生物活性颈椎椎间融合器(BCFC)的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     欲制备生物可降解的颈椎融合材料,我们合成了羟基磷灰石及左旋聚乳酸复合物(HA/PLLA),将其合成高强度的颈椎椎间融合器,该复合材料有着良好的生物相容性,其材料的生物力学测试得到了较好的结果,抗压强度可达到人体皮质骨水平,为进一步将该生物可吸收的生物活性颈椎椎间融合器(BCFC)推向临床,本实验在成人新鲜颈椎标本上模拟临床术式放置此生物活性颈椎椎间融合器,通过脊柱三维运动稳定性及拔出实验评价其重建颈椎稳定性的效果及植入后的即刻稳定性。
     方法
     1、在6具新鲜成人颈椎标本,对C_(5,6)行椎间盘切除术,分别将髂骨、BCFC置于椎间隙及BCFC加钢板,对节段进行脊柱三维运动稳定性评价。
     2、在6具新鲜成人颈椎标本,对C_(4,5)行椎间盘切除术后,分别将BCFC、髂骨置于椎间隙,对植入物进行拔出力学测试。
    
    围均增大,但差异无统计学意义
    在左/右轴向旋转状态下BCFC
    稳定性增加,
    计学意义;
     在前屈、
    范围均减少,
    差异有统计学意义
    组比骼骨组的运动范围减少,
    ;与正常组运动范围的差异无统
    左/右侧弯状态下BCFC
    差异有统计学意义。
    组比正常组及骼骨组的运动
    结论
    翠洲醚箭矍淤巡溯:i
    沪云了们科。
Objective
    In our recent study, we have already syntheses HA granules of high purity and crystallinity with osteoinductive characteristics, and poly-L-lactide (PLLA), alse biocompatible and bioresorbable, becoming an optimal osteoinductive composite . Adjusting the conditions for HA and PLLA synthesis, constituent composite can be obtained suitable for application to human organisms as implants of cervical spinal fusion cage. The purpose was to develop the use of BCFC in clinic. In this article, In fresh six human cervical spine specimens, imitative surgical procedures were carried out and BCFC was inserted respectively in the intervertebral spaces. Pull-out tests of the implanted material (C4, 5) and three dimensional spinal stability evaluation (C5, 6) were performed. To evaluate the immediate effects and initial stability imparted to the human cadaveric spine by the newly designed and developed BCFC.
    Methods
    1.In six fresh human cervical spine specimens, resection of the C5,6 intervertebral discs were done and iliac crest bone ,BCFC,plate on BCFC were inserted respectively in the intervertebral space. Segemental three dimensional spinal stability (C5 , 6) were
    
    
    
    evaluated .
    2.In six fresh human cervical spine specimens, resection of the C4,5 intervertebral discs were done and BCFC, iliac crest bone were inserted respectively in the intervertebral space. Segemental pull-out tests of the implanted material (C4,5) were performed.
    Results
    1.After discectomy, spines receiving the plate on BCFC exhibited an decrease in angular motion in all directions and a significant increase in stability in all directions(p<0.005).
    2.In extension, both BCFC and iliac crest bone were associated with a decrease in stability than the intact spine, but it was not significantly.
    3.In left and right axial rotation, BCFC exhibited an decrease in angular motion than iliac crest bone and a significant increase in stability (p<0.005); but it was not significantly than the intact spine.
    4.In flexion and left/right axial rotation, BCFC exhibited an decrease in angular motion than iliac crest bone and intact, and a significant increase in stability (p<0.005).
    Conclusion
    Bioactive Cervical Fusion Cage is biodegradable, biocompatible material. BCFC could provide enough support, anti-slide ability and could remain or increase the height of intervertebral spaces. It completely meets clinical and biomechanical requirements. It is worth further medical research
    
    
    and surgical application in spinal surgery.
引文
1. Yang KC, Lu XS, Cai QL, Ye XY, Lu WQ: Cervical spondylotic myelopathy treated by anterior multilevel decompression and fusion. Clin Orthop 1987; 221: 161-4.
    2. Cloward RB: Complications of anterior cervical disc operation and their treatment. Surgery 1971; 69: 75-182.
    3. Graham JJ: Complications of cervical spine surgery: A five year report on a survey of the membership of the Cervical Spine Research Society by the Morbidity and Mortality Committee. Spine 1989; 14: 1046-50.
    4. Gregory CF: Some complications ocdurring with anterior cervical spine fusion. J Bone Joint Surg [Br] 1964; 46: 775.
    5. Silber JS, Anderson GD, Daffner SD, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 2003; 28(2): 134-139.
    6. Smith MD, Cody DD. Loading-bearing capacity of corticocancellous bone graft in the Spine[J]. J Bone Joint Surg, (Am) 1993, 75(8): 1026.
    7. Bertalanffy H, Eggert HR. Clinical long-term results of anterior discectomy without fusion for treatment of cervical radiculopathy and myelopathy: a follow-up of 164 cases. Acta Neurochir, 1988, 90: 127-135
    8. Brooke NS, Rorke AW, King AT, et al. Preliminary experience of carbon fibre cage prostheses for treatment of cervical spine disorders. Br J Neurosurg 1997; 11: 221-7.
    9. Munoz FLO, de 1as Heras BG, Lopez BC et al. Comparison of three techniques of anterior fusion in single-level cervical disc herniation. Eur Spine J 1998; 7: 512-6.
    
    
    10. Zang Y, Homs D, Gates K, et al. A comprehensive study of physical parameters, biomechanical properties, and statistical correlation of iliac crest bone wedges used in spinal fusion surgery. Ⅳ. Effect of gamma irradiation on mechanical and material properties[J]. Spine, 1994, 19(3): 304.
    11. Hacker RJ, Cauthen JC, Gilbert TJ, et al. A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine 2000; 25: 2646-54.
    12. McAfee PC, Boden SD, Brantigan JW, et al. Symposium: a critical discrepancy: a criteria of successful arthrodesis following interbody spinal fusions. Spine 2001; 26: 320-34.
    13. Takahashi S, Delecrin J, Passuti N. Intraspinal metallosis causing delayed neurologic symptoms after spinal instrumentation surgery. Spine 2001; 26: 1495-8.
    14. Hatch RS, Sturm PF, Wellborn CC. Late complication after single-rod instrumentation. Spine 1998; 23: 1503-5.
    15. Glassman SD, Johnson JR, Raque G, et al. Management of iatrogenic spinal stenosis complicating placement of a fusion cage: a case report. Spine 1996; 21: 2383-6.
    16. Bent MJ, Oosting J, Wouda EJ, et al. Anterior cervical discectomy with or without fusion with acrylate: a randomized trial. Spine, 1996, 21(7): 834-840.
    17. Tancred DC, McCormack BA, Carr AJ. A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites[J]. Biomaterials 1998 Oct; 19(19): 1735-1743.
    18. Barralet JE, Gaunt T, Wright AJ, et al. Effect of porosity reduction by compaction on compressive strength and
    
    microstructure of calcium phosphate cement[J]. J Biomed Mater Res, 2002, 63(1): 1-9.
    19. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part Ⅰ. Basic characteristics. Biomaterials 1999; 20: 859-77.
    20. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part Ⅱ. Practical properties of miniscrews and miniplates. Biomaterials 2001; 22: 3197-211.
    21.吴广森,靳安民,田京,等.生物活性颈椎椎间融合器的制作与基本性能研究[J].中国临床康复,2003,7(20):2772-3.
    22. Denis F. The three column spine and its significance in the ciassification of Acute spine trauma. Spine 1983; 8; 817.
    23. Lai H, Moriya H, Goto S, et al. Three dimensional motion analysis of the upper cervical spine during axial rotation[J]. Spine, 1993, 18(16): 2388-2392.
    24.王以进,王介麟.骨科生物力学[M].人民军医出版社,1989.156-191.232-233.
    25.徐德永.颈椎病发生的解剖学和生物力学基础[J].临床放射学杂志,1997,16(2):120-122.
    26. Panj abi MM. B asicbiomechanicso fthespine [J]. Neuro-surgery, 1990, 7: 76-81.
    27. Lowery GL, Mcdonough RF. The significance of hardware failure in anterior cervical plate fixation patients with 2-to 7-year follow-up. Spine, 1998, 23: 181-187.
    
    
    28. Watters WC, Levinthal R. Anterior cervical discectomy with and without fusion: Results, complications, and long-term follow-up. Spine 1994; 19: 2443-7.
    29. Graham JJ: Complications of cervical spine surgery: A five year report on a survey of the membership of the Cervical Spine Research Society by the Morbidity and Mortality Committee. Spine 1989; 14: 1046-50.
    30. Banwart JC. Iliac crest bone graft harvest donor site morbility. Spine 1995; 20: 1055-60.
    31. Martin HK, Robertson PA, Johnson CC, et al. Anterior cervical fusion using a modified tricortical bone graft: A radiographic analysis of outcome. J Spinal Disord 1997; 10: 420-30.
    32. Hacker RJ, Cauthen JC, Gilbert TJ, et al. A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine 2000; 25: 2646-55.
    33. Profeta G, de Falco R, Ianniciello G, et al. Preliminary experience with anterior cervical microdiscectomy and interbody titanium cage fusion (Novus CT-Ti) in patients with cervical disc disease. Surg Neurol 2000; 53: 417-26.
    34. Steffen T, Tsantrizos A, Fruth I, et al. Cages: designs and concepts. Eur Spine J 2000; 9(suppl 1): S89-94.
    35. Matsumoto M, Chosa E, Nabeshima K, et al. Influence of bioresorbable, unsintered hydroxyapatite/poly-L-lactide composite films on spinal cord, nerve roots, and epidural space. J Biomed Mater res 2002; 60: 101-9.
    36. Koji Totoribe, Masanori Matsumoto, Vijay K, et al. Comparative Biomachanical Analysis of a Cervical Cage Made of an Unsintered Hydroxyapatite Particle and Poly-L-Lactide Compsite in a Cadaver Model.Spine 2003; 28: 1010-1015.
    
    
    37. Onan OA, Heggeness MH, Hipp JA. A motion analysis of the cervical facet joint. Spine 1998; 23: 430-9.
    38. Dietl RH, Krammer M, Kettler A, et al. Pullout test with three lumbar interbody fusion cages. Spine. 2002 May 15; 27(10): 1029-36.
    39. Otero RH, Vich JM. Update in the cloward procedure: new instruments. J Neurosurg, 1994; 81(6): 716-720.
    40.于博,靳安民,吴广森,等.人工可吸收颈椎融合器组织相容性的实验研究[J].中国临床康复,2003,7(6):908-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700