用户名: 密码: 验证码:
羟基磷灰石/胶原复合涂层的共沉积制备、表征及孔状结构的形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HA)化学式为Ca_(10)(PO_4)_6(OH)_2是人体硬组织的主要无机成分,具有良好的生物相容性和生物活性,临床植入后能在短时间内与人体组织形成骨性结合。胶原是结缔组织的主要成份,存在于细胞外间质内,有良好的生物相容性和完全的生物降解性,且免疫抗原性很低,具有保护、支持人体组织及增强骨骼张力强度等特性,表现出特别的生物力学性质。自然人骨是由纳米HA和胶原蛋白有序组装而成的一种无机/有机高分子复合物,骨中HA晶粒直径约20nm,长约60nm,HA的c轴是沿着胶原蛋白的三维螺旋轴方向生长,具有特定的纳-微米二级结构。目前,关于羟基磷灰石与胶原复合材料的制备已有不少研究,主要采用共沉积法、生物仿生法等,但尚不能满足负重部位应用的临床要求。本论文从仿生学的角度出发,制备具有类似自然骨的成分和结构的复合涂层,综合利用HA涂层的生物性能和钛的机械性能,以期获得具有优异力学性能和生物性能的骨替代材料。
     本论文在低浓度体系下采用电化学恒电流共沉积技术,在纯钛表面沉积制备羟基磷灰石/胶原复合涂层和羟基磷灰石/壳聚糖复合涂层,通过改变影响形成多孔状结构的几种因素,对多孔状结构的形成机理进行探讨,并提出“气泡模板”概念。主要研究结果如下:
     1.控制电解液钙磷物种浓度为10~(-4)mol/L,Ca/P为1.67,并添加少量胶原蛋白(0.1~0.3mg/mL),pH值主要范围为6.0~6.3,在医用纯钛表面电沉积制备HA/胶原复合涂层,运用SEM、AFM、XRD、FTIR及XPS等方法对涂层的表面形貌、晶体结构、组分构成等理化性质进行了一系列的表征并对涂层的力学性能和生物学性能进行表征。SEM和AFM结果表明:复合涂层呈特定的纳-微米二级多孔结构,从断截面电镜照片可看到孔状结构之间是完全贯通的;XRD图谱显示添加胶原可使HA在电极表面的择优生长受到抑制;FTIR谱图研究表明,复合膜层中出现胶原蛋白特征峰酰胺Ⅰ带和酰胺Ⅱ带,酰胺Ⅰ带和酰胺Ⅱ带发生了一定程度的位移,表明涂层中HA与胶原蛋白在一定程度上发生化学键合;XPS谱图显示,涂层表面碳元素和氮元素的原子含量明显增大,涂层内部也有这两种元素的的存在。采用体外细胞的培养实验和扫描电镜观察种植于不同材料表面的细胞贴壁及生长形态,发现细胞与电化学共沉积的HA/胶原复合涂层的表面接触良好,细胞培养12h即有伪足长出,伪足有向材料内部生长的趋势,表明胶原蛋白的掺杂增加了涂层的生物相容性。MTT实验发现,细胞培养三天,掺杂有胶原的涂层的细胞增值情况最好,也进一步说明复合涂层具有良好的生物相容性。此外,HA/胶原蛋白的复合还有利于生物材料膜层力学性能的改善,粘结拉伸实验表明,胶原的掺杂使涂层与基地材料和涂层内部的结合力增大了一倍,通过观察拉伸过程力与时间的关系,发现复合涂层具有一定的韧性。通过本实验使涂层具有类似于自然骨的结构和成分,获得力学性能和生物性能得到一定改善的HA/胶原复合涂层。
     2.从电沉积的基底材料、电沉积液的黏度和温度及沉积时间等方面研究低浓度条件下影响形成多孔状结构的原因,提出了“气泡模板”概念,合理的解释了纳微米二级结构的形成机理。胶原蛋白、牛血清白蛋白和壳聚糖的加入使电沉积液的黏度增大,黏度增大后,可以在电极表面获得稳定生成的气泡,从而为孔状结构的形成提供了“模板”;同样,电极表面的粗糙度也对气泡的形成有较大的影响,表面非常平整的溅射有金膜的硅片很容易得到多孔状的结构,锗晶表面也可得到典型的多孔结构,而粗糙度最大的钛板表面较难得到该结构,说明电极表面的粗糙度对气泡的稳定形成也至关重要;低浓度体系下,温度对这种结构的形成亦非常关键。
     3.初步探索了通过在电沉积液中添加少量壳聚糖制备HA/壳聚糖复合涂层,并对涂层的相关性质进行了表征,结果表明:复合涂层的主要成分是具有钙离子缺陷的羟基磷灰石涂层,表面形貌与HA/胶原复合涂层相似呈纳-微米二级结构,壳聚糖的添加对涂层力学性能的进一步改善起到一定作用。
Hydroxyapatite (Ca_(10)(PO_4)_6(OH)_2, HA) is the main mineral component of human hard tissues. It has great bioactivity and biocompatibility,and after being implanted, it can form a kind of osteal bond with the organic tissues within a short time. Collagen existing in the extracellular matrix is an essential component of the connective tissue and it has excellent biocompatibility, complete biodegradability, low immunity and low antigenicity. And it can protect and support human tissue, enhance the tensile strength of bond and it shows special biomechanics. Natural bone consists of a kind of inorganic/organic composite assembled by ordered nano-HA and collagen protein, in which the HA crystal diameter is about 20 nm and its length is about 60 nm. The c-axis of the HA crystal grow along the collagen 3D helical axis and it has special nano-micro two level of structure. At present, some groups have done a mass of research about HA/collagen composites by using coprecipitation methods, biomimic methods, and so on. But these composites cannot meet the needs of the heavy load part in the body completely. In this work, we mimic the basic composition and structure of bone and combine the advantages of the HA coating and the Ti substrate to achieve an excellent bioactive and mechanical bone substitute material.
     In this work, an electrochemical co-deposition technique in low concentration system has been developed to prepare HA/collagen and HA/chitosan composite coatings on Ti substrate. Meanwhile, we also tried to change reaction conditions to find formation mechanism of the nano-micro porous structure, which is explained by a proposed concept of“Bubble Template”. The main work is summaried as follows:
     1. The electrolyte contained 10-4 mol/L CaCl_2 and NaH_2PO_4 and 0.1 mol/L NaCl with Ca/P ratio 1.67, in which collagen concentration was 0.1~0.3mg/mL and pH value was adjusted to 6.0~6.3 by 0.1 mol/L NaOH. The SEM, AFM, XRD, FTIR and XPS spectroscopic measurements were performed to characterize the morphologies, chemical composition and crystalline structures of the composite coating. It is found that the composite coating exhibited a homogeneous and porous morphology with nano-micro structure. Compared with the pure HA coating, the peak intensity of the (002) crystal face of the composite coating in the XRD measurements is greatly weakened, due to the block effect of collage during the nucleation and growth of HA crystallizing process. The FTIR spectroscopy exhibits the typical peaks of the collagen: the amideⅠband and the amideⅡband, and their peaks derives a little from the same peaks of the pure collagen, indicating that there is a kind of chemical bond between collagen and HA. The XPS results indicate that the C and N atom content increases greatly. The cell culture results in vitro and MTT tests reveal that, compared with pure HA and pure Ti, the HA/collagen composite coating exhibits best biological properties. And the bonding strength of the hybrid coating is improved markedly.
     2. The effects of substrate materials, additives, reaction temperature and deposition time on nano-micro porous structure were also studied. The addition of additives(collagen, BSA and chitosan) makes the viscosity of the electrolyte increased and from silicon slice with gold film, Ge wafer to pure Ti plate, the smoothness decreases in sequence. The experiments indicate that viscosity of the electrolyte, the smoothness of the substrate, reaction temperature and deposition time play important roles in the formation of nano-micro porous structure. A concept of“Bubble Template”is proposed to explain the formation mechanism of nano-micro porous structured HA/collagen coating.
     3. The composite coating of HA/chitosan has also been prepared by electrochemical co-deposition method. The preliminary characterization has been carried out by SEM and AFM images, and it is shown that the HA/chitosan composite coating has ordered uniform porous tow-level structure. The EDS spectrum and the sharp peaks of the XRD patterns indicate that the main components is high crystal HA. The bonding strengths between the HA/chitosan coating and the titanium substrate has been improved in a certain extent.
引文
[1] 李玉宝. 生物医学材料[M]. 北京: 化学工业出版社, 2003.
    [2] 顾汉卿, 徐国风. 生物医学材料学[M]. 天津: 天津科技翻译出版公司, 1993.
    [3] 崔福斋, 冯庆玲. 生物材料学[M]. 2 版. 北京: 清华大学出版社, 2004.
    [4] Hirakawa K, Bauer TW, Hashimoto Y, et al. Effect of femoral head diameter on tissue concentration of wear debris [J]. J Biomed Mat Res, 1997, 36(4): 529-535.
    [5] Fontana MG, Greene NO. Corrosion Engineering [M]. New York: McGraw-Hill, 1967.
    [6] Wisbey A, Gregson PJ, Peter LM, et al. Effect of surface treatment on the dissolution of titanium-based implant materials [J]. Biomaterials, 1991, 12(5): 470-473.
    [7] Combes C, Rey C, Freche M. XPS and IR study of dicalcium phosphate dehydrate nucleation on titanium surfaces [J]. Colloids and Surfaces B: Biointerfaces, 1998, 11(1-2):15-27.
    [8] 李德华. 医用钛表面的微观改造[J]. 国外医学.生物医学工程分册, 1997, 1: 24-27.
    [9] 陈菲. 纳米羟基磷灰石生物材料的制备及性能研究[D]. 厦门: 厦门大学理学博士学位 论文, 2004.
    [10] Cui FZ, Wen HB, Zhang HB, et al. Nanophase hydroxyapatite-like crystallites in natural ivory [J]. J Mater Sci Lett, 1994, 13(14): 1042-1044.
    [11] Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactides-synthesis, characterization and medical application [J]. Macromol Symp, 1996, 103: 85-102.
    [12] 段久芳, 郑玉斌, 徐亮. 生物降解材料聚乙醇酸及乙醇酸共聚物的新发展[J]. 塑料科技, 2004, 1: 53-59.
    [13] Akbar SA, Park CO. Chemical and bio-ceramics [J]. J Mater Sci, 2003, 38 (23): 4609-4610.
    [14] Christel PS. Biocompatibility of surgical-grade dense polycrystalline alumina [J]. Clin Orthop Relat Res, 1992, 282:8-10.
    [15] 山口乔著, 窦筠译. 生物陶瓷[M]. 北京: 化学工业出版社, 1992.
    [16] Anna S, Jan P, Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate [J]. Ceramic International, 1999(25):561-565.
    [17] Christoffersen J, et.al. Some new aspects of surface nucleation applied to the growth and dissolution of fluorapatite and hydroxyapatite [J]. J Cryst Grow, 1996, 163:304-311.
    [18] 时海燕. 羟基磷灰石涂层的电化学可控制备及形成机理研究[D]. 厦门: 厦门大学硕士毕业论文, 2005.
    [19] 阮建明, 邹俭鹏, 黄伯云.生物材料学[M]. 北京: 科学出版社, 2004
    [20] 李爱民. CNTs/Hap纳微米生物复合材料及其生物相容性研究[D]. 山东: 山东大学博士学位论文, 2004.
    [21] Ignjatovic N, Tomic S, Dakic M, et al. Sythesis and properties of hydroxyapatite/poly-L-Lactide composite biomaterials[J]. Biomaterials, 1999, 20: 809-816.
    [22] 傅远飞, 陈德敏. 羟基磷灰石类生物材料研究进展[J]. 口腔材料器械杂志, 2000, 9(1) : 35-37
    [23] Souse S R, Barbose M A. Effect of thickness on matal ion release from Ti6Al4V substrates[J]. Biomaterials, 1996, 17: 397-404
    [24] Lavos Val Ereto C, Kznigb J R, Rossa C J R, et al. A study of histological responses from Ti6Al7Nb alloy dental implants with anf without plasma sprayed hydroxyapatite coating in dogs[J]. J Mater Sci: Mater Med, 2001, 12: 273-276
    [25] Dij K K V, Schaeken H G, Wol Ke J G C, et al. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings[J]. Biomaterials, 1996, 17: 405-410
    [26] Vehof J W M, Spauwen P H M, Jansen J A. Bone formation in calcium phosphate coated titanium mesh[J]. Biomaterials, 2000, 21: 2003-2009
    [27] Ongj L, Rankar G N, Smoot T M. Properties of calcium phosphate coatings before and after exposure to simulated biological fluid[J]. Biomaterials, 1997, 18: 1271-1275
    [28] Zeng H T, Chittur K K, Lacefield W R. Dissolution/precipitation of calcium phosphate thin films produced by ion beam sputter deposition technique[J]. Biomaterials, 1999, 20: 443-451
    [29] Clkries L, Fern Bndez Pradas J M, Morenza J L. Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation[J]. Biomaterials, 2000, 21: 1861-1865.
    [30] Clkries L, Fern Bndez Pradas J M, Sardin C, et al. Application of dissolution experimrnts to characterize the structure of puised laser-deposited calcium phosphate coatigs[J]. Biomaterials, 1999, 20: 1401-1405
    [31] Clkries L, Fern Bndez Pradas J M, Sardin C, et al. Dissolution behavior of calcium phosphate coatings obtained by laser ablaton. [J]. Biomaterials, 1998, 19: 1483-1487
    [32] 王迎军, 冉炜. 高强度生物活性人造齿根的复合制备[J]. 口腔材料器械杂志, 1999, 1:39.
    [33] 王迎军, 宁成云等. HA生物活性陶瓷涂层的爆炸喷涂与等离子喷涂[J]. 华南理工大学学报(自然科学版), 1998, 7: 124-129.
    [34] 邬鸿彦, 朱明刚. 对制备羟基磷灰石粉末工艺条件的再探讨. 河北轻化工学院学报, 1998, 19(1): 36-38
    [35] 孟令科, 朱晓丽, 叶建东. 溶胶-凝胶法制备羟基磷灰石及其过程的控制. 材料导报, 2002, 11(16): 75-77
    [36] 肖秀兰, 陈志刚. 羟基磷灰石涂层制备技术的可行性研究. 材料导报, 2003, 17(4): 32-34.
    [37] Wei M, Ruys A J, Milthorpe C C,et al. Solution ripening hydroxyapatite nanoparticles:effects on electrophoretic deposition.[J]. Biomed Mater Res,1999, 45(1):11)19.
    [38] 陈晓明, 焦玉恒, 许传波. 电泳沉积制备羟基磷灰石/生物玻璃梯度涂层的研究 [J]. 材料科学与工程, 2002, 20(4): 8-12
    [39] Redepenning J. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys [J]. J. Biomed. Mater. Res, 1996, 30:287-292
    [40] Monma H. Electrochemical deposition of calcium-deficient apatite on stainless steel substrate [J]. J Ceram Soc Japan, 1993, 101: 737-739
    [41] Li YB, et al. Morphology and composition of nanograde calcium phosphate needle-likecrystals formed by simple hydrothermal treatment [J]. J Mater Sci Mater Med, 1994, 5: 326
    [42] Zhang J M, Lin CJ, et al. [J]. Chinese Chem Let, 1998, 7: 43
    [43] Liang FH, et al. Apatite formation on porous titanium by alkali and heat-treatment [J]. Surface and Coatings Technology, 2003, 165: 133-139
    [44] Shirkhanzadeb M. Bioactive calcium phosphate coatings prepared by electrodeposition on titanium and titanium alloy [J]. J Mater Sci Lett, 1991, 10:1415-1417
    [45] Shirkhanzadeb M. Electrochemical preparation of bioactive calcium phosphates coatings on porous substrates by the periodic pulse technique [J]. J Mater Sci Lett, 1993, 12: 16-19
    [46] Shirkhanzadeb M. Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes [J]. J Mater Sci Mater Med, 1995, 6: 90-95
    [47] Kuo MC, et al. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature [J]. Mater Sci Eng C-Bio S 2002, 20(1-2):153-160
    [48] Yen SK, et al. Cathodic reactions of electrolytic hydroxyapatite coatings on pure titanium [J]. Materials Chemistry and Physics, 2002, 77: 70-76
    [49] Shirkhanzadeb M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes [J]. J Mater Sci Mater Med, 1998, 10: 67-73
    [50] 胡皓冰, 林昌健等. 电化学沉积制备羟基磷灰石涂层及机理研究[J]. 电化学, 2002, 8: 288-295
    [51] 胡皓冰. 高性能有机/无机复合生物材料的电化学研究[D]. 厦门: 厦门大学理学博士学位论文, 2002
    [52] Zhang J M, Lin C J, Feng Z D, et al. Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphate by an in situ pH-microsensor technique[J]. Journal of Electroanalytical Chemistry, 1998, 452: 235-240
    [53] Noam Eliaz, Moshe Eliyahu. Electrochemical process of nucleation and growth of hydroxyapatite on supported by real-time electrochemical atomic force microscopy[J]. Journal of Biomedical Materials Research Part A, 80A(3): 621-634
    [54] 黄立业,徐可为. 纳米针状羟基磷灰石涂层的制备及其性能的研究[J]. 硅酸盐学报, 27(3): 1999.
    [55] 黄立业,李浩,等. HA涂层的电结晶水热合成及其附着性与结构稳定性探讨[J]. 稀有金属材料与工程, 28(3): 1999.
    [56] 左友松, 刘榕芳, 等. 电沉积HA/Ti复合涂层的研究[J]. 电镀与涂饰, 22(4): 2003.
    [57] 肖秀峰, 刘榕芳, 等. 水热电沉积羟基磷灰石/Ti复合涂层的研究[J]. 无机化学学报, 20(11): 2004.
    [58] 刘榕芳, 肖秀峰, 等. 水热电沉积羟基磷灰石的研究[J]. 高等学校化学学报, 25(2): 2004
    [59] 肖秀峰, 刘榕芳, 等. 电沉积羟基磷灰石/TiO2复合涂层[J]. 应用化学, 21(7): 2004.
    [60] 肖秀峰, 刘榕芳, 等. 水热电沉积制备羟基磷灰石/氧化钛复合涂层的研究[J]. 硅酸盐学报, 32(6): 2004.
    [61] 刘榕芳, 肖秀峰, 等. 电沉积镍-羟基磷灰石复合涂层的研究[J]. 材料保护, 36(8): 2003.
    [62] 蒋挺大. 胶原与胶原蛋白[M]. 北京: 化学工业出版社, 2006.
    [63] 蒋挺大. 壳聚糖[M]. 北京: 化学工业出版社, 2001.
    [64] Hu Kai, Yang Xian-Jin, Cai Yan-Li, et al. Preparation of bone-like composite coating using a modified simulate body fluid with high Ca ang P concentrations[J]. Surface & Coatings Technology, 2006, 201(3-4): 1902-1906.
    [66] Kurita K. Chemistry and application of chitin and chitosan[J]. Polymer Degradation and Stability, 1998, 59: 117-120.
    [67] Bonina P, Petrova T, Manolova N, et al. PH-sensitive hydrogels composed of chitosan and polyacrylamide: Enzymatic degradation[J]. Journal of Bioactive and Compatible Polymers, 2004, 19: 197-208.
    [68] Tachaboonyakiat E, Serizawa T, Akashi M. Inorganic polmer hybrid scaffold for tissue engineering-Ⅱ: Partial enzymatic degradation of hydroxyapatite-chitasan hybrid[J]. Journal of Biomaterials Science-Polymer Edition, 2002, 13: 1021-1032.
    [69] Zhang H, Neau S H. In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents[J]. Biomaterials, 2002, 23: 2761-2766.
    [70] Zhang H, Neau S H. In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylaton[J]. Biomaterials, 2001, 23: 1653-1658.
    [71] Lu Y H, Wei G S, Peng J. Radiation degradation of chitosan in the presence of H2O2[J], Chinese Journal of Polymer Science, 2004,22: 439-444.
    [72] Chang K L B, Tai M C, Cheng F H. Kinetics and products of the degradation of chitosan by hydrogen peroxide[J]. Journal of Agricultural and Food Chemistry, 2001, 49: 4845-4851.
    [73] Senkoylu A, Simsek A, Aahin F I, et al. Interaction of cultured chondrocytes with chitosan scaffold[J]. Journal of Bioactive and Compatable Polymers, 2001, 16: 136-144.
    [74] Azad A K, Sermsinthan N, Chandrkrachang S, et al. Chitosan membrane as a wound-healing dressing: Characterization and clinical application[J], Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2004, 69B:216-222.
    [75] Akbuga J, Bergisadi N. Effect of formulation variables on cis-platin Ⅰoaded chitosan microsphere properties[J]. Journal of Microencaosulation, 1999, 16: 697-703.
    [76] Dhiman H K, Ray A R, Panda A K. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen[J]. Biomaterials, 2005, 26: 979-986.
    [77] Yeo Y J, Jeon D W, Kim C S, et al. Effects of chitosan nonwoven membrane on periodontal healing of surgically created one-wall intrabony defects in beagle dogs[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005, 72B: 86-93.
    [78] Struszczyk M H. Chitin and chitosan-Part Ⅲ. Some aspects of biodegradation and bioactive, Polimery, 2002, 47: 619-629.
    [79] 郭庆玲. 临床骨科学[M ]. 北京: 人民卫生出版社, 1989.
    [80] 程玲妹, 袁楠希, 薛晴,等. 生物及环境材料[M ], 北京: 化学工业出版社, 1997.
    [81] Wan Andrew C A, Khor Eugene, Hastings Garth W. The influence of anionic chitin derivatives on calcium phosphate crystallization[J]. Biomaterials, 1998, 19: 1309-1316.
    [82] Leroux L, Hatim Z, FrecheM, et al. Effects of Various Adjuvants (Lactic Acid, Glycerol, and Chitosan) on the Injectability of a Calcium Phosphate Cement[J]. Bone, 1999, 25 (2) : 31S-34S.
    [83] Viala S, FrecheM, Lacout J L. Effect of chitosan on octacalcium phosphate crystal growth[J]. Carbohydrate Polymers, 1996, 29(3): 197-201.
    [84] Ito M, Hidaka Y, Nakajima M, et al. J Biomed Mater Res, 1998, 45 (3): 204-208.
    [85] Chen F, Wang Z C, Lin C J. Prepararion and characterization of nano-sized hydroxyapatite particles and hydrox yapatite/chitosan nano-composite for use in Biomedical materials[J]. Materials Letters, 2002, 57: 858-861.
    [1] 胡皓冰. 高性能有机/无机复合材料的电化学研究[D]. 厦门: 厦门大学博士学位论文, 2002.
    [2] 朱祖福, 沈锦德, 许志义等. 电子显微镜[M]. 北京: 机械工业出版社, 1984.
    [3] 陈允魁. 红外吸收光谱法及其应用[M]. 上海: 上海交通大学出版社, 1985.
    [4] 潘承璜, 赵良仲编. 光电能谱基础, 北京: 科学出版社,1981.
    [5] [美]TA 卡尔森著, 王殿勋, 郁向荣译. 光电子和俄歇能谱学, 1993.
    [6] 陈家和, 陈长彦编. 现代技术分析, 北京: 清华大学出版社, 1995.
    [7] 司徒镇强, 吴军正 主编. 细胞培养[M]. 西安: 世界图书出版公司, 1996.
    [8] 鄂征 主编. 组织培养和分子细胞学技术[M]. 北京: 北京出版社, 1994.
    [9] 王洪复 主编. 骨细胞图谱与骨细胞体外培养技术[M]. 上海: 上海科学技术出版社, 2001.
    [10] M.Wei, Ruts, A. J, Milthorpe, B. K, et al. Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach [J]. Journal of Sol-Gel Science and Technology, 2001, 21: 39–48.
    [1] Trueman N A. The structure of hydroxyapatite[J]. Nature, 1996, 63(5): 661-672.
    [2] 蒋挺大. 胶原与胶原蛋白M]. 北京: 化学工业出版社, 2006.
    [3] Denis Couchourel, Céline Escoffier, Ramin Rohanizadeh, et al. Effects of fibronectin on hydroxyapatite formation[J]. Journal of Inorganic Biochemistry, 1999, 73(3): 129-136.
    [4] 李彦春, 程宝箴, 靳立强. 胶原蛋白的应用[J]. 皮革化工, 2002, 19(3): 10-14.
    [5] Kikuchi M, Suetsugu Y, Tanaka J. Bioceramics, 1999, 12: 393.
    [6] Du C, Cui F Z, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix[J]. J Biomed Mater Res, 2000, 50: 518-27.
    [7] Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nanofibrils in mineralized collagen[J]. Chem Mater, 2003, 15: 3221-3226.
    [8] Bradt J-H, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation[J]. Chem Mater 1999, 11: 2694-2701.
    [9] Akira Monkawa, Toshiyuki Ikoma, Shunji Yunoki, et al. A dewetting process to nano-pattern collagen on hydroxyapatite[J]. Materials Letters, 2006, 60: 3647-3650.
    [10] S Yunoki, T Ikoma, A Monkawa, et al. Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth[J]. Materials Letters, 2006, 60: 999-1002.
    [11] Nebahat Degirmenbasi, Dilhan M. Kalyon, Elvan Birinci. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol) [J]. Colloids and Surfaces B: Biointerfaces, 2006, 48: 42-49.
    [12] Hisatoshi Kobayashi, Masabumi Kato, Tetsushi Taguchi, et al. Collagen immobilized PVA hydrogel-hydroxyapatite composites preparedby kneading methods as a material for peripheral cuff of artificial cornea[J]. Materials Science and Engineering C, 2004, 24: 729-735.
    [13] Tetsushi Taguchi, Yu Sawabe, Hisatoshi Kobayashi, et al. Preparation and characterization of osteochondral scaffold[J]. Materials Science and Engineering C, 2004, 24: 881-885.
    [14] T Taguchi, A Kishida, M Akashi. Chem Lett, 1998, 8: 711-712.
    [15] T Taguchi, A Kishida, M Akashi. J. Biomater. Sci., Polym. Ed, 1999, 10: 331-339.
    [16] M Kikuchi, H N Matsumoto, T Yamada, et al. Biomaterials, 2004, 25: 63.
    [17] Roessler S, Born R, Scharnweber D, et al. Biomimetic coatings functionalized with adhesion peptides for dental implants[J]. J Mater Sci Mater Med, 2001, 12: 871-877.
    [18] Schliephake H, Scharnweber D, Dard M, et al. Biological performance of biomimetic calcium phosphate coating of titanium implants in the dog mandible[J]. J Biomed Mater Res 2003, 64: 225-234.
    [19] Okamura H, Yasuda M, Ohta M. Synthesis of calcium-deficient hydroxyapatite-collagencomposite[J]. Electrochemistry, 2000, 68: 486-488.
    [20] Fan Yuwei, Duan Ke, Wang rizhi. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization[J]. Biomaterials, 2005, 26: 1623-1632.
    [21] Wang, M. Developing bioactive composite materials for tissue replacement[J]. Biomaterials, 2003, 24(13): 2133-2151.
    [22] Masanori Kikuchi, Toshiyuki Ikoma, Soichiro Itoh, et al. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen[J]. Composites Science and Technology, 2004, 64: 819-825.
    [23] Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo[J]. Biomaterials, 2001, 22(13): 1705-1711.
    [24] Sasaki N, Sudoh Y. X-ray pole figure analysis of apatite crystals and collagen molecules in bone[J]. Calcif Tissue Int, 1997, 60(4): 361-367.
    [25] Sato K, Kumagai Y, Tanaka J. Apatite formation on organic monolayers in simulated body environment[J]. J Biomed Mater Res, 2000, 50:16-20.
    [25] Itoh S, Kikuchi M, Takakuda K, Ichinose S, et al. The biocompatibility and osteoconductive activity of a novel biomaterial, hydroxyapatite/collagen composite, and its function as a carrier of rhBMP-2[J]. J Biomed Mater Res, 2001,54: 445-453.
    [26] Matsumoto HN, Koyama Y, Takakuda K, et al. Healing process of rat tibia defects treated with hydroxyapatite/collagen composite. Abstract of 27th Annual Meeting of Japanese Society for Clinical Biomechanics (in Japanese).
    [27] Okazaki M, Ohmae H, Takahashi J, et al. Insolubilized properties of UV, irradiated CO3 apatite-collagen composites[J]. Biomaterials, 1990, 11: 568-572.
    [28] Marouf H A, Quayle A A, Sloan P. In vitro and in vivo studies with collagen/hydroxyapatite implants[J]. Int J Oral Maxillofac Implants, 1990, 5: 148-154.
    [29] Suh H, Lee C. Biodegradable ceramic-collagen composite implanted in rabbit tibiae[J]. ASAIO J, 1995, 41M: 652-656.
    [30] Galbavy S, Lezovic J, Horecky J, Vanis M, Bakos D. Atelocollagen/hydroxylapatite composite material as bone defect filler in an experiment on rats[J]. Bratisl Lek Listy, 1995, 96: 368-370.
    [31] Cornell C N, Lane J M, Chapman M, et al. Multicenter trial of Collagraft as bone graft substitute[J]. J Orthop Trauma, 1991, 5: 1-8.
    [32] Martins V C, Goissis G, Ribeiro AC, et al.The controlled release of antibiotic by hydroxyapatite: anionic collagen composites[J]. Artif Organs, 1998, 22: 215-21.
    [33] Borsato KS, Sasaki N. Measurement of partition of stress between mineral and collagen phases in bone using X ray diffraction techniques[J]. J Biomech, 1997,30: 955-957.
    [34] Zhang Q Q, Ren L, Wang C, et al. Porous hydroxyapatite reinforced with collagen protein[J]. Artif Cells Blood Substit Immobil Biotechnol, 1996, 24: 693-702.
    [35] Du C, Cui FZ, Zhu XD, et al. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture[J]. J Biomed Mater Res, 1999, 44: 407-415.
    [36] Du C, Cui FZ, Feng QL, et al. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity[J]. J Biomed Mater Res, 1998, 42: 540-548.
    [37] Asahina I, Watanabe M, Sakurai N, et al. Repair of bone defect in primate mandible using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite[J]. J Med Dent Sci, 1997, 44: 63-70.
    [38] Mehlisch D R, Leider A S, Roberts W E. Histologic evaluation of the bone/graft interface after mandibular augmentation with hydroxylapatite/purified fibrillar collagen composite implants[J]. Oral Surg Oral Med Oral Pathol, 1990, 70(6): 685-692.
    [39] Miyamoto Y, Ishikawa K, Takechi M, et al. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases[J]. Biomaterials, 1998, 19: 707-715.
    [40] TenHuisen K S, Martin R I, Klimkiewicz M, et al. Formation and properties of a synthetic bone composite: hydroxyapatite-collagen[J]. J Biomed Mater Res, 1995, 29(7): 803-810.
    [41] Walsh W R, Harrison J, Loefler A, et al. Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model[J]. Clin Orthop, 2000, 375: 258-266.
    [42] Amaro Martins VC, Goissis G. Nonstoichiometric hydroxyapatite-anionic collagen composite as support for the double sustained release of gentamicin and norfloxacin/ciprofloxacin[J]. Artif Organs, 2000, 24: 224-230.
    [43] 胡仁. 结构有序纳米HA涂层的电化学构筑及钛/细胞界面原位EIS研究[D]. 厦门: 厦门大学理学博士学位论文, 2005.
    [44] Hu R, Lin C J, Shi H Y. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate[J]. J Biomed Mater Res, 2007, 80(3): 687-692
    [45] 胡 仁, 时海燕, 林理文, 等. 电化学沉积羟基磷灰石过程晶体生长行为[J]. 物理化学学报, 2005, 21(2): 197-201.
    [46] 胡皓冰, 林昌健, 陈 菲, 等. 电化学沉积制备羟基磷灰石涂层及机理研究[J]. 电化学, 2002, 8(3): 288-294.
    [47] Cheng X L, Filiaggi M, Roscoe.S G. Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy[J]. Biomaterias, 2004, 25: 5395-5403.
    [48] Hu K, Yang X J, Cai Y L, et al. SURF. COAT. TECH, 2006, 201(3-4): 1902.
    [49] Stoch A, Jastrzebski W, Brozek A, et al. FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids[J]. J Mol Struct, 1999, 512: 287-294.
    [50] Narasaraju TSB, Phebe D E. Some physico-chemical aspects of hydroxyapatite[J]. J Mater Sci, 1996, 31(1): 1-21.
    [51] Frank Wittea, Frank Feyerabendb, Petra Maierb, et al. Biodegradable magnesium–hydroxyapatite metal matrix composites[J]. Biomaterials, 2007, 28: 2163-2174.
    [52] Xu J L, Khor K A. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method[J]. Journal of Inorganic Biochemistry, 2007, 101: 187-195.
    [53] Weichang Xue, Howard L Hosick, Amit Bandyopadhyay, et al. Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating[J]. Surface & Coatings Technology, 2007, 201: 4685-4693.
    [54] Siyu Ni, Lee Chou, Jiang Chang. Preparation and characterization of forsterite (Mg2SiO4) bioceramics[J]. Ceramics International , 2007, 33: 83-88.
    [55] Li H, Khor K A. Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties[J]. Surface & Coatings Technology, 2006, 201: 2147-2154.
    [56] M Wei. Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates:A Nanoparticulate Dual-Coating Approach [J]. Journal of Sol-Gel Science and Technology, 2001, 21: 39-48.
    [57] M Wei, A J Ruys. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals [J]. Journal of materials science: materials in medicine.1999, 10: 401-409.
    [58] 陈菲. 纳米羟基磷灰石生物材料的制备以及性能研究[D]. 厦门: 厦门大学博士学位论文, 2004.
    [59] 胡皓冰. 高性能有机/无机复合涂层的电化学研究[D]. 厦门: 厦门大学理学博士学位论文, 2002.
    [60] Zhang J M, Lin C J, Feng Z D, et al. Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphate by an in situ pH-microsensor technique[J]. Journal of Electroanalytical Chemistry, 1998, 452: 235-240.
    [61] Kevor S T, Roger I M, Maria K. J Biomed Mater Res, 1995, 29: 803.
    [62] 胡仁, 胡皓冰, 林昌健. Ca/P壳聚糖复合膜层的电化学共沉积研究[J]. 高等学校化学学报, 23(11): 2142-2146.
    [1] 肖素光. 网化羟基磷灰石生物陶瓷材料的制备及其强度改善[D]. 西安, 西安交通大学硕士学位论文, 2006
    [2] Hu Ren, Lin Changjian, Shi haiyan. A Novel Ordered Micro-Nano Structure Hydroxyapatite Coating Electrochemically Deposition on Titanium Substrate[J]. Journal of Biomaterials Research A, 2007, 80(3): 687-692
    [3] 胡仁, 时海燕, 林理文,等. 电化学沉积羟基磷灰石过程晶体生长行为[J]. 物理化学学报, 2005, 21(2): 197-201
    [4] 林昌健, 胡仁, 时海燕, 等. 纳米有序羟基磷灰石羟基磷灰石涂层的制备方法[P]. 中国发明专利, 申请号:200410071505.3
    [5] 时海燕, 胡仁,林昌健. 羟基磷灰石的电化学可控制备及其生物性能的初步表征[J]. 电化学, 2005, 11(4): 440-445
    [6] 时海燕, 胡仁, 林昌健. 电沉积可控制备纳米羟基磷灰石的研究[J]. 功能材料, 2006, 37(1):98-101
    [7] Noam Eliaz, Moshe Eliyahu. Elecrtrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force micrscopy[J]. Journal of Biomedical Materials Research part A, 2007, 80A(3): 621-634
    [8] Shirkhanzadeh M. Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes[J]. J Mater Sci: Mater Med, 1995, 6: 90–93.
    [9] Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes[J]. J Mater Sci: Mater Med, 1998, 9: 67–72.
    [10] Hou X, Liu X, Xu J, Shen J, Liu X. A self-optimizing electrodeposition process for fabrication of calcium phosphate coatings[J]. Mater Lett, 2001, 50: 103–107.
    [11] Chen J, Juang H, Hon M. Calcium phosphate coating on titanium substrate by a modified electrocrystallization process[J]. Mater Sci Eng, 1998, 32: 297–300.
    [12] Zhang J, Lin C, Feng Z, Tian S. Electrodeposition calcium phosphate bioactive ceramic[J]. Acta Phys Chim Sinica, 1998, 14: 698–702.
    [13] Fu T, Li H, Zhang Y, Xu K. Effect of current density changes on the properties of hydroxyapatite biocoatings[J]. Rare Met Mater Eng, 2000, 29: 247–250.
    [14] 胡仁. 结构有序纳米HA涂层的电化学构筑及钛/细胞界面原位EIS研究[D]. 厦门: 厦门大学理学博士学位论文, 2005
    [15] Cheng Xiaoliang, Filiaggi Mark, Roscoe Sharon G. Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy[J]. Biomaterials, 2004, 25:5394-5403
    [16] Fan Yuwei, Duan Ke, Wang rizhi. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization[J]. Biomaterials, 2005, 26: 1623-1632
    [17] Marino A, Dasarathy H, Riley C. Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J Biomed Mater Res, 1999, 45: 302-310
    [18] Yen S K, Lin C M.Characterization of electrolytic Al2O3/CaP composite coatings on pure titanium[J]. J Electrochem Soc, 2002, 149: D79-D87
    [19] Hu H B, Lin C J, Hu R, et al. A study on hybid bioceramic coatings of HA/poly(vinyl acetate) co-deposition electrochemically on Ti-6Al-4V alloy surface[J]. J Mater Sci Eng C, 2002,20(1-2): 209-214
    [20] Chen F, Wang Z C, Lin C J. Prepararion and characterization of nano-sized hydroxyapatite particles and hydrox yapatite/chitosan nano-composite for use in Biomedical materials[J]. Materials Letters, 2002, 57: 858-861
    [1] 郭万厚. 壳聚糖复合生物材料临床应用的研究进展[J]. 中国煤炭工业医学杂志, 2000, 3(2): 102-103.
    [2] Gooday GW. Physiology of microbial degradation of chitin and chitosan[J]. Biodegradation, 1990, 1 (3): 177-186.
    [3] Pruddon J F, Migel P, Hanson P, et al. The discovery of a patent porechemical wound-healing accelerator[J]. Am J Surg, 1970, 119: 560.
    [4] Ito M, Hidaka Y, Nakajima M, et al. J Biomed Mater Res, 1998, 45 (3): 204-208.
    [5] Klokkevold PR, Vandemark L, Kenny E B, et al. J Periodotol, 1996, 67(11): 1170-1175
    [6] 吕彩霞, 姚子华. 纳米羟基磷灰石/壳聚糖-硫酸软骨素复合材料的制备及其性能研究[J]. 复合材料学报第, 2007, 24 (1): 110-115
    [7] Masay S. Chitosan-calcium phosphatc composites for bone prosthesis. Kino Zairyo, 1989, 9 (5): 26.
    [8] 陈建洪, 李幸宽. 壳聚糖羟基磷灰石在改良翻瓣术中的应用[J]. 口腔医学纵横, 1997, 13 (3): 165-167.
    [9] Li Wang, Chunzhong Li. Preparation and physicochemical properties of a novel hydroxyapatite/chitosan–silk Wbroin composite[J]. Carbohydrate Polymers, 2007, 68: 740-745.
    [10] Muzzarelli R A A, Biagini G, DeBenedittis A, et al. Chitosan-oxychitin coatings for prosthetic materials[J]. Carbohydrate Polymers, 2001, 45: 35-41
    [11] 胡仁, 胡皓冰, 林昌健. CaP/壳聚糖复合膜层的电化学共沉积研究[J]. 高等学校化学学报, 2002, 11: 2142-2146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700