有机高分子模板诱导牙体组织样羟基磷灰石仿生合成的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:开发具有与牙体组织结构相似的生物材料一直都是口腔医学界的梦想。但牙釉质是高度矿化、高度有序组装的天然纳米复合材料,一直被认为太复杂而难以模拟构建,因此,通过人工手段控制磷酸钙类矿物的生长并有序排列是目前口腔仿生材料研究的重点和难点之一。目前关于牙体硬组织的体外合成的研究较少,较突出的有早期氟处理技术,亚稳态含钙、磷的矿化液,及纳米磷灰石晶体或含蛋白的纳米磷灰石晶体在牙釉质表面沉积等报道。这些方法技术隐含了仿生构建牙釉质的设计思想,但是沉淀的磷灰石晶体在形态、大小、组装上都与釉质结构有较大差距;有学者利用牙乳头细胞及组织工程的方法实现了少量牙釉质的再生,但仍存在应用上的障碍。因此,用非生物方法在体外模拟牙釉柱形成是现阶段牙釉质修复和牙釉质仿生材料研究的一个重要方向,近年来备受各科学者的关注。据本课题组了解,在牙体组织原位进行类牙羟基磷灰石生长的研究还少有报道。在这样的研究背景下,本实验依据生物矿化的有机基质调控理论,运用有序高分子作为矿化模板,体外原位模拟牙体组织仿生合成羟基磷灰石,初步获得了有序排列的晶体结构。
     首先,对惰性的牙釉质表面进行低温等离子改性,用氨气、氢气和氧气作为反应气体,活化牙釉质羟基磷灰石中的羟基,并引入部分氨基和羧基。其次,通过碳乙基二亚胺盐酸盐和N-羟基丁二酰亚胺介导缩合反应,将有机高分子明胶、丝蛋白通过肽键交联连接到处理过的牙釉质表面和脱矿的牙本质表面。然后在钙、磷离子溶液(过饱和矿化液和人工唾液)中实现晶体生长,生成羟基磷灰石,最后对新生的羟基磷灰石进行理化和生物学性能的检测。
     结果显示:低温等离子处理后釉质表面引入了-NH、-NH_2、-NH_3、-COOH等活性基团,-OH活性增加,C元素含量增高。碳乙基二亚胺盐酸盐和N-羟基丁二酰亚胺介导缩合反应将明胶和丝蛋白以肽键键合到牙体组织表面,覆盖原来的-NH_3位点,由于明胶和丝素蛋白的空间三级结构,令原有牙体表面零星分布的与钙、磷离子结合的活性位点变成致密、有序的三维分布。用过饱和矿化液和人工唾液均能实现晶体生长,所得晶体呈矮柱状,30~50nm长,垂直于牙体组织表面,相互平行排列。经理化检测证实新生晶体为羟基磷灰石,与牙体组织的结合强度在20~30N之间,硬度接近正常牙本质。经生物学性能测试证实新生晶体有良好的生物相容性,无细胞毒性,无细菌的特异粘附性。
     综上所述,本实验初步实现了高分子化合物在牙体组织原位引导羟基磷灰石仿生合成,生成的羟基磷灰石类似于牙体组织釉柱中的晶体形貌,说明三维有机高分子引导的矿化反应是实现牙再生的有巨大潜力的途径之一。
The biogenetic formation of mineralized tissues such as enamel is a complex multi-step process including elements or compounds such as potassium, calcium, or phosphate and leading from precursor soft tissue, formed by extracellular matrix proteins (mainly collagen typeⅠ), to a mineralized tissue, mainly composed by hydroxyl apatite and some residues of the organic extracellular matrix. As adult tooth enamel is not living tissue, it hardly can remineralize after the substantial mineral loss. Many in vitro methods has been developed to produce the artificial enamel lesions for the use in de- or remineralization studies, which include the acidified gels, buffered solutions, exposure to acid vapor, or incubation with natural plaque. In addition, various surface-protective agents have been used to obtain lesions with characteristic surface zones.
     The formation of Calcium matrix proteins(mainly collagen typeⅠ) in bones and teeth are associated with the nucleation and growth of hydroxyapatite crystals. As the hydrolysate of collagen, gelatin shows this characteristics both in vivo an vitro. Based on the theory of "molecular recognition", we designed a cross-link reaction to get a bounding layer between gelatin/silk protein and tooth tissue to enhance the intensity. This organic molecules model can be used to induce the crystallization of hydroxyapatite, which is usefull to build a tooth-like calcium phosphate/hydroxyapatite under a controllable way in vitro.
     Human molars were sliced into 2mm thickness disks and etched with phosphoric acid/EDTA to reveal the different orientations of the enamel rod/dentinal tubule. Surface modification of decalcified enamel was conducted by low temperature plasma processing. Peptide bond compound: N,N-(3-dimethylaminopropyl) -N'-ethyl-carbodiimide hydrochloride (EDC) and N-hydroxysuecinimide (NHS) were purchased from Medpep(Shanghai, China). The molars disks were incubated with EDC and NHS in 0.02M Phosphate Buffer Solution(0.02 M EDC, 0.05M NHS) for 30min at 37℃. Gelatin/silk protein was added into the suspension at concentration of 0.1M, and the mixture was incubated at 37℃for 2 h with gentle shaking. The variation of elements on the surface of sample were investigated by X-ray photoelectron spectroscopy (XPS, Kratos Analytical Ltd., Surface Analysis Product Group, United Kingdom).
     Disks of molar after crosslinking were soaked in calcification solution (SCS, 5mM CaCl_2, 5mM NaH_2PO_4, 1.5mM NaHCO_3, pH 6.31) for 24h at 37℃. Other group were soaked in artificial saliva(NaCl 1.71mmol/L, KCL 1.32mmol/L, CaCl_2 1.02mmol/L, NaH_2PO_4 0.90 mmol/L, Na_2S 0.004 mmol/L, CO(NH_2)_2 4.16 mmol/L) for one month, supersede the environmental fluid every day. All the samples were studied by X-ray diffraction (XRD, X'Pert Pro MPD, Philips, Holland), SEM and XPS. The microhardness of the neonatal crystal were tested through Knoop hardenss testing. Periodontal fibroblast were cultivated with samples to evaluate the biological reaction of the neonatal crystal. Oral pathogenic microbes(Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Actinomyces viscosus, Candida albicans) were co-incubated with neonatal crystal to test the adhesion of these pathogenic microbes to neonatal HA.
     XPS analysis of gelatin/silk protein monolayer for samples cycle group revealed that the surface organic compositions is higher than that of normal dentin and decalcified dentin surface. We speculated that-NH, -NH_2,-NH_3 and -COOH were grafted to the surface of tooth.
     The XRD showed that the precipitation was calcium fluoride phosphate and Ca:P was 1.6. At the same time, SEM micrographs of biomaterial showed this composite a continuous structure of columns crystal with size of 10-40nm. Furthermore, there were column crystal with parallel direction inside, as same as the crystal array in the top of enamel rod. The hardness of neonatal crystal close to the normal dentin. The binding affinity between neonatal crystal and normal tooth is 20N.
     There are well bio-compatibility of neonatal crystal which confirmed by MTT test. There aren't differential adhesion between oral pathogenic microbes and neonatal crystal.
     According to the guide of block copolymer solution, the enamel-like calcium phosphate/hydroxyapatite compound material can be mineralized by biomimetic method. The specific functions of the copolymers can be used as a potential effective crystal growth modifiers.
引文
[1] Mann S. The biomimetics of enamel: a paradigm for organized biomaterials synthesis. Ciba Found Symp, 1997, 205:261 -274.
    [2] Chen HF, Clarkson BH, Sun K, et al. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci, 2005, 288:97-103.
    [3] Chen HF, Tang ZY, Liu J, et al. Acellular synthesis of a human enamel—like microstructure. Advanced Mater, 2006, 18: 1846- 1851.
    [4] Murphy WL, Mooney DJ. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. JAm Chem Soc. 2002; 124:1910-1917.
    [5] Susanne Busch. Regeneration of Human Tooth Enamel. Angew.Chem.Int.Ed. 2004,43,1428-1431.
    [6] 欧阳健明.生物矿物及其矿化过程.化学进展.2005,17(4),749-756.
    [7] LeGeros RZ, Properties of Osteoconductive Biomatedals: Calcium Phosphates. Clinical Orthopaedics and Related Research, 2002, 395:81-98
    [8] Todumi DM., Manickam A. New advances in bone grafting alternatives. Current Opinion in Otolaryngology & Head and Neck Surgery, 2000, 8:282-287
    [9] 沈玉华.杨展澜.谢安键.吴瑾光.水溶性BSA-羟基磷灰石-碳酸钙复合物的形成机理。光谱学与光谱分析.2000,20(6),781-784
    [10] Graeme K Hunter.Interfacial aspects of biomineralization. Current Opinion in Solid State & Materials Science.1996,1(3):430-435.
    [11] Sivakumar M, Oliveira V, Oliveira S, Leitao J, Vilar R. Influence of tubule orientation on cone-shaped texture development in laser-ablated dentin. Lasers Med Sci. 2006, 21(3):160-4.
    [12] Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M. Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Bioi Chem. 2005 ,280 (33):29717-29727.
    [13] Weiner S, Veis A, Beniash E, Arad T, Dillon JW, Sabsay B, Siddiqui F. Pefitubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J Struct Biol. 1999,126(1):27-41.
    [14] Hohling HJ, Arnold S, Barckhaus RH. Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res. 1995;33(1-3):171-178.
    [15] Dreger SA, Thomas P, Sachlos E, Chester AH,. Potential for synthesis and degradation of extracellular matrix proteins by valve interstitial cells seeded onto collagen scaffolds.Tissue Eng. 2006 Sep;12(9):2533-2540.
    [16] Manders PJ, Wolke JG, Jansen JA. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats. Clin Oral Implants Res. 2006 Oct; 17(5):548-553.
    [17] Lele BS, Murata H, Matyjaszewski K, Russell AJ. Synthesis of uniform protein-polymer conjugates. Biomacromolecules. 2005 Nov-Dec;6(6):3380-3387.
    [18] Tong H, Ma W, Wang L, Wan P, Hu J, Cao L. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials. 2004 Aug;25(17):3923-3829.
    [19] Mann S. Biomineralization [M]. Oxford: Oxford University Press, 2001
    [20] Jackson DJ, McDougall C, Green K, Simpson F, Worheide G, Degnan BM.A rapidly evolving secretome builds and patterns a sea shell. BMC Biol. 2006 Nov 22;4:40.
    [21] Gautier C, Lopez PJ, Hemadi M, Livage J, Coradin T. Biomimetic growth of silica tubes in confined media. Langmuir. 2006 Oct 24,22(22):9092-9095.
    [22] Tsukamoto D, Sarashina I, Endo K. Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun. 2004 Aug 6,320(4): 1175-1180.
    [23] Miyamoto T. Selected bioactive compounds from Japanese anaspideans and nudibranchs. Prog Mol Subcell Biol. 2006;43:199-214.
    [24] Kamiya H, Sakai R, Jimbo M. Bioactive molecules from sea hares. Prog Mol Subcell Biol. 2006;43:215-239.
    [25] Mann S. Molecular recognition in biomineralization .Nature, 1988, 332 (6213): 119-124.
    [26] Mann S, Heywood B R, Rajam S, et al. Cont rolled crystallisation of CaCO_3 under stearic acid mono layers. Nature, 1988, 334 (6205): 692-698.
    [27] Christopher Dean M. Tooth microstructure tracks the pace of human life-history evolution. Proc Biol Sci. 2006 Nov 22;273(1603):2799-808.
    [28] Margolis HC, Beniash E, Fowler CE. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res. 2006 Sep;85(9):775-793
    [29] Aoba T, Komatsu H, Shimazu Y, Yagishita H. Enamel mineralization and an initial crystalline phase. Connect Tissue Res. 1998;38(1-4): 129-137;discussion 139-145.
    [30] L. Calderin and M. J. Stott. Electronic and crystallographic structure of apatites. PHYSICAL REVIEW B 67, 134106 1-134117.
    [31] Sivakumar Gajjeraman, Karthikeyan Narayanan, Jianjun Hao, Chunlin Qin.Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. The Journal of Cell Biology, 167(5) December 6, 2004, 973-983.
    [32] Robinson C, Brookes SJ, Shore RC, Kirkham J. The developing enamel matrix: nature and function. Eur J Oral Sci. 1998 Jan;106 Suppl 1:282-291.
    [33] Plate U, Hohling HJ, Reimer L, Barckhaus RH, Wienecke R. Analysis of the calcium distribution in predentine by EELS and of the early crystal formation in dentine by ESI and ESD. J Microsc. 1992 Jun;166(Pt 3):329-341.
    [34] DM. LYARUU, A.LJJ. BRONCKERS, J.H.M. WOLTGENS Localization of cellular calcium in differentiating ameloblasts And its relationship to the early Mineralization process in mantle Dentin and enamel in hamster Tooth germs in vitro Adv Dent Res. 1987, December, 1(2):202-212.
    [35] Hohling HJ, Arnold S, Barckhaus RH, et al. Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res, 1995,33(1-3) :171-178.
    [36] 欧阳健明,姚秀琼.单分子膜诱导下的矿物晶体生长.化学研究与应用。2001,13(4),353-358.
    [37] Whipps S, Khan S R. Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers. J Cryst Growth, 1998, 192:243~249
    [38] Heywood B R, Mann S. Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed langmuir monolayers. J Chem Mater, 1994, 6: 313~318.
    [39] Coradin T, Marehal A, Abdoul-Aribi N, Livage J. Gelatine thin films as biomimetic surfaces for silica particles formation. Colloids Surf B Biointerfaces. 2005 Sep,44(4):191-196.
    [40] Ulubayram K, Eroglu I, Hasirci N. Gelatin microspheres and sponges for delivery of macromolecules.J Binmater Appl. 2002 Jan,16(3):227-241.
    [41] Traore A, Foueat L, Renou JP. 1H NMR studies: dynamics of water in gelatin. Eur Biophys J. 2000,29(3):159-164.
    [42] Bigi A, Panzavolta S, Sturba L, Tordceili P, Fini M, Giardino R. Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin-calcium phosphate bone cement.J Biomed Mater Res A. 2006 Sep 15;78(4):739-745.
    [43] Ye P, Xu ZK, Wu J, Innocent C, Seta P. Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials. 2006 Aug;27(22):4169-4176.
    [44] Chen T, Janjua R, McDermott MK, Bernstein SL, Steidl SM, Payne GF. Gelatin-based biomimetic tissue adhesive. Potential for retinal reattachment.J Biomed Mater Res B Appl Biomater. 2006 May;77(2):416-422.
    [45] Coradin T, Marchal A. Gelatine thin films as biomimetic surfaces for silica particles formation. Colloids Surf B Biointerfaces. 2005 Sep;44(4):191-196.
    [46] Dash R, Ghosh SK, Kaplan DL, Kundu SC. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol B Biochem Mol Biol. 2007 May; 147(1): 129-134.1
    [47] Dicko C, Kenney JM, Vollrath F. Beta-silks: enhancing and controlling aggregation. Adv Protein Chem. 2006;73:17-53.
    [48] Dash R, Mukherjee S, Kundu SC. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int J Biol Macromol. 2006 May 30;38(3-5):255-258.
    [49] Lefevre T, Rousseau ME, Pezolet M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys J. 2007 Apr 15;92(8):2885-2895.
    [50] Chen X, Knight DP. Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: effect of potassium ions on Nephila spidroin films. Biochemistry. 2002 Dec 17;4I(50): 14944-14950.
    [51] Nicholson LK, Asakura T, Demura M, Cross TA. A method for studying the structure of uniaxially aligned biopolymers using solid state 15N-nmr: application to Bombyx mori silk fibroin fibers. Biopolymers. 1993 May;33(5):847-861.
    [52] Takeuchi A, Ohtsuki C, Miyazaki T, Kamitakahara M, Ogata S, Yamazaki M, Furutani Y. Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin. J R Soc Interface. 2005 Sep 22;2(4):373-378.
    [53] Park KE, Jung SY, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol. 2006 May 30;38(3-5):165-173.
    [54] Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M, Tanihara M. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A. 2003 May 1;65(2):283-289.
    [55] Eliades T. Orthodontic materials research and applications: part 1. Current status and projected future developments in bonding and adhesives.Am J Orthod Dentofacial Orthop. 2006 Oct;130(4):445-451.
    [56] De Mtmck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, Van Meerbeek B.A critical review of the durability of adhesion to tooth tissue: methods and results.J Dent Res. 2005 Feb;84(2):118-132.
    [57] D. Sun and G.K. Stylios. Effect of Low Temperature Plasma Treatment on the Scouring and Dyeing of Natural Fabrics. Textile Research Journal, Sap 2004; 74:751-756.
    [58] Tomiji Wakida, Sungmi Cho, Sukchul Choi, Seiji Tokino, and Muncheul Lee. Effect of Low Temperature Plasma Treatment on Color of Wool and Nylon 6 Fabrics Dyed with Natural Dyes. Textile Research Journal, Nov 1998; 68:848-853.
    [59] 温贵安,章文贡.无机粉体的低温等离子表面改性.材料导报,1994,13(2),40-42.
    [60] K.K. Wong, X.M. Tao, C.W.M. Yuen, and K.W. Yeung. Low Temperature Plasma Treatment of Linen. Textile Research Journal, Nov 1999; 69:846- 855.
    [61] Chang JY, Lin JH, Yao CH, Chert JH, Lai TY, Chert YS. In Vivo Evaluation of a Biodegradable EDC/NHS-Cross-Linked Gelatin Peripheral Nerve Guide Conduit Material. Macromol Biosci. 2007 Apr 10;7(4):500-507.
    [62] Yuwen Liu, Lisha Gan, David J. Carlsson, Per Fagerholm, Neil Lagali, Mitchell A. Watsky, Rejean Munger. A Simple, Cross-linked Collagen Tissue Substitute for Corneal Implantation. Invest. Ophthalmol. Vis. Sci. 2006, 47:1869-1875.
    [63] Yue TW, Chien WC, Tseng SJ, Tang SC. EDC/NHS-mediated heparinization of small intestinal submueosa for recombinant adeno-associated virus serotype 2 binding and transduction. Biomaterials. 2007 May;28(14):2350-2357.
    [64] Nam K, Kimura T, Kishida A. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels. Biomatedals. 2007 Jan;28(1): 1-8.
    [65] Wang XH, Li DP, Wang WJ, Feng QL, Cui FZ, Xu YX, Song XH, van der Werf M. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials. 2003 Aug;24(19):3213-3220.
    [66] A Bartegi, A Fattoum, and R Kassab. Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin. J. Biol. Chem., Feb 1990; 265:2231-2237.
    [67] Li F, Feng QL, Cu FZ, Li HD, et al. A simple biomimetic method for calcium phosphate coating. Surface and Coatings Technology, 2002,154:88-93.
    [68] Kokubo T, Ito S, Huang ZT, et al. Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res., 1990,24:331-343.
    [69] Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res., 1990,24: 721-734.
    [70] Kokubo T, Kushitani H, Ohtsuld C, et al. Chemical reaction of bioaetive glass and glass-ceramics with a simulated body fluid. J Mater Sci Mater Med., 1992,1:79-83.
    [71] Li F, Feng QL, Cui FZ, et al. A simple biomimetic method for calcium phosphate coating. Surface and Coatings Technology, 2002,154:88-93.
    [72] Feng QL, Cui FZ, Wang H. Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment. Journal of Crystal Growth, 2000, 210: 735-740
    [73] Varma HK, Yokogawa Y, Espinosa FF, et al. Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomatedals, 1999,20:879-884.
    [74] ZHAO Y, HE G, NIE RR, et al. Calcium phosphate coating over silk fibroin film by biomimetic methods. Journal of the Wuhan University of Technology: Materials Science Edition (supplement), 2005,20:92-94.
    [75] Costa N, Peter MM. Biomimetic processing of calcium phosphate coating. Medical Engineering & Physics,1998, 20:602-606.
    [76] Baker KC, Drelich J, Miskiogiu I, Israel R, Herkowitz HN. Effect of polyethylene pretreatments on the biomimetic deposition and adhesion of calcium phosphate films. Acta Biomater. 2007 May;3(3):391-401.
    [77] Kolos EC, Ruys AJ, et al. Calcium phosphate fibres synthesized from a simulated body fluid. J Mater Sci Mater Med. 2006 Nov;17(11):1179-1189.
    [78] Vaahtio M, Peltola T, Hentunen T, et al. The properties of biomimetically processed calcium phosphate on bioactive ceramics and their response on bone cells. J Mater Sci Mater Med. 2006 Nov; 17(11): 1113-1125.
    [79] Varma HK, Yokogawa Y, Espinosa FF, Kawamoto Y, Nishizawa K, Nagata F, Kameyama T. In-vitro calcium phosphate growth over functionalized cotton fibers. J Mater Sci Mater Med. 1999 Jul;10(7):395-400.
    [80] Habibovic P, van der Valk CM, van Blitterswijk CA, De Groot K, Meijer G. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials. J Mater Sci Mater Med. 2004 Apr;,15(4):373-380.
    [81] Tanahashi M, Yan T, Kokubo T, et al. Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc., 1994,77:2805-2808.
    [82] Furuzono T, Taguchi T, Kishida A, et al. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J Biomed Mater Res, 2000,50: 344-352.
    [83] 司徒镇强,吴军正.细胞培养.世界图书出版社,西安,2004.3:71-72.
    [84] Caufield PW, Li Y, Dasanayake A. Dental caries: an infectious and transmissible disease. Compend Contin Educ Dent. 2005 May;26(5 Suppl 1):10-16.
    [85] Fejerskov O. Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res. 2004 May-Jun;38(3):182-191.
    [86] Macarthur DJ, Jacques NA. Proteome analysis of oral pathogens.J Dent Res. 2003 Nov;82(11):870-876.
    [87] Rutar A. Lang NP. Buser D. Burgin W. Mombelli A. Retrospective assessment of clinical and microbiological factors affecting periimplant tissue conditions. Cli Oral Implants Res, 2001,12(3): 189-195.
    [88] Suket, a N. Sawase T. Kitaura H. Naito M. Baba K. Nakayama K. Wennerberg A. Atsuta M. an antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Cli Implant Dentistry & Related Res, 2005,7(2): 105-111.
    [1] 冯庆玲。生物矿化与仿生材料的研究现状及展望。清华大学学报(自然科学版),2005,45:378-383.
    [2] Goma K, Munoz-Espi R, Grohn E Wegner G. Bioinspired mineralization of inorganics from aqueous media controlled by synthetic polymers. Macromol Biosci. 2007 Feb 12;7(2):163-73.
    [3] Wilt. F.H. Developmental biology meets materials science: Morphogenesis of biomineralized structures. Dev Biol. 2005 Apr 1 ;280(1): 15-25.
    [4] Dal Moro F, Mancini M, Tavolini IM, De Marco V, Bassi P. Cellular and molecular gateways to urolithiasis: a new insight. Urol Int. 2005;74(3):193-7.
    [5] Vrieling EG, Sun Q, Beelen TP, Hazelaar S, Gieskes WW, van Santen RA, Sommerdijk NA. Controlled silica synthesis inspired by diatom silicon biomineralizafion. J Nanosci Nanotechnol. 2005 Jan;5(1):68-78.
    [6] Wiesmann HP, Meyer U, Plate U, Hohling HJ. Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol. 2005;242:121-56.
    [7] Falini G, Fermani S. Chitin mineralization. Tissue Eng. 2004 Jan-Feb;10(1-2):1-6.
    [8] Boskey AL.Biomineralization: an overview. Connect Tissue Res. 2003;44 Suppl 1:5-9.
    [9] Bauerlein E. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed Engl. 2003 Feb 10;42(6):614-41.
    [10] Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G. Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Bioteclmol. 2000 Nov;54(5):605-18.
    [11] Sarikaya M, Tamerler C, Jen AK, et al. Molecular biomimeties: nanotechnology through biology.Review. Nat Mater., 2003, 2(9):577-85
    [12] Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J. 2007 Apr 15;403(2):217-34.
    [13] Green D, Walsh D, Mann S, Oreffo RO. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Review. Bone. 2002, 30(6):810-5
    [14] Glimcher J. in Chemistry and Biology of Mineralized Tissues, ed. Veis, A. (Elsevier, Amsterdam), 1981:617-673
    [15] Mann S. Molecular recognition in biomineralization .Nature, 1988, 332 (6213): 119-124.
    [16] Mann S, Heywood B R, Rajam S, et al. Cont rolled crystallisation of CaCO_3 under stearic acid mono layers. Nature, 1988, 334 (6205): 692-698
    [17] Crenshaw ME. Field and energy relations in continuum dectrodynamics. Opt Lett. 2005 Sep 1;30(17):2305-7.
    [18] D. Sun and G.K. Stylios. Effect of Low Temperature Plasma Treatment on the Scouring and Dyeing of Natural Fabrics. Textile Research Journal, Sep 2004; 74:751-756.
    [19] Weiner S, Addadi L. Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci. 1991 Jul;16(7):252-6.
    [20] Lin H, Soow S, Kuwabara K, et al. Crystal growth of lipidocrocite and magnetite under Langmuir monolayers. Journal of Crystal Growth, 1998,192:250-256.
    [21] Woodlouse J. Naoparticles Biomineralization. online Nanotoehnologies Journal. 2001,2(2):1-3.
    [22] Mc Grath K M. Probing Material Formation in the Presence of Organic and Biological Molecules. Advanced Materials, 2001,13:989-992.
    [23] Denis Couchourel, Ceine Eseoflier, Ramin Rohanizadeh. Effect of fibronectin on hydroxyapatite formation [J].Journal of Inorganic Bilchemistry, 1999,73:129-136.
    [24] 欧阳健明。生物矿物及其矿化过程。化学进展。2005,17:749-756.
    [25] Heywood BR, Sparks NH, Shellis RP, Weiner S, Mann S. Ultrastructure, morphology and crystal growth of biogenie and synthetic apatites.Connect Tissue Res. 1990;25(2):103-19.
    [26] Addadi L, Moradian J, Shay E, Maroudas NG, Weiner S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proe Natl Acad Sei U S A. 1987 May;84(9):2732-2736.
    [27] Kawashita M, Nakao M, Minoda M, et al. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomatefials, 2003, 24:2499-2484.
    [28] 王振林,闫玉华,万涛。羟基磷灰石/胶原类骨仿生复合材料的制备方法及机理。生物技术通讯。2004,15:530-533.
    [29] Gajjeraman S, Narayanan K, Hao J, Qin C, George A. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem. 2007 Jan 12;282(2):1193-204.
    [30] Hoque E, DeRose JA, Hoffmann P, Bhushan B, Mathieu HJ. Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilanization of copper. J Chem Phys. 2007 Mar 21;126(11):114706.
    [31] Saruwatari K, Sato H, Kogure T, Wakayama T, Iitake M, Akatsuka K, Haga M. Humidity-sensitive electrical conductivity of a Langmuir-Blodgett film of titania nanosheets: surface modification as induced by light irradiation under humid conditions.Langmuir. 2006 Nov 21 ;22(24):10066-71.
    [32] Muller H, Zentel R, Janshoff A, Janke M. Control of CaCO3 crystallization by demixing of monolayers. Langmuir. 2006 Dec 19;22(26):11034-40.
    [33] Hedia HS. Design of functionally graded dental implant in the presence of cancellous bone. J Biomed Mater Res B Appl Biomater. 2005 Oct;75(1):74-80.
    [34] Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K. Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J Biomed Mater Res. 2002 Mar 15;59(4):709-15.
    [35] Messersmith PB, Obrez A, Lindberg S. New acrylic resin composite with improved thermal diffusivity. J Prosthet Dent. 1998 Mar;79(3):278-84.
    [36] M. S. Rhee, T. L. Wheeler, S. D. Shackelford, and M. Koohmaraie. Variation in palatability and biochemical traits within and among eleven beef muscles. J Anita Sci, Feb 2004; 82:534 - 550.
    [37] Hellmich C, Ulm FJ. Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1-10-microm scale. Biomech Model Mechanobiol. 2003 Aug;2(1):21-36.
    [38] Wendy J. Shaw, Allison A. Campbell, Michael L. Paine, and Malcolm L. Snead. The COOH Terminus of the Amelogenin, LRAP, Is Oriented Next to the Hydroxyapatite Surface. J. Biol. Chem., Sep 2004; 279:40263-40266.
    [39] Rao J, Gold MH, Goldman MP. A two-center, double-blinded, randomized trial testing the tolerability and efficacy of a novel therapeutic agent for cellulite reduction. J Cosmet Dermatol. 2005 Jun;4(2):93-102.
    [40] Hao L, Lawrence J, Chian KS, Low DK, Lira GC, Zheng HY. The formation of a hydroxyl bond and the effects thereof on bone-like apatite formation on a magnesia partially stabilized zirconia (MgO-PSZ) bioceramic following CO2 laser irradiation. J Mater Sci Mater Med. 2004 Sep;15(9):967-75.
    [41] Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials. 2003 Jun;24(14):2477-84.
    [42] Maged G. Botros. Investigation of Adhesion and Failure Mechanisms in Tie-Layer Adhesive/EVOH Systems. Journal of Plastic Film and Sheeting, Jul 1996; 12:195-211.
    [43] Sultana R, Kon M, Hirakata LM, Fujihara E, Asaoka K, Ichikawa T. Surface modification of titanium with hydrothermal treatment at high pressure. Dent Mater J. 2006 Sep;25(3):470-9.
    [44] Pier-Franeesco A, Adams RJ, Waters MG, Williams DW .Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: an in vitro study. Clin Oral Implants Res. 2006 Dee;17(6):633-7.
    [45] S.K. Doss. Surface properties of hydroxyapatite: I. The effect of various inorganic ions on the eleetrophoretie behavior. J. Dent. Res., Nov 1976; 55: 1067.
    [46] A. R. Venkitaraman, A. M. Vaeea-Smith, L. K. Kopec, and W. H. Bowen. Characterization of glucosyltransferaseB, GtfC, and GtfD in solution and on the surface of hydroxyapatite. J. Dent. Res., Oct 1995; 74: 1695.
    [47] Rhee MS, Wheeler TL, Shaekelford SD, Koohmaraie M. Variation in palatability and biochemical traits within and among eleven beef muscles. J Anim Sci. 2004 Feb;82(2):534-50.
    [48] Charles Michael Drain. Supramolecular Chemistry And Self-assembly Special Feature: Self-organization of self-assembled photonie materials into functional devices: Photo-switched conductors PNAS, Apr 2002; 99:5178.
    [49] 唐娟,崔振铎,朱胜利等。钛及钛合金仿生表面改性研究进展。功能材料,2005,36:19-22.
    [50] 李亚东 刘敬肖 唐乃岭 王树传.镍钛合金表面含壳聚糖的钙磷复合涂层的仿生合成.大连轻工业学院学报.2004,23(4),235-238
    [51] Hong Li, Weiya Huang , Yuanming Zhang, Mei Zhong. Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers. Materials Science and Engineering C ⅹⅹ (2006) ⅹⅹⅹ-ⅹⅹⅹ.online article.
    [52] 王磊,白薇,冯海兰,贾欣茹自组装寡肽在体外模拟牙釉柱晶体形成.北京大学学报(医学版).2007,39(1),46-49
    [53] Young CS, Terada S, Vaeanti JP, et al. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds[J]. J Dent Res, 2002, 81(10): 695-700.
    [54] Chen HF, Clarkson BH, Sun K, et al. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure[J]. J Colloid Interface Sei, 2005, 288: 97-103.
    [55] Chen HF, Tang ZY, Liu J, et al. Acellular synthesis of a human enamel—like mierostructure[J]. Advanced Mater, 2006, 18:1846-1851
    [56] Murphy WL, Mooney DJ. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. JAm Chem Soe. 2002; 124:1910-1917
    [57] Susanne Busch. Regeneration of Human tooth Enamel.angew.Chem.Int. Ed. 2004,43:1428-1431.
    [58] Du C, Cui FZ, Zhang W, Feng QL.et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res, 2000,50: 518-527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700