多孔生物陶瓷支架的组织学性能和力学性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
较大尺寸的骨缺损不能自体愈合,往往在缺损处移植骨代替物以帮助骨愈合。针对这一难题,骨组织工程应运而生。目前,骨组织工程研究主要集中在三个方面:种子细胞、支架、生物反应器。对于支架的探索又分为两个方面:一是支撑和诱导骨组织生长的支架,即使用一种多孔结构材料支架来充填缺损,这种支架具有骨传导和骨诱导能力,能引发成骨细胞及该区域其他细胞长入并吸附在支架上;二是支架材料与细胞的相互作用,在具骨传导性能的支架上成骨细胞迁移有助于骨组织长入和细胞外基质形成,这对于骨缺损的愈合具有重要的功能。骨组织工程支架的基本要求包括:良好的生物相容性,三维贯通的孔隙结构,良好的材料/细胞界面,一定的生物降解性能,并且具有良好的力学性能。因此羟基磷灰石(HA)多孔生物陶瓷支架优良的生物相容性决定了其发展的必然性。
     实验对多孔羟基磷灰石颗粒堆积支架、泡沫浸渍法制备的多孔网状羟基磷灰石支架和石蜡造孔剂造孔的羟基磷灰石支架进行体式显微镜和SEM表征,从宏观和微观角度观察支架的孔隙结构,对比其孔隙率和孔隙结构特点。然后选取多孔HA颗粒堆积支架在体内构建组织工程骨,再将构建时间点不同的组织工程骨置于骨缺损部位进行修复实验。通过组织学染色分析,观察支架材料与组织的相互作用以及构建的组织工程骨骨缺损的修复能力。同时,我们改良了硬组织切片制备技术,得到了较为理想的薄层组织学染色标本。另外,骨的力学完整性得到恢复是判断组织工程骨修复骨缺损是否成功的重要标志。本文对构建的组织工程骨以及组织工程骨原位修复的修复骨进行了系统的力学性能表征。本实验获得的主要结果如下:
     1.三种HA支架均具有均匀的孔隙分布,较高的孔隙率,且力学性能良好。选用多孔HA颗粒堆积支架和致密HA颗粒堆积支架考察其在体内构建组织工程骨的情况。
     2.针对传统硬组织切片技术的缺陷,对超薄硬组织切片技术进行了改进,大大提高了超薄硬组织切片的完整性。传统硬组织切片技术体内构建的组织工程骨标本在切的很薄的情况无法保持其完整性,同时还存在染料吸附和容易脱片的缺陷。通过大量的探索和尝试,我们队超薄硬组织切片技术进行了优化,克服了组织学检测技术处理生物陶瓷材料时易于破坏组织和材料结构的缺点,从根本上解决了标本脱片及染色吸附的问题,从而保证超薄硬组织切片形态完整和后续组织学标本染色层次清晰。
     3.通过对腹腔和背肌内构建的组织工程骨组织学染色分析,证明了HA颗粒堆积支架在动物模型体内具有良好的骨诱导性,有利于细胞粘附、组织的长入和血管化。材料在体内构建组织工程骨的能力与所处的生理环境和材料的孔隙结构关系密切。对修复骨的组织学染色显示,组织工程骨的构建时间与原位修复时间共同影响着骨修复能力。
     4.通过对体内构建的组织工程骨抗压强度测试表明,多孔颗粒堆积支架相较于致密颗粒堆积支架具有更高的抗压强度,且其抗压强度随体内构建时间的延长而增加,6个月后抗压强度达到自然松质骨的92%左右。利用体内构建的组织工程骨对胫骨长段骨缺失进行修复,构建6个月修复3个月(6M-3M)的修复骨标本的抗弯强度达到正常骨的94%左右。
     综和以上结果,得出结论:多孔颗粒堆积支架的三维空间结构利于细胞的粘附、组织的生长;组织学染色分析表明,支架孔隙结构和所处的生物环境对组织工程骨的构建有很大的影响,构建时间与原位修复时间共同影响着骨修复能力:通过对硬组织切片技术的改良,制得了较为理想的HA支架材料类骨修复体硬组织切片标本;影响修复骨力学性能的因素包括组织工程骨构建时间,体内原位修复的时间。研究发现,随体内修复时间的延长,修复骨的抗弯强度能够达接近正常骨的力学强度,力学实验结果与组织学分析相一致。
Since the large bone defect cases can not self heal, the bone graft is needed to auxiliary healing. Bone tissue engineering research is mainly concentrated in two aspects. One is bone induction, a porous biodegradable scaffold was used to fill the defect, which has the ability of bone conduction and bone induction, can cause the osteoblast and otther cells move into and spread on the scaffold. The other is cell migration, the autologous osteoblast and osteoblastoma in the sacffold play a important role in defect healing, the migration of osteoblast is contribute to tissue ingrowth and the formation of the extracellular matrix. The scaffold materials for bone tissue engineering need to fulfill a few basic requirements, including biocompatibility, three-dimensional (3D) porous structure, biodegradability, favorable material/cell interface and mechanical properties. Furthermore, for in vivo bone tissue engineering, the surface properties of scaffolds (chemical composition, surface microstructure) also play critical roles.
     In this study, HA porous scaffolds were prepared by three methods, then the macro and micro porous structures of the scaffold were characterized by stereomicroscope and SEM. Used dog as an experimental mode, the HA spherule scaffolds were implanted in enterocoelia to study the biological properties of the material. Observation of material deformation, vaseularized and ossification were characterized by histotomy, and the mechanical properties were also characterized, then the implant were used to repair the bone defect. We improved the method of hard tissue slicing for research of bone tissue engineering of bioceramic materials, prepared the better thin layer histologic dyeing specimens. The mechanical properties of HA scaffolds is the main rejection for applied in bone repair.
     The main conclusions were obtained as follows:
     · The HA scaffold has regular pore structure, suitable porosity and good mechanical properties, and HA spherule scaffolds were implanted in enterocoelia to study the biological properties of tissue engineered bone.
     · We improved the hard biopsy technology to make a better analysis of the interaction between materials and tissues. Traditional hard biopsy technology had the following defects: when the ceramic specimens were cut to very thin, it can hardly keep the integrity, and were easy to take off when dyeing. The improved technology overcame the defect that it may destroy organization, when we use the histologic detection technology to deal with the biological ceramic materials. It fundamentally solved the defects such as dyeing of take off and dye absorption, so as to got the integral and clear histologic dyeing specimens.
     · The compressive property of the tissue engineered bone built by scaffolds was increased significantly along with the increase of the implant time. The porous scaffolds had the better compressive property compared with the density ones. That may be due to the porous surface was more advantageous to the protein absorption and cell proliferation, and induct the tissue extended into the scaffolds, induct the formation of the bone eventually.
     · The mechanical property of defect bone healed with the tissue engineered bone was increased along with the increase of the healing time, the influence factors of the healed bone mechanical property included the implant time and the in suit repair time.We found that the mechanical property of the healed bone were almost close to normal bone along with the increase of the healing time. The materials and the bone were combined well, bone tissue conduction were well done, the interface of material-bone were indistinct, and the materials were degradation transformation unceasingly.
引文
[1]Heineken F G, Skalak R. Tissue Engineering:A Brief Over-view. Biomech Eng.1991,113(4):111.
    [2]李玉宝.生物医用材料.化学工业出版社,2003.
    [3]Hase H, et al. Bilateral open laminoplasty using ceramic laminas for cervical myelopathy. Spine 1991, 16(11):1269-1276.
    [4]Lutton P, Huckstep R L. Newer materials and concepts in the stabilization of bones and joints. Biomaterials.1988,3(17):291.
    [5]李世普.生物医用材料导论.武汉理工大学出版社,2000.
    [6]Martina M, Subramanyam G, Weaver J C, et al. Developing macroporous bicontinuous materials as scaffolds for tissue engineering. Biomaterials.2005,26(28):5609-5616.
    [7]Yamasaki H. Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs. Jpan J Oral Biol.1990:32(13):190-192.
    [8]Zhang X, Zhou J, Chen W, Wu C, et al. A calciuphosphate bioceramics with osteoinduction. Trans Fourth World Biomaterials Congress, April 24-28,1992, Berlin, Germany.
    [9]James L, Ferrara M, Yanik G. Acute graft versus host disease:pathophysiology, risk factors, and prevention strategies. Clin Adv Hema Onco.2005,3(5):415-419.
    [10]Hollinger J O, Einhom T A, Doll B A, et al. The organic and inorganic matrices. Bone Tissue Eng. 2005(3):27-29.
    [11]Boyde A, Corsi A, Quarto R, et al. Osteoconduction in large macro porous hydroxyapatite ceramic implants:evidence for a complementary integration and disintegration mechanism. Bone. 1999,24(6):579-589.
    [12]Larry L, Hench, Julia M, et al. Third-generation biomedical materials. Science, 2002,295:1014,1016-1017.
    [13]Dietmar W H. Scaffold in tissue engineering bone and cartilage. Biomaterials,2000, 21(24):2529-2543.
    .[14] Kim B S, Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology.1998,16(5):224-230.
    [15]Barou O, Mekraldi S, Vico L, et al. Relationships between trabecular bone remodeling and bone vascularization:a quantitative study. Bone.2002,30(4):604-612.
    [16]Krupa D, Baszkiewicz J, Kozubowski, et al. Effect of calcium-ion implantation on the corrosion resistance and biocopatibility. Biomaterials.2001,22(15):2139-2151.
    [17]Nayab S N, Jones F H, Olsen I, et al. Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials.2005:26(23):4717-4727.
    [18]Webster T J, Ergun C, Doremus R H, et al. Increased osteoblast adhesion on titanium-coated hydroxyapatite that forms CaTiO3. J Biomed Mater Res,2003:67A:975-980.
    [19]赵瑾,袁晓燕,姚康德.组织工程多孔支架制备技术进展化工进展.2002,21(9):644-648.
    [20]Sul Y T. The significance of the surface properties of oxidized titanium to the bone response:special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials,2003:24(22): 3893-3907.
    [21]Hench L L. Sol-gel materials for biocetamic application,Current opinion in solid state and materials. Science,1997,2:604-610.
    [22]崔福斋,冯庆玲.生物材料学.清华大学出版社,2006.
    [23]李湘洲,李凡.生物陶瓷材料的现状与发展趋势.佛山陶瓷.2003,13(12):3-5.
    [24]Renooi J W.Bioresorption of ceramic strontium-85-labeled calci umphosph ate implants in dog femora. Clinical Orthopaedics and Related Research,1985,197:272.
    [25]王海亭,陈磊,金雪玲等.羟基磷灰石材料在生物材料中的研究与开发.山东陶瓷.2002,25(2):3-8.
    [26]李静,曹谊林,崔磊.骨组织工程学研究进展及展望.国外医学·骨科学分册.2001,22(1):5-9
    [27]姚秀敏,谭寿洪,江东亮.孔径可控的多孔轻基磷灰石的制备工艺研究.功能材料与器件学报.2001,7(2):152-156
    [28]Schwartzwalder, A.V.Somess. 美国专利,1963:3090094
    [29]Tampieri A, Celotti G, Sprio S, et al. Porosity-graded hydroxyapatite ceramics to replace naturalbone.Biomaterials.2001,22(11):1365-1370
    [30]ZhaoJ, GuoLY, YangXB, et al. Preparation of bioactive porous HA/PCL composite scaffolds.Applied SufaceSeienee.2008,255(5):2942-2946
    [31]吴建锋,徐晓虹.多孔磷酸二钙生物陶瓷的研制.陶瓷学报.1999,2(3):104-107.
    [32]Engin N, Tas A C. Preparation of porous Ca10(PO4)6(OH)2 and Beta-Ca3(PO4)2 bioceramics. Jam Ceram Sco.2000,83(7):1581-1584
    [33]Sheppard L M. Porous ceramic:Processing and application.CeramTrans.1993,31(2):3-23
    [34]Milosevski M, Bossert J, Milosevski D, et al. Preparation and properties of dense and porous calcium phosphate. Ceramics International.1999,25(8):692-698
    [35]Engin Fabrication and characterization of porous hydroxyapatite granules.Biomaterials,1996,17:1955-1957.
    [36]吴皆正,易石阳,欧阳堒.可控微米级多孔陶瓷的研制.硅酸盐通报,1993(3):4-9
    [37]Karlis A, Gross L, Rodriguez L. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.Biomaterials.2004,3(25):4955-4962
    [38]夏光华,缪松兰,徐乃平等.等静压成型日用瓷釉面针孔的显微结构分析.中国陶瓷,1997(6): 34-36
    [39]Wilson C E, De Brujin J D, Van Blitterswijk C A, Verbout A J, Dhert W J. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. Journal of Biomedical Materials Research A.2004,68(1): 123-132.
    [40]Kalita S J, Bose S, Hosick H L, Bandyopadhyay A. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science and Engineering C.2003,23(5):611-620.
    [41]Silval G A, Coutinho O P, Ducheyne P, et al. Materials in particulate form for tissue engineering-applications in Bone. J Tissue Eng Regen Med.2007,1(2):97-109.
    [42]Yamasaki H, Sakai H,.Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs.Biomaterials.1992,13(55):308-312.
    [43]郭来阳.孔隙结构互补的磷灰石多孔支架的研究.西南交通大学硕士论文.2007:7-14.
    [44]HenehL L. Bioceramics:from concept to clinic. Am J Ceram Soc.1991,74(6):1487-1510
    [45]Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering:rationale for computer-aided design and solid free-form fabrication systems. Trends in biotechnology.2004,22(7): 354-362.
    [46]Hofman S, Sidqui M, et al. Effect of Laddec on the formation of calcrfied bone matrix in rat calvariae cells culture. Biomaterials.1999,20(13):1155-1166.
    [47]罗丙红,卢泽俭.组织工程用高度多孔生物可降解支架的制备.国外医学生物医学工程分册.2001,24(4):154-158.
    [48]Tsuang Y H, Lin F H, et al. In vitro cell behavior of osteoblasts on pyrost bone substitute. Anat Rec. 1997,247(2):164-169.
    [49]Chen R, Hunt J A. Biomimetic materials processing for tissue engineering processes. Mater Chem. 2007,17(7):3974-3979.
    [50]Vitale-Brovarone C, Verne E, Robiglio L, Appendino P, Martinasso G, Muzio G, Canute R. Development of glass-ceramic scaffolds for bone tissue engineering:Characterisation, proliferation of human osteoblasts and nodule formation. Acta biomaterials.2007,3(2):199-208.
    [51]Kim B S, Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Tre Biotech.1998,16(5):224-230.
    [52]高建平,马朋高等.组织工程与生物可降解高分子骨架.高分子通报,2000;4:89-95.
    [53]Agrwal C M, Ray R B. Biodegradable polymer scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res.2001,55(2):141-150.
    [54]杨志明.组织工程基础与临床[M].成都:四川科学技术出版社,2000:39-40,125.
    [55]成令忠,钟翠平,蔡文琴.现代组织学[M].上海:上海科学技术文献出版社,2003,238.
    [56]刘绍良.塑料包埋不脱钙骨组织玻璃刀切片技术.中华病理学杂志,1996;25(1):49.
    [57]吕荣,陶惠仁,石凯军等.明胶浸泡冷冻切片法与石蜡包埋法制作骨组织大切片的对比.临床与实验病理学杂志,1995;11(4):283.
    [58]吕荣,南耘,胡蕴玉等.骨切片固定液和脱钙剂的筛选及效果观察.临床与实验病理学杂志,1992;8(3):229.
    [59]刘介眉.病理组织染色的理论方法和应用.北京:人民出版社,1981:22-29.
    [60]王东胜.三种特殊染色法显示不脱钙骨切片中新生骨的比较研究.中华老年口腔医学杂志.2006,4(3):139,163-164.
    [61]Doneth K, Breuner G. A method for the study of undecadcified bones and teeth with attached tissues-The sige-Schliff technique. J Oral Pathol,1982,11:318-326.
    [62]夏天,张聪,黄鹏等.三种不同染色技术在体内组织工程中的组织学研究.四川学.2012,1(33):17-19.
    [63]李秀群,邓力,罗静聪等.硬组织切片技术在组织工程骨研究中的应用.中国修复重建外科杂志.2004,18(3):239-240.
    [64]李春宏.脱片的原因及防止方法.锦州医学报,1990.
    [65]O. Farouk,C. Krettek,T. Miclau,P. Schandelmaier,H. Tscherne. Effects of percutaneous and conventional plating techniques on the blood supply to the femur. Archives of Orthopaedic and Trauma Surgery,1998,117(8).
    [66]董宝财,李映芳.牙体组织制片技术的改进及探讨.昆明医学院学报,2002,(02).
    [67]Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop.1981,157:259-278.
    [68]Kasten P, Ingo B, et al. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells:An in vitro and in vivo study. Acta Biomater.2008; 4(6):1904-1915.
    [69]Hench LL, Wilson J. Surface-active biomaterials.Seienee1984;226:630-636.
    [70]Chiroff RT, White EW, Weber JN, et al. Tissue ingrowth of replamineform implants.J Biomed Mater Res.1975,9:29-45.
    [71]Stevens M M, Marini R P, Schaefer D, et al. In vivo engineering of organs:the bone bioreactor. Proc Natl Acad Sci.2005,102(32):11450-11455.
    [72]Hulbert SF, Young FA, Matgews RS et al. Potential of ceramic materials as permanently implantable skeletal prosthesis. J Biomed Mater Res.1970,4:433-442.
    [73]Klawitter J J. A basic investigation of bone growth into a porous ceramic material. Doctoral Thesis, Clemson University. Clemson, SC,1970.
    [74]Chiroff R T, et al.Tissue ingrowth of replaminefonn implants. J Biomed Mater Res.1995,9(4): 29-459.
    [75]Yamasaki H, Sakai H. Osteogenic response to porous Hydroxyapatite ceramics under the skin of dogs. Biomaterials.1992,13(5):308-312.
    [76]袁宇.羟基磷灰石球粒堆积三维多孔支架及其体内异位成骨.西南交通大学硕士论文.2006:13-14.
    [77]Hench L L, Wilson J. Surface-active biomaterials. Science.1984,226(4675):630-636.
    [78]Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res.1981, 3(157):259-278.
    [79]Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J Bone Joint Surg(Am) 1991,73(5):692-703.
    [80]Yang Z J, Yuan H P, Tong W D, et al. Osteogenesis in extraskeletally implanted porous phosphate ceramics:variability among different kinds of animals. Biomaterlals.1996,17(22):2131-2137.
    [81]张聪.骨诱导磷酸钙陶瓷和体内骨组织工程研究.四川大学博士论文.2001:7-19.
    [82]Trojani C, Boukhechba F, Scimeca J C, et al. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006,27(17):3256-3264.
    [83]Eslaminejad M B, Jafarian M, Khojasteh A, et al. Enhancing ectopic bone formation in canine masseter muscle by loading mesenchymal stem cells onto natural bovine bone minerals. IJVS.2007, 2(4):25-35.
    [84]Yuan Y, Huang P, Peng Q, et al. Osteogenesis of porous bioceramics scaffolds consisted of hydroxyapatite spherules after implanted in different non-osseous sites. Mater Sci Forum.2009,6: 1335-1338.
    [85]Claase M B, Bruijn J D, Grijpma D W, et al. Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity. J Mater Sci Mater Med, 2007,18(7):1299-1307.
    [86]Pieper J S, Vail P B, Van M J, et al. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterial.2000,21(31):1689-1690.
    [87]Johnson K D, Frierson K E, Keller T S, et al. Porous ceramics as bone graft substitutes in long bone defects:A biomechanical and radiographic analysis. Orthop Res,1996,14:351-369.
    [88]Perets A, Barueh Y, Weisbueh F, et al. Enhancing the vascularization of three-dimensional Porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres.J Biomed Mater Res.2003,65A(4):489-97.
    [89]杨志明,樊征夫,解慧琪等.组织工程化人工血管化研究.中华显微外科杂志.2002,25(2):119-122.
    [90]张聪,姚一民,冯怀志等.多孔生物活性陶瓷治疗骨缺损.西南国防医药.2003,13(3):274-276
    [91]Wolfgang L, Michael T, Erich S, et al. Ullman's Encyclopedia of Industrial Chemistry. John Wiley and Sons,2009.
    [92]黄晶.生物材料表面功能化及可控微结构陶瓷支架的研究.西南交通大学硕士论文.2011.
    [93]龚明明,谭丽丽,杨柯.骨组织工程支架材料及其力学性能.材料导报.2007,21(10):43-46.
    [94]Harrigan T P, Hamilton. Bone remodeling and structural optimization. J Biomech,1994,27: 323-328.
    [95]Roesler H. The history of some fundamental concepts in bone biomechanics. J Biomech,1987,20: 1025-1034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700