生物材料表面生物功能化及可控微结构陶瓷支架的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口老龄化和各种创伤的增加,生物材料尤其是骨修复材料的需求日益增长。临床上骨缺损现象主要是由于外伤、肿瘤以及先天性缺陷等原因引起,是骨科中最常见的疾病之一。对于较大尺寸的骨缺损病例其骨缺损不能自体愈合,很大程度上依靠骨移植体进行修复。一般考虑骨移植体来源是自体骨移植和异体骨移植或异种骨移植。但存在诸多问题,如自体骨供应量有限、异种骨存在免疫反应或炎症反应。人工合成的生物材料也是一类重要的骨修复材料,但是,能承力的金属材料缺乏生物活性,而非金属材料又不能满足骨修复的力学性能要求。因此,骨组织工程构建骨组织修复材料显得尤为重要。骨组织工程中支架材料需满足以下要求:(1)具有良好的生物相容性;(2)具有良好的三维多孔结构;(3)具有良好的生物降解性;(4)良好的材料/细胞界面;(5)具有良好的力学性能和可塑性。体内构件组织工程骨,在选择良好生物相容性及良好三维贯通多孔结构的支架基础上,需重点研究生物材料表面性质(如化学成分,支架微结构)对材料功能化的影响。
     本研究中,首先涉及热化学法在常用生物金属材料(钛合金)表面制备生物活性钛酸钙涂层,该制备方法简单、有效。接着重点研究溶胶-凝胶法制备可控微结构生物无机陶瓷(羟基磷灰石,HA)球粒,并将其堆积成支架,通过体外细胞、仿生矿化实验和体内非骨部位植入实验,考察支架微结构对其生物功能化的影响,并进行了异位杂化支架原位骨修复实验,取得了较为满意结果。本研究主要结论如下:
     1.通过在钛合金基底上覆盖无水硝酸钙,并升温使其发生热化学反应,能制备均匀分布的钛酸钙生物涂层。该方法相比于其他方法,更简单、稳定,制备的涂层同样具有生物活性,可实现对医用钛及其合金的表面改性。
     2.通过系统优化溶胶-凝胶体系中HA/Chitin比例,制备了可控微结构的HA球粒,并对形貌、结构和性能进行表征。结果显示:该体系能制备多孔表面和致密表面的HA球粒;在体外细胞和仿生矿化实验中,控制支架宏观大孔尺寸和贯通性一致,发现球粒表面微结构会影响堆积支架整体的生物功能性;多孔表面HA球粒堆积支架比致密表面HA球粒堆积支架具有更好的生物活性,表现为更好的成骨细胞黏附、增殖活性以及早期更迅速地钙磷盐沉积。
     3.通过动物狗体内非骨部位(腹腔)植入多孔表面的球粒堆积支架和致密表面的球粒堆积支架异位杂化实验,主要考察两种支架异位骨诱导性和改善支架力学性能两方面。结果显示:两种支架异位杂化后均能改善陶瓷支架的力学性能;多孔表面HA球粒支架其异位骨诱导能力要优于致密表面HA球粒支架,说明球粒微结构对支架生物功能化具有十分重要的作用。
     4.通过在动物狗体内非骨部位(腹腔)预先植入多孔表面HA球粒堆积支架进行杂化,然后采用杂化支架对原位骨缺损进行修复。结果显示:异位杂化支架具有优越的原位修复能力,组织学切片染色图可观察到杂化支架进行原位修复时出现大量新骨形成。通过本研究,说明球粒堆积支架体内构建组织工程骨的可行性,为临床中获取骨修复体提供了新途径,具有良好的应用前景。
With the aging of the population, the demand for biomaterials has been increasing, especially bone repair materials. Bone defect is commonly seen in clinics, mainly due to infection, trauma, tumor and congenital disorders. Currently, critical-size bone defects remain difficult to repair. Various approaches have been developed for the repair of large defects, including the use of autografts, allografts and synthetic materials. Autografts are currently the gold standard but are limited in availability. Allografts, on the other hand, involve the risks of immune reaction and inflammatory reaction. Synthetic materials have been regarded as important alternatives to allografts and autografts. However, metallic materials generally lack bioactivity and non-metallic materials do not meet the requirement of mechanical properties for load-bearing applications.
     Tissue engineering has been introduced as a promising approach to repair large bone defects. The scaffold materials for bone tissue engineering need to fulfill a few basic requirements, including biocompatibility, three-dimensional (3D) porous structure, biodegradability, favorable material/cell interface and mechanical properties. Furthermore, for in vivo bone tissue engineering, the surface properties of scaffolds (chemical composition, surface microstructure) also play critical roles.
     In this study, firstly, calcium titanate coatings were prepared on Ti6A14V substrates by a thermochemical surface transformation technique. This technique was simple and efficient. Secondly, HA spheres with controllable microstructure were prepared by a method combining sol-gel and water/oil emulsification techniques and then acculmulated in a porous tube as a porous scaffold. The effects of scaffold microstructure and the bio-functionalization were studied by in vitro cell culture, in vitro biomimetic mineralization and in vivo implantation in non-osseous sites. Then, ectopic hybrid scaffolds were implanted in experimentally created bone defects to evaluate their bone repair capability. The following conclusions were obtained:
     1. Reaction between the molten calcium nitrate and Ti6A14V formed a uniform layer of calcium nitrate. This technique was simple and efficient, and the coating was bioactive. This technique could be used as a way of surface modification for titanium and its alloys.
     2. HA spheres with controllable microstructure were successfully prepared by combining sol-gel and water/oil emulsification. Spheres with porous or dense surface could be prepared by adjusting the processing conditions. The surface microstructures of spheres could influence the bio-functionalization of scaffolds. The scaffolds constructed from spheres with a porous surface were found to have superior bioactivities, including a better osteoblasts adhesion, more active proliferation, and a faster deposition of calcium phosphate salts during in vitro biomimetic mineralization.
     3. Scaffolds constructed from spheres with porous or dense surfaces were implanted in the abdominal cavities of dogs, and the ectopic bone formation and the improvement of mechanical properties were evaluated. Results showed that:the mechanical properties of both scaffolds were improved. The scaffolds consisted of porous-surfaced spheres showed a better capability of inducing ectopic bone formation compared with those consisted of dense-surfaced spheres.. These findings suggest that the surface microstructure of spheres is an important factor for the in vivo functionalization of scaffolds.
     4. Repair of experimental bone defects with ectopically hybridized scaffolds showed that the hybrid scaffolds had a superior ability of bone repair. The histological analyses revealed that new bone tissues were formed when using hybrid scaffolds for bone repair. These results demonstrate the feasibility of in vivo construction of bone tissues. This approach may provide new possibilities of creating clinically viable bone grafts for the repair of large bone defects.
引文
[1]Hase H. et al. Bilateral open laminoplasty using ceramic laminas for cervical myelopathy. Spine 1991: 16(11):1269-1276.
    [2]Heineken F G, Skalak R. Tissue Engineering:A Brief Over-view. Biomech Eng.1991.113(4):111.
    [3]Lutton P, Huckstep R L. Newer materials and concepts in the stabilization of bones and joints. Biomaterials.1988,3(17):291.
    [4]李世普.生物医用材料导论.武汉理工大学出版社,2000.
    [5]Martina M, Subramanyam G, Weaver J C, et al. Developing macroporous bicontinuous materials as scaffolds for tissue engineering. Biomaterials.2005.26(28):5609-5616.
    [6]Cerroni L, Filocamo R, Fabbri M, et al. Growth of osteoblast-like cells on porous hydroxyapatite ceramics:an in vitro study. Biomo Eng.2002,19(26):119-124.
    [7]Maeda H, Kasuga T. Nogami M, et al. Preparation of bonelike apatite composite for tissue engineering scaffold. Sci Technol Adv Mater.2005,6(1):48-53.
    [8]Yamasaki H. Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs. Jpan J Oral Biol.1990:32(13):190-392.
    [9]Zhang X, Zhou J, Chen W, Wu C, et al. A calciuphosphate bioceramics with osteoinduction. Trans Fourth World Biomaterials Congress, April 24-28.1992. Berlin, Germany.
    [10]James L, Ferrara M, Yanik G. Acute graft versus host disease:pathophysiology, risk factors, and prevention strategies. Clin Adv Hema Onco.2005.3(5):415-419.
    [11]Hollinger J O, Einhom T A, Doll B A, et al. The organic and inorganic matrices. Bone Tissue Eng. 2005(3):27-29.
    [12]Boyde A, Corsi A, Quarto R, et al. Osteoconduction in large macro porous hydroxyapatite ceramic implants:evidence for a complementary integration and disintegration mechanism. Bone. 1999,24(6):579-589.
    [13]Barou O,Mekraldi S. Vico L. et al. Relationships between trabecular bone remodeling and bone vascularization:a quantitative study. Bone.2002,30(4):604-612.
    [14]Dietmar W H. Scaffolds in tissue engineering bone and cartilage. Biomaterials.2000.21(24): 2529-2543.
    [15]吴景梅,吴若峰.骨组织工程多孔支架材料性质及制备技术.化工新型材料.2004,32(9):17-20.
    [16]Zitzmann NU. Berglundh T, Marinello CP, et al. Experimental periimplant mucositis in man. J Clin Periodontal.200],28(6):517-523.
    [17]Rupp F, Scheideler L, Olshanska N. et al. Enhancing surfacefree energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res 76A. 2006,76(2),323-334.
    [18]Lu X. Wang Y B, Liu Y R, et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol-gel techniques. Mater Lett.2007.61(18):3970-3973.
    [19]Krupa D, Baszkiewicz J, Kozubowski, et al. Effect of calcium-ion implantation on the corrosion resistance and biocopatibility. Biomaterials.2001,22(15):2139-2151.
    [20]Nayab S N. Jones F H. Olsen I. et al. Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials.2005:26(23):4717^4727.
    [21]Webster T J, Ergun C, Doremus R H, et al. Increased osteoblast adhesion on titanium-coated hydroxyapatite that forms CaTiO3. J Biomed Mater Res.2003:67A:975-980.
    [22]Sul Y T. The significance of the surface properties of oxidized titanium to the bone response:special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials,2003:24(22): 3893-3907.
    [23]王艳霞,任杰,任天斌等.聚乳酸-羟基乙酸表面接枝GRGD多肽及其细胞相容性研究.中国生物医学工程进展—2007中国生物医学工程联合学术年会论文集(下册).2007.
    [24]吕强,曹传宝.朱贺孙.肝素和聚氨酯同溶液体系混合接枝及其抗凝血性.材料研究学报.2004,18(3):251-256.
    [25]Helary G, Noirclere F, Mayingi J. et al. A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating. Acta Biomater.2009,5(1): 124-133.
    [26]McBeath R, Pirone D M, Nelson C M, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell.2004.6(4):483-495.
    [27]Nelson C M, Chen C S. Signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett.2002,514(2~3):238-242.
    [28]Yuan H P. Kurashina K. Bruijn J D. et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials.1999.20(19):1799-1806.
    [29]刘文文,陈振玲,蒋兴宇.二维平面细胞微图案化技术及其生物学应用.分析化学.2009,37(7):943-949.
    [30]Lu X. Leng Y. Comparison of the osteoblast and myoblast behavior on hydroxyapatite microgrooves. J Biomed Mater Res B Appl Biomater.2009.90(1):438-45.
    [31]Matsuzaka K. Yoshinari M, Shimono M,et al. Effects of multigrooved surfaces on osteoblast-like cells in vitro:Scanning electron microscopic observation and mRNA expression of osteopontin and osteocalcin. J Biomed Mater Res A.2004,68(2):227-34.
    [32]Walboomers X F, Monaghan W. Curtis A S G,et al. Attachment of fibroblasts on smooth and microgrooved polystyrene. J Biomed Mater Res.1999.46(2):212-20.
    [33]Teixeira A I, Abrams G A, et al. Epithelial contact guidance on well-defined micro-and nanostructured substrates. J Cell Sci.2003,116(Pt10):1881-1892.
    [34]Yang J Y, Ting Y C, Lai J Y, et al. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. J Biomed Mater Res A.2009,90(3):629-40.
    [35]Kilian K A, Bugarija B, Lahn B T, et al. Geometric cues for directing the differentiation of mesenchymal stem cells. PNAS.2010,107(11):4872-4877.
    [36]Lee S H, Cho H S, Park C I. et al. Three-dimensional(3D) hollow polymeric microstructures for shear-protecting cell containers within microfluidic channel. Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences October 12-16,2008, San Diego, California, USA.
    [37]Chehroudi B,McDonnell D, Brunette D M. The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing. J Biomed Mater Res.1997,34(3):279-290.
    [38]梁芳慧,周廉.钛和钛合金生物活化研究现状.稀有金属材料与工程.2003,32(4):241-245.
    [39]Autenrieth T,Jiang Z X, Klein F. et al. Adhesion and migration on 2D-and 3D micro-patterned subsrates. www.zil.uni-karlsruhe.de/forschung_cell_adhesion.php.
    [40]Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A.2005.74A(1):49-58.
    [41]Popat K C. Leoni L, Grimes C A, et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials.2007.28:3188-3197.
    [42]陈光兴,杨柳.骨组织工程中细胞与细胞外基质材料间的相互作用.中国临床康复杂志.2003,26(7):3630-3632.
    [43]Kim B S. Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Tre Biotech.1998.16(5):224-230.
    [44]高建平.马朋高等.组织工程与生物可降解高分子骨架.高分子通报,2000;4:89-95.
    [45]Agrwal C M, Ray R B. Biodegradable polymer scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res.2001.55(2):141-150.
    [46]Hofman S, Sidqui M, et al. Effect of Laddec on the formation of calcrfied bone matrix in rat calvariae cells culture. Biomaterials.1999.20(13):1155-1166.
    [47]罗丙红,卢泽俭.组织工程用高度多孔生物可降解支架的制备.国外医学生物医学工程分册.2001,24(4):154-158.
    [48]Tsuang Y H, Lin F H, et al. In vitro cell behavior of osteoblasts on pyrost bone substitute. Anat Rec. 1997,247(2):164-169.
    [49]Chen R, Hunt J A. Biomimetic materials processing for tissue engineering processes. Mater Chem. 2007,17(7):3974-3979.
    [50]刑辉,陈晓明,张宏泉.骨组织工程支架材料.生物骨科材料与临床研究.2004,1(5):35-39.
    [51]Scheper E, de Clercq M,Ducheyne P. Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil.1991.18(5):439-442.
    [52]Rammelt S, Chulze E, Bernhardt R, et al. Coating of titanium implants with type-I collagen. J Orthop Res.2004,22(5):1025-1034.
    [53]Johnson K D, Frierson K E, Keller T S, et al. Porous ceramics as bone graft substitutes in long bone defects:A biomechanical and radiographic analysis. Orthop Res,1996,14:351-369.
    [54]李湘洲,李凡.生物陶瓷材料的现状与发展趋势.佛山陶瓷.2003,13(12):3-5.
    [55]Ripamonti U, Crooks J, Kirkbride A N. Sintered porous by droxyapatites with intrinsic osteoinductive activity:geometric induction of bone formation. S Afr J Sci.1999,95(8):335-339.
    [56]Sims C D,Butler P E, Cao Y L. et al. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg.1998.101(6):1580-158.
    [57]Lammens J. Nijs J. Schepers E. et al. The effect of bone morphogenetic protein-7 (OP-1) and demineralized bone matrix (DBM) in the rabbit tibial distraction model. Acto Orthop Belg.2009, 75(1):103-109.
    [58]Mooney D J, Baldwin D F, Suh N P. et al. Novel roach to fabricate porous sponges of Poly without the use of organic solvents. Biomaterials.1996.17(14):1417-1422.
    [59]Breitbart A S. Grande D A. Kessler R. et al. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg.1998.101(3):567-574.
    [60]Rivard C H. Chaput C. Rhalmi S. et al. Bioabsorbable synthetic polyesters and tissue regeneration. A study of three-dimensional proliferation of orin chondrocytes and osteoblasts. Ann Chir.1996. 50(8):651-658.
    [61]Bounm eester S J M, Kuijer R. Quan titative his-tological analysis of bone ingrowth with in the biomaterial polyactiveTM implanted indifferent bone locations:a experimental study in robbits. J Mater Sci Mater Med.1998,9(4):181-185.
    [62]颜晓慧,郑磊.洪华容等.骨组织工程应用可降解聚合物的可行性探讨.国外医学生物医学工程分册.2000.23(1):11-17.
    [63]李亚军,阮建明.聚乳酸/羟基磷灰石复合型多孔状可降解生物材料.粉末冶金材料科学与工程.2002,3(71):75-81.
    [64]Wu L B, Ding J D. Advances in fabrication methodology and technology of three-dimensional porous scaffolds for tissue engineering. J Funct Polym.2003,16(1):91-96.
    [65]周强.石国华,杨柳等.BMP及TGF-3复合生物材料治疗股骨头坏死的组织学观察.第三军医大学学报.2002,24(5):567-570.
    [66]Bakos D, Soldan M, Hernandez-Fuents, et al. Hydroxyapatite-collagen-hyaluronic acid composite. Biometerials.1999,20(2):191-195.
    [67]Zheng M H, Wood D J, Papadimitrion J M. What's new in the role of cytokines on osteoblast proliferation and differentiation.. Pathol Res Pract.1992,188(8):1104-1121.
    [68]Schmid C, Ernst M. Insulin-like growth factors. In:Maxine G, eds. Cytokines and bone metabolism. CRC Press.1992.229.
    [69]袁成良.17β-雌二醇对成骨细胞生成影响的实验研究.第三军医大学硕士论文.2003:18-26.
    [70]Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials.1996,17(1):31-53.
    [71]Urist M R. Bone formation by autoinduction. Science.1965.150(698):893-899.
    [72]Urist M R, Lietze, Mizutani H, et al. A bovine low molecular weight bone morphogenetic protein(BMP) fraction. J Clin Orthop.1982.162:219.
    [73]Klawitter J J. A basic investigation of bone growth into a porous ceramic material. Doctoral Thesis, Clemson University. Clemson. SC,1970.
    [74]Chiroff R T. et al.Tissue ingrowth of replaminefonn implants. J Biomed Mater Res.1995.9(4): 29-459.
    [75]Yamasaki H. Sakai H. Osteogenic response to porous Hydroxyapatite ceramics under the skin of dogs. Biomaterials.1992.13(5):308-312.
    [76]袁宇.羟基磷灰石球粒堆积三维多孔支架及其体内异位成骨.西南交通大学硕士论文.2006:13-14.
    [77]Hench L L. Wilson J. Surface-active biomaterials. Science.1984,226(4675):630-636.
    [78]Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res.1981. 3(157):259-278.
    [79]Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral, J Bone Joint Surg(Am) 1991,73(5):692-703.
    [80]Yang Z J, Yuan H P. Tong W D, et al. Osteogenesis in extraskeletally implanted porous phosphate ceramics:variability among different kinds of animals. Biomaterlals.1996.17(22):2131-2137.
    [81]Stevens M M, Marini R P, Schaefer D. et al. In vivo engineering of organs:the bone bioreactor. Proc Natl Acad Sci.2005,102(32):11450-11455.
    [82]Trojani C, Boukhechba F, Scimeca J C, et al. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006,27(17):3256-3264.
    [83]Eslaminejad M B, Jafarian M, Khojasteh A. et al. Enhancing ectopic bone formation in canine masseter muscle by loading mesenchymal stem cells onto natural bovine bone minerals.IJVS.2007. 2(4):25-35.
    [84]Yuan Y, Huang P, Peng Q, et al. Osteogenesis of porous bioceramics scaffolds consisted of hydroxyapatite spherules after implanted in different non-osseous sites. Mater Sci Forum.2009,6: 1335-1338.
    [85]Claase M B, Bruijn J D, Grijpma D W, et al. Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity. J Mater Sci Mater Med, 2007,18(7):1299-1307.
    [86]Pieper J S. Vail P B. Van M J, et al. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterial.2000.21(31):1689-1690.
    [87]张聪.骨诱导磷酸钙陶瓷和体内骨组织工程研究.四川大学博士论文.2001:7-19.
    [88]郭来阳.孔隙结构互补的磷灰石多孔支架的研究.西南交通大学硕士论文.2007:7-14.
    [89]Silval G A. Coutinho O P. Ducheyne P. et al. Materials in particulate form for tissue engineering-applications in Bone. J Tissue Eng Regen Med.2007.1(2):97-109.
    [90]Kasten P, Ingo B, et al. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells:An in vitro and in vivo study. Acta Biomater.2008; 4(6):1904-1915.
    [91]Wolfgang L, Michael T, Erich S, et al. Ullman's Encyclopedia of Industrial Chemistry. John Wiley and Sons,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700