用户名: 密码: 验证码:
微弧氧化制备钛表面磷钙生物活性涂层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文把微弧氧化技术用于在钛表面制备类羟基磷灰石(HA)的含磷、钙活性涂层。采用自制的微弧氧化简易装置,在钛表面制备了含磷、钙的涂层。
     对实验制得的涂层的分析表明:采用微弧氧化技术、通过微弧氧化电弧的高温烧结作用可以在钛基体表面制备含磷、钙的活性涂层。涂层是一种多孔状、与基体结合牢固、具有陶瓷特性的混合物,其性能与微弧氧化处理时电参量的选择以及电解液的温度和配方有关。在目前实验条件下,电解液中的磷酸盐可选择磷酸类铵盐,如磷酸二氢铵((NH_4)H_2PO_4)等;钙盐为不溶性的磷酸钙(Ca_3(PO_4)_2)、碳酸钙(CaCO_3)或溶解度很小的醋酸钙((CH_3COO)_2Ca·H_2O)等,其中使用醋酸钙时涂层的含钙量最高。
     本论文系统地研究了微弧氧化的各工艺参数对涂层的影响,发现电解液配方是影响涂层组织和成分的主要因素;微弧氧化的电流是影响涂层性能的主要因素。在分析大量实验结果的基础上,本文给出了在目前实验条件下的最佳工艺参数。
     通过对涂层进行SEM和XRD分析可知,采用微弧氧化技术在钛表面制备的含磷、钙活性涂层中的磷、钙化合物是可以通过现有手段进行活化处理的。
     本文对采用微弧氧化技术在钛表面制备含磷、钙活性涂层的机理进行了初步的探讨,认为电泳理论可以解释电解液中含钙粒子向阳极运动的原因;而电弧的局部高温使阳极上发生了烧结的过程,从而在钛表面形成磷、钙涂层。
In the paper, microarc oxidation technique was adopted to fabricate calcium phosphate compound of hydroxyapatite analogue coating on titanium substrate. With the facility of microarc oxidation made by ourselves, the calcium phosphate compound was coated on titanium substrate. The analyzing to the coating turn out from the experimentation indicated that adopting microarc oxidation technique and by the sintering from the arc the calcium phosphate compound was coated on titanium substrate. The fabricated coating was the ceramic intermixture which was porous and firmly combined with the titanium substrate. The property of the coating was affected by the electroparameter and the direction of the electrolyte. Under optimal processing condition, phosphatic ammonia salt, for example, (NH4)H2PO4 etc. act as the phosphate and Ca3(PO4), CaCO3, (CH3COOH)Ca-H2O etc. act as calc-salt of the electrolyte. The calcium content of the coating was more when the (CH3COOH) Ca'H20 was elected than others did .
    The processing parameters , which affected the coating, was studied systematically. It was found the ingredient of the coating was mainly determined by the'direction of the electrolyte and so did the property of the coating by the electric current of microarc oxidation. The optimized parameters under optimal processing condition was work out in the paper after lots of experiments .
    Analyzing the coating with SEM and XRD, it was found the calcium phosphate compound in the coating fabricated through microarc oxidation can be biomedically activated.
    The principium of microarc oxidation technique adopted to fabricate biomedical calcium phosphate compound coating on titanium substrate was primarily explored in the paper, the conclusion was drown, that is, the reason that the corpuscule which contained calcium moving to anode can be interpreted by the theory of electrochemical deposition. The corpuscule was sintered with the titanium
    
    
    substrate for the high temperature of the arc on the anode.
引文
1.俞耀庭,张兴栋等.生物医用材料,天津大学出版社,2000,24(4):242~261
    2.崔福斋,冯庆玲.生物材料学[M].科学出版社.第一版.1999:30~165
    3.程逵,翁文剑,葛曼珍.生物陶瓷涂层。材料科学与工程.1998,16(3):1~5
    4.戴金辉,李建保.生物涂层材料的研究现状与展望。山东陶瓷.1999,22(2):18~25
    5.袭迎祥,王迎军.生物活性陶瓷涂层制备方法研究进展.陶瓷工程.2001,22(4):10~15
    6.朱敏刚,孔令宜等.基表面多层超细HA涂层复合种植体的制备.中国有色金属学报.2000,15(6):12~19
    7.石建民,丁传贤.生物活性钛涂层.无机材料学报.2001,12(5):34~36
    8. F. Barrere, C.A.Van Biomimetic Calcium Phosphate Coatings on Ti6A14V.Cells Mater. 1995, 5:211~223.
    9. Lenz J Schwarz S Schwickerath H Sperner F Schafer A. Bond strength of metal}ceramic systems in three-point #exure bond test. J Appl Biomat 1995, (6): 55~64.
    10.丁传贤.表面涂层技术层出不穷.全国表面工程专题论文集.1997:182~189
    11.周王,雷廷权.纯钛表面HA-BG生物复合涂层的组织结构研究.材料科学与工艺.2000,9(3):14~20
    12. Tuccillo JJ Nielsen JP. Shear stress measurements at a dental porcelain gold bond interface. J Dent Res 1972, 51:626~633.
    
    
    13. Kimura K.The recent titanium and titanium alloys (in Japanese).Bull Jpn Inst Met 1997, 9: 62~68.
    14. Roark RJ. Curved beams. In: Young WC editor. Roark's for-mulas for stress strain 6th ed. New York: McGraw-Hill 1989, 236~343.
    15. M. Yoda e al. Bioma erials 2001, 22:1675~1681
    16.李德华.医用钛表面的微观改造.国外医学生物医学工程分册.1997,20(1):10~260
    17.姚秀敏,谭寿红,江东亮.多孔羟基磷灰石陶瓷的制备.材料科学与工程。2002,17(4):28~34
    18. Arun Madan, Scott Moorision. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterial 2001, 21: 1461~1469
    19. Okuno O ,Shimizu A ,Miura I. Fundamental study on titanium alloys for dental casting (in Japanese). J Jpn Dent Mater 1985, 4: 7~15.
    20. Shimizu A. Elects of Pd and Cr on titanium properties (in Japanese). J Jpn Dent Mater 1986;5:122~132.
    21. Okuno O, Hamanaka H. Application of beta titanium alloys in dentistry. Dentistry Jpn 1989, 26:11~14.
    22. Takada Y, Okuno O Nakajima H Okabe T. Evaluation of binary metastable□-titanium alloys for dental applications. J Dent Res 1997, 16: 19~24.
    23.尹玉姬,李方等.生物医用材料.化工进展.2000,(2):29~33
    24.刘素英,武宏让.钛金属强化生物材料.中国有色金属学报.1998,9(8):17~22
    25.陈德敏.磷灰石骨水泥材料的物性研究,生物医学工程学杂志.2000,17(1):13-23
    26.王迎军,刘时康.生物医用材料的研究与进展.中国陶瓷.1999,(10):12~15
    27.郑跃华,侯小妹等.多孔羟基磷灰石生物陶瓷的进展.硅酸盐通报.
    
    1995,(3):46~49
    28.阎玉华,张宏权.生物陶瓷及制品的发展形状和前景.中国陶瓷.2001,(3):21~25
    29.张东明 傅正义.放电等离子加压烧结(SPS)技术特点及应用.武汉工业大学学报.1999,12(6)
    30. Schwarz S Lenz J Schwickerath H. Zur Festigkeit des metal-lkeramischenverbundes bei der biegeprufung. (Metalloceramicbond strength in bending tests) (in German). Dtsch ZahnarztlZ 1988, (43):1152~1158.
    31. Murray JL. Binary alloy phase diagrams. In: Baker H editor. Alloy phase diagrams. Ohio: ASM International 1987, (8): 89~105.Smithells CJ. Elastic properties and damping capacity. In: Metals reference book 4th ed vol. 3. London: Butterworths 1967, (7):8~11.
    32.孙常太,黄公怡.羟基磷灰石涂层假体植入的实验研究及应用现状[J].中华骨科杂志,1998,18(9)
    33.杨贤金,朱胜利等.金属生物材料表面改性的研究的进展.材料保护.2000,(1):16~18
    34.郑学宾,张叶方.等离子喷涂HA/TiO_2复合涂层.无机材料学报.1999,12(6)
    35.曹永平,严尚诚.羟基磷灰石涂层人工股骨柄的实验研究[J].中华骨科杂志.1997,17(3)
    36.王辰,王朝俭.羟基磷灰石种植体植入物的动物实验观察.宁夏医学杂志.1999,21(6):89~105.
    37. Jalee RI. The physical metallurgy of titanium alloys. In: Chal-mers editor. Progress in metal physics. London: Per-gamon 1958, 11, (7) :65~163.
    38. Probster L Maiwald U Weber H. Three-point bending strength of ceramics fused to cast titanium. Eur J Oral Sci 1996, 1, (4):313~319.
    39.郑学斌,丁传贤.等离子喷涂HA/TiO_2复合涂层研究.无机材料学报.2000(3).
    40.周香林,李秀真,杨士浩,胡汉起.激光熔覆陶瓷涂层与金属基体之
    
    间的界面特性,激光熔覆技术,1996,20(2).
    41.江志强,李华伦.激光表面重熔等离子喷涂的研究与进展。材料工程.1999(1)4~9
    42.张亚平,文静.激光熔覆生物陶瓷涂层的组织结构.金属热处理.1998,(10):20~23.
    43.袭迎祥,王迎军.羟基磷灰石生物陶瓷涂层的制备方法.材料开发与应用.2001,22(4):10~15
    44.储成林,朱景川,尹钟大,王世栋 致密羟基磷灰石(HA)生物陶瓷烧结行为和力学性能 《功能材料》.1999,30(6)
    45.刘素英,武宏让.钛金属强化的生物材料,中国有色金属学报,1998:8(增2)
    46.马捷,韩青,高晓霞,钟涛兴.表面激光熔覆羟基磷灰石种植体材料的研究。钛金属强化的生物材料,中国有色金属学报,1998:8(增2)
    47.储成林,成景川,尹钟大.医用钛合金及其表面改性,材料科学与工艺,1998:6(2).
    48.贺子开,王培松.各种材料微弧氧化生成陶瓷膜的研究.材料保护.2002(4):37~39.
    49.王全胜.等离子喷涂力学性能研究.宇航材料工艺.1999(6).
    50.薛文斌,邓志威等.铸造镁合金的微弧氧化机理,稀有金属材料与工程.1999(12),14~19
    51.张通合,陈如意等.微弧氧化技术的发展现状与展望,全国表面工程专题论文,1997:273~277
    52.薛文斌,邓志威,来永春.铝合金表面微弧氧化膜层的特性,电镀与精饰.1996,18(5):3~6
    53.来永春.铝合金表面微弧氧化处理.铝合金加工技术.2000,(10):31~36
    54. Kurze P. Magnesium Alloy Electrochemical Coatings. Mentallober flache, 1994,48(2):104~106
    
    
    55. Zozullin A J. Bartak D E. Anodized Coatings for Magnesium Alloys. Metal Finishing. 1994, 92(3) :39~43
    56.薛文斌,邓志威,张通合,陈如意.LY12铝合金表面的微弧氧化.中国有色金属学报.1997,7(3):143~143
    57.薛文斌,邓志威,张通合.铝、镁合金微弧氧化涂层的机械性能研究.材料科学与工艺.1997,5(2):89~92
    58.薛文斌,邓志威,微弧氧化技术的研究和进展,材料科学与工艺,1998:7(2)
    59.常程康等.微弧氧化在金属表面改性研究的应用,材料科学与工艺,1999,6:16~25
    60.韩庆荣,陈晓明.电沉积生物活性陶瓷技术.材料工程.2001,(3):45~48
    61.曾晟宇,赵乃勤,崔振铎,朱胜利,杨贤金.金属生物材料表面改性研究的进展 材料保护.2001(1)
    62.刘荣芳,肖秀峰等.HA电沉积过程及其结构特征.福建师范大学学报.2001,3(11)
    63.张文钺等.焊接冶金学.高等教育出版社,1998:242~261
    64. Y.Krysman Microarc Oxidation Mcchanism of Aluminum Alloy, Mod. Aspect. Electrochem. 1982 (14) :319.
    65.尹玉姬,李方,叶芬,姚康德.生物医用材料.化工进展.2001(2)
    66. T. Hanawa, M. Ota, Biomaterials. 1991 (12): 767
    67.张建民,杨长春,石秋芝.电泳沉积功能陶瓷技术.中国陶瓷.2000(12):42~45
    68.高殿魁,沈德久,王玉林.低碳钢热浸镀铝微弧氧化陶瓷层厚度研究.材料保护 2000(5):26~30
    69.张欣宇,石玉龙.等离子体微弧氧化技术及其应用,青岛化工学院学报.2002(3):16~20
    
    
    70.邓志威,薛文斌等.铝合金表面微弧氧化技术.材料保护.1996(12):15~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700