Chua,N. Sudarmadji,W.Y. Yeong. Engineering functionally graded tissue engineering scaffolds. Journal of the Mechanical Behavior of Biomedical Materials,2008,1(2):140~152.
    [79] Mao Ya,Chen Zuo-bing. Bionic design of human bone microstructure based on fractal theory. Journal of Clinical Rehabilitative Tissue Engineering Research,2007,11(14):2784~2786.
    [80]杨楠.基于知识的人工骨三维结构仿生设计.西安:西北工业大学,2007.
    [81]饶嵩.骨组织工程支架仿生设计与制造.武汉:武汉理工大学,2004.
    [82]吴懋亮,刘廷章,石钢生.仿生支架微孔结构CAD设计方法.机械科学与技术,2006,25(11):1285~1287.
    [83]李莉敏,郭桂芳,胡庆夕,吴懋亮.面向骨组织工程的三维仿生支架的微观结构研究.中国制造业信息化,2005,34(4):86~88.
    [84]刘丰,张人佶,陈立峰,颜永年.组织工程支架三维结构点单元数据建模.机械工程学报,2006,42(10):37~42.
    [85]李祥,李涤尘,张彦东,卢秉恒.骨组织微结构观察分析及仿生支架立体光固化间接制造.北京生物医学工程,2006,25(2):164~167.
    [86] Chunxiang Dai,Qingxi Hu,Minglun Fang. Parametric-Expression-Based Construction of Interior Features for Tissue Engineering Scaffold with Defect Bone. Life System Modeling and Simulation International Conference,Shanghai,China:2007,9:97~13.
    [87] Liulan L.,Huicun Z.,Qingxi H.,Li Z.,Fang M.. Design and Fabrication of Bionic Scaffolds with Polygradient Microstructure. Tissue Engineering,2007,13(7):1665~1665.
    [88] Liulan Lin,Huicun Zhang,et al.. Application of Image Processing and Finite Element Analysis in Bionic Scaffold’s Design Optimizing and Fabrication. Life System Modeling and Simulation International Conference,Shanghai,China:2007,9:136~145.
    [89] Liulan Lin,Aili Tong,et al.. The Mechanical Properties of Bone Tissue Engineering Scaffold Fabricating Via Selective Laser Sintering. Life System Modeling and Simulation International Conference,Shanghai,China:2007,9:146~152.
    [90]徐艳蕾.基于顺序形态学理论的医学CT图像三维重建方法的研究.长春:吉林大学,2009.
    [91] The Standard of Digital Imaging and Communication in Medicine ( DICOM ) . ftp://medical.nema.org/medical/dicom/2008/,(引用验证有效时间2010.11.20)
    [92]贝尔热(法),戈斯丢(法)著,王耀东译.微分几何-流形、曲线和曲面.北京:高等教育出版社,2009.
    [93]宁小娟.牙齿数字模型的分割方法研究.西安:西安科技大学,2007.
    [94]杨红飞.颅骨缺损修复体的建模方法研究与应用.上海:上海大学,2008.
    [95]平雪良,周来水,刘胜兰.一种保持特征的三角网格光顺方法.计算机工程与应用,2006,42(2):58~60.
    [96] Chun-Yen Chen,Kuo-Young Cheng. A Sharpness-Dependent Filter for Recovering Sharp Features in Repaired 3D Mesh Models. IEEE Transactions on Visualization and Computer Graphics,2008,14(1):200~212.
    [97]丁珊,邢禹彬,李立华,等. SC-CO2纤维粘接法制备PLA/TCP/Collagen组织工程支架材料.材料研究学报,2007,21(4):348~353.
    [98]陈琳,杨庆,沈新元,等.改进溶剂浇铸/粒子沥滤法制备聚ε-己内酯组织工程支架.东华大学学报(自然科学版),2007,33(5):449~553.
    [99]陈楚,谭庆刚,任杰,等.热致相分离法制备聚(乳酸-乙醇酸)/羟基磷灰石复合骨组织工程支架材料的生物相容性.中国组织工程研究与临床康复,2007,11(31):6135~6138.
    [100]董志红,李玉宝,王学江.纳米羟基磷灰石/聚氨酯支架材料体外的生物活性和降解性.硅酸盐学报,2008,36(11):1649~1654.
    [101]袁宇.羟基磷灰石球粒堆积三维多孔支架及其体内异位成骨.成都:西南交通大学,2009.
    [102]李祥,李涤尘,卢秉恒,王林,王臻.可控微结构支架光固化快速成形间接构造方法.机械工程学报,2005,41(11):86~90.
    [103]李祥,李涤尘,王林,卢秉恒,王臻.基于RP的骨组织工程支架构造及生物学特性分析.中国机械工程,2005,16(12):1117~1120.
    [104]索海瑞,岳秀艳,史廷春,姜睿智,邱建辉,彭冬亮.高分子生物材料快速成形构建组织工程支架的研究.中国组织工程研究与临床康复,2008,12(6):1101~1106.
    [105]柴枫,赵铱民,王忠义,李涤尘,陈中中. RP构建不同孔隙率骨支架材料对成骨细胞增殖的影响.口腔颌面修复学杂志,2003,4(3):137~139.
    [106] W. Sun, B. Starly, J. Nam, A. Darling. Bio-CAD modeling and its applications in computer -aided tissue engineering. Computer-Aided Design,2005,(37):1097~1114.
    [107]李祥,李涤尘,苏燕平,卢秉恒.基于快速成形的β-磷酸三钙人工骨结构设计及制造.西安交通大学学报,2005,39(1):13~16.
    [108]杜巍,李树茁,陈煜聪.一种求解多维背包问题的小世界算法.西安交通大学学报,2009,43(2):10~14.
    [109]刘毅,宋玉阶.多维背包问题的DNA计算.生物数学学报,2008,23(1):180~186.
    [110]宋海生,傅仁毅,徐瑞松,宋海洲.求解多背包问题的混合遗传算法.计算机工程与应用,2009,45(20):45~48.
    [111] Fariborz Jolai,M.J. Rezaee,M. Rabbani,J. Razmi,Pariviz Fattahi. Exact algorithm for bi-objective 0-1 knapsack problem. Applied Mathematics and Computation,2007, 194(2):544~551.
    [112] Umit Akinc. Approximate and exact algorithms for the fixed-charge knapsack problem. European Journal of Operational Research,2006,170(2):363~375.
    [113]张芹,宫洪芸.求解多维0-1背包问题的蚁群算法研究.软件导刊,2008,(712):49~51.
    [114]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,2002.
    [115] Jung-Woo Chang , Myung-Soo Kim. Efficient triangle–triangle intersection test for OBB-based collision detection. Computers & Graphics,2009,33(3):235~240.
    [116]刘越.生物活性支架材料的制备及其修复骨缺损的实验研究.北京:军医进修学院(解放军总医院),2008.
    [117]颜永年,李生杰,熊卓,王小红,张婷,张人佶.基于快速原型的组织工程支架成形技术.机械工程学报,2010,46(5):93~98.
    [118]陈欣,邓丽利,刘玲.组织工程支架上种子细胞再生的相关影响因素.医学综述,2009,15(20):3059~3061.
    [119]马哲一.骨组织工程支架内微流体流动状态的数值仿真及分析.秦皇岛:燕山大学,2009.
    [120]杨维本,李爱民,蔡建国,孟冠华,张全兴.不同孔分布的丙烯酸酯吸附树脂对表面活性剂的吸附.中国科学B辑化学,2006,36(3):249~255.
    [121]杨春蓉.骨组织工程支架研究现状及面临的问题.中国组织工程研究与临床康复,2009,13(8):1529~1532.
    [122]汪焰恩,魏生民,闫秀天,陈垚,扬铭.图像分形法研究多孔骨支架微观形态.西安工业大学学报,2009,29(5):443~446.
    [123]李爱民.纤维增强型微管结构仿生人工骨的制备及特性研究.西安:第四军医大学,2007.
    [124]李国臣,王林,桑宏勋,李祥,王成焘等.可控微结构EBM钛合金支架与成骨细胞的体外三维复合培养.中国矫形外科杂志,2009,17(24):1883~1887.
    [125]孟洁.组织工程支架拓扑结构及化学成分对细胞行为的影响.北京:中国协和医科大学,2007.
    [126] Liu Yong, Pei Guoxian, Jiang Shan and Ren Gao-hong. New porous beta-tricalcium phosphate as a scaffold for bone tissue engineering. Journal of Clinical Rehabilitative Tissue Engineering Research,2008,12(23):4563~4567.
    [127]刘婷. PHBV共混材料组织工程支架的研究.上海:东华大学,2007.
    [128] Edward Angel著,吴文国译.交互式计算机图形学——基于OpenGL的自顶向下方法(第4版).北京:清华大学出版社,2007.
    [129] Cha Zhang, Tsuhan Chen. Efficient feature extraction for 2D/3D objects in mesh representation. Proceedings of the 2001 International Conference on Image Processing (ICIP 2001), Thessaloniki, Greece, 2001, 10, Vol.13: 935~938.
    [130]叶义成,柯丽华,黄德育.系统综合评价技术及其应用.北京:冶金工业出版社,2006.
    [131]赵茂俞,薛克敏,李萍.多目标质量的覆盖件成形工艺参数优化.机械工程学报,2009,45(8):276~282.
    [132]杜栋,庞庆华.现代综合评价方法与案例精选(第2版).北京:清华大学出版社,2008.
    [133]孙建军,成颖.定量分析方法(第二版).南京:南京大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700