材料结晶度、施加低分子量有机酸影响纳米羟基磷灰石环境应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规粒径即体相的磷灰石材料可用于治理铅、镉、氟污染的研究。但由于常规粒径磷灰石材料的比表面积小,表面活性不强,因此将其应用于治理铅、镉、氟污染时,修复时间、修复效果均不理想。此外,由于治理过程中受到酸度等因素的影响,往往需要对被治理的场地进行预处理,增加了环境风险。与常规材料相比,纳米材料(1-100nm)巨大的比表面积和高表面活性,不但使纳米粒子表面有快速的溶解-沉淀过程,而且使纳米粒子表现出较大的表面物理吸附,同时由于扩散作用使之还表现出较大的表面离子交换和离子配位能力。因此,从性质上分析,纳米材料吸附、稳定环境污染物的能力,应大大超过常规材料。目前,尽管国内外对常规粒径磷灰石治理环境中铅、镉、氟污染的理论研究和实际应用均较多,但关于应用纳米级磷灰石或者羟基磷灰石治理环境污染的报道较少,尤其是至今没有关于材料结晶度、施加低分子量有机酸影响纳米羟基磷灰石(nanosized hydroxyapatite, nHAP)环境应用的报道。因此,本文研究材料结晶度、施加低分子量有机酸对nHAP稳定水溶液体系中铅、镉、氟污染的影响。一方面希望借助nHAP优越的表面特性和反应特性,解决常规粒径磷灰石在治理环境污染时存在的缺陷;另一方面研究nHAP结晶度、施加低分子量有机酸对nHAP环境应用的影响,期望找到一条既能避免二次污染又能提高磷灰石治理污染效率的途径,建立周期短、高效、环保的化学修复方法。
     主要的研究内容及结果如下:
     (1)nHAP粉体的制备及性能的研究
     采用沉淀法和溶胶-凝胶法合成不同结晶度的nHAP粉体,用固相法合成体相羟基磷灰石(Bulk HAP)粉体作为对比,利用粉末X射线衍射法(XRD)、红外光谱(IR)、透射电镜(TEM)以及扫描电镜(SEM)对其形貌、晶体结构等表面性能进行表征。结果表明沉淀法和溶胶-凝胶法制备的nHAP均为颗粒均匀、纯相态的物质,并且随着烧结温度的升高结晶度增大。此外在恒定pH值(2-7)条件下,对不同结晶度HAP的反应性能进行研究。结果表明在相同pH值条件下,HAP结晶度越小溶解度越大,释放出磷的浓度越高,从而表现出越强的反应性能;2h之内,研究的四种HAP样品中结晶度最小的在pH<5时达到了完全溶解,结晶度最大的在pH<3时也未完全溶解。
     (2)材料结晶度对nHAP稳定硫酸铅、碳酸铅的影响
     本实验考察了在各种影响因素条件下(恒定pH值、随时间变化pH值、反应时间以及nHAP加入量),nHAP结晶度对稳定硫酸铅、碳酸铅的影响。实验结果表明,nHAP稳定硫酸铅、碳酸铅污染的机理主要是溶解-沉淀作用,通过把硫酸铅或碳酸铅转化为磷氯酸铅而达到稳定铅污染的目的;在相同条件下(pH值、反应时间和nHAP加入量),nHAP的结晶度越小,从硫酸铅或碳酸铅到磷氯酸铅的转化率越高;由于溶解-沉淀机理的存在,nHAP勺结晶度越小,越容易在较低酸度条件下达到较高的转化率;增加反应时间和nHAP加入量有利于硫酸铅、碳酸铅的稳定;在变化pH值条件下,nHAP能够快速、完全的把硫酸铅、碳酸铅转化为磷氯酸铅。但是nHAP稳定硫酸铅和碳酸铅的过程有所不同。硫酸铅在不同pH值条件下的溶解实验表明其溶解不受pH值影响且在25 min内达到了溶解平衡;而碳酸铅的溶解受pH值影响且溶解过程在2h内没有达到平衡;根据溶解-沉淀机理,在硫酸铅和nHAP共存的体系中,nHAP的溶解速率决定了硫酸铅转化为磷氯酸铅的速率;而在碳酸铅和nHAP共存的体系中,nHAP和碳酸铅的溶解速率共同决定了碳酸铅转化为磷氯酸铅的速率。
     (3)材料结晶度对nHAP稳定碳酸镉的影响
     本实验考察了在各种影响因素条件下(恒定pH值、随时间变化pH值、反应时间以及nHAP加入量),nHAP结晶度对稳定碳酸镉的影响。实验结果表明,nHAP稳定碳酸镉的主要机理是表面吸附作用,溶解-沉淀作用不明显;在相同条件下(pH值、反应时间和nHAP加入量),nHAP的结晶度越小,其对碳酸镉的稳定效率越高;在达到相同稳定效率时,nHAP的结晶度越小需要的酸度越低、反应时间越短、nHAP力口入量越少;在变化pH值条件下,nHAP能够快速、完全的把碳酸镉稳定下来,并且存在明显的离子交换过程。
     (4)施加低分子量有机酸对nHAP去氟能力的影响
     本实验选择了草酸、柠檬酸、苹果酸作为低分子量有机酸(LMWOAs)的代表。考察在不同nHAP加入量、氟初始浓度、溶液pH值、反应时间、反应温度等条件下,LMWOAs对nHAP去氟能力的影响。运用Langmuir和Freundlich等温吸附方程及一级动力学和二级动力学方程进行拟合,此外还计算了热力学函数ΔG°、ΔS°、ΔH°,并初步探讨了可能的吸附机理。实验结果表明,在各因素条件下,LMWOAs的存在均促进了nHAP对氟的吸附,本研究选择的三种LMWOAs对nHAP去氟能力增强程度为:草酸>柠檬酸>苹果酸;LMWOAs增强nHAP去氟能力的原因是氟吸附位点的增加,新增加的氟吸附位点来源于nHAP表面吸附的LMWOAs;在LMWOAs存在下,随着反应时间、反应温度的增加,nHAP的去氟能力增加;随着nHAP加入量、氟初始浓度、溶液pH值的增加,nHAP的去氟能力降低;LMWOAs存在下nHAP对氟的吸附比较符合Freundlich等温吸附方程(R2>0.98),且运用二级动力学方程能够更好的描述其吸附过程,此外吸附热力学参数说明该吸附过程是自发、吸热过程。
Bulk apatite can be used to immobilize Pb, Cd and F in water and soil. Previous results indicate that lowering soil pH value or applying sufficient amount of bulk apatite could improve the efficiency and shorten the time of immobilization. But several disadvantages should be noticed when optimizing amendment quantity and pH so that adverse environmental effects are not a by-product, i.e., water entrophication and soils acidifying. Compared with the apatite of normal size, nanosized hydroxyapatite (nHAP) represents a promising application in a variety of areas, due to their higher surface area and reactivity. Therefore, the enhancement of Pb, Cd and F immobilization, worked by the addition of nHAP, could be realized in practice. However, there are some literatures studying the immobilization of Pb, Cd and F by bulk apatite in water, but litter is known about their immobilization by nHAP. In particular, there are no reports about the effect of nHAP crystallinity or low molecular weight organic acids (LMWOAs) on the immobilization of Pb, Cd and F by nHAP. In this study, the main objectives of this work are (1) to investigate whether the decrease of nHAP crystallinity can promote the immobilization of Pb and Cd by nHAP, (2) to evaluate whether the LMWOAs can promote defluoridation capacity of nHAP.
     Main results are as follows:
     (1) Sample preparation and their characterization
     The nHAPs were synthesized by the precipitation and sol-gel method. XRD, TEM, IR were used to characterize these nHAPs. Results showed that the samples were pure HAP and crystallinities of samples increased with annealing temperature. In addition, determination of dissolution rates for nHAP was conducted at the controlled pH condition. Results showed that the dissolution was inversely related to pH and the solubility of HAPs increased with decreasing HAP crystallinity. Within 2 h reaction time, the complete dissolution was obtained at pH<5 for the least crystallinity of HAP. However, there were not complete dissolution at pH<3 for the highest crystallinity of HAP.
     (2) The effect of nHAP crystallinity on the immobilization of anglesite and cerrusite in aqueous solution
     In this section, the effect of nHAP crystallinity on the immobilization of anglesite and cereusite was investigated at various conditions, such as pH, adsorbent dose, contact time. Results showed that the main mechanism involved HAP dissolution, followed by phosphate reacted with dissolved Pb and precipitation of chloropyromorphite. Under the same conditions (pH, contact time or sorbent dose), with the decrease of HAP crystallinity, the complete immobilization was achieved at higher pH, especially at high P/Pb ratio. As sorbent dose and contact time increased, the immobilization of Pb by nHAP was increased. For the reaction between anglesite and nHAP, the soluble Pb level was controlled by the solubility of chloropyromorphite during the entire reaction process. For the reaction between cerrusite and nHAP, the soluble Pb level was controlled by the solubility of cerrusite and chloropyromorphite during the entire reaction process. In the dynamic pH system, a complete transformation of Pb from anglesite or cerrusite to chloropyromorphite was achieved due to the complete dissolution of nHAP and anglesite/cerrusite at the initial low pH.
     (3) The effect of nHAP crystallinity on the immobilization of CdCO3 in aqueous solution
     In this section, the effect of nHAP crystallinity on the immobilization of Cd from CdCO3 was investigated at various conditions, such as pH, adsorbent dose, contact time. Results showed that the main mechanism involved adsorption. Under the same conditions (pH, contact time or sorbent dose), with the decrease of HAP crystallinity, the percentage of Cd removal from CdCO3 by nHAP was increased. As pH, sorbent dose and contact time increased, the percentage of Cd removal from CdCO3 by nHAP was also increased. The soluble Cd level was controlled by the solubility of CdCO3 and nHAP during the entire reaction process. In the dynamic pH system, a complete immobilization of Cd was achieved due to the complete dissolution of nHAP and CdCO3 at the initial low pH. The main mechanism involves ion-exchange between Cd2+ and Ca2+ in the dynamic pH system.
     (4) The effect of LMWOAs on the defluoridation capacity of nHAP
     In this section, oxalic, citric and malic acids were selected as the representative of LMWOAs. Bath adsorption experiments were carried out to investigate the effects of contact time, initial fluoride concentration, solution pH, and LMWOAs on fluoride adsorption onto nHAP, and to explore the mechanisms of fluoride adsorption onto the nHAP. Results indicated the defluoridation capacity of nHAP was enhanced by the addition of LMWOAs. The nHAP adsorbed LMWOAs on its surface, and the LMWOAs on nHAP were considered to be the newly formed active sites for fluoride adsorption. In addition, the order of the ability of LMWOAs to enhance the defluoridation capacity of nHAP was oxalic acid> citric acid> malic acid, which was the same order as the amounts of LMWOAs adsorbed onto nHAP. In the presence/absence of LMWOAs, the defluoridation capacity increased with increasing the contact time, initial fluoride concentration and contact temperature, while decreased with the increase of the sorbent dose and solution pH. The adsorption isotherms in the presence/absence of LMWOAs were well fitted by the Freundlich model (R2>0.98), and the sorption kinetics were well described by the pseudo-second-order model. Moreover, thermodynamic parameters indicated that the adsorption was spontaneous and endothermic.
引文
1. Abe S, Sawane T, Sekiguchi K, Matsuo T. Collection of trace fluoride and hydrofluoric acid from aqueous samples by calcium hydroxyapatite[J]. International Journal of Environmental Analytical Chemistry.1982,11:87-96
    2. Aharoni C, Ungarish M. Kinetics of activated chemisorption. Part 1.The non-elovichian part of the isotherm[J]. Journal of the Chemical Society, Faraday Transactions 1.1976,72:400-408
    3. Amor Z, Bariou B, Mameri N, Taky M, Nicolas S, Elmidaoui A. Fluoride removal from brackish water by electrodialysis[J]. Desalination.2001,133:215-223
    4. Badillo-Almaraz V E, Armando Flores J, Arriola H, Lopez F A, Ruiz-Ramirez L. Elimination of fluoride ions in water for human consumption using hydroxyapatite as an adsorbent[J]. Journal of Radioanalytical and Nuclear Chemistry.2007,271:741-744
    5. Bailliez S, Nzihou A. The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent[J]. Chemical Engineering Journal.2004,98:141-152
    6. Bansiwal A, Thakre D, Labhshetwar N, Meshram S, Rayalu S. Fluoride removal using lanthanum incorporated chitosan beads[J]. Colloids and Surfaces B:Biointerfaces.2009,74:216-224
    7. Basta N T, McGowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J]. Environmental Pollution.2004,127:73-82
    8. Bernache-Assollant D, Ababou A, Champion E, Heughebaert M. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth[J]. Journal of the European Ceramic Society.2003,23:229-241
    9. Bhattacharyya K G, Gupta S S. Adsorptive accumulation of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Ni(Ⅱ) from water on montmorillonite:Influence of acid activation[J]. Journal of Colloid and Interface Science.2007,310:411-424
    10. Bigi A, Boanini E, Capuccini C, Gazzano M. Strontium-substituted hydroxyapatite nanocrystals[J]. Inorganica Chimica Acta.2007,360:1009-1016
    11. Bigi A, Falini G, Foresti E, Ripamonti A, Gazzano M, Roveri N. Magnesium influence on hydroxyapatite crystallization[J]. Journal of Inorganic Biochemistry.1993,49:69-78
    12. Bose S, Saha S K. Synthesis of hydroxyapatite nanopowders via sucrose-templated sol-gel method[J]. Journal of the American Ceramic Society.2003,86:1055-1057
    13. Bosso S T; Enzweiler J, Angelica R S. Lead bioaccessibility in soil and mine wastes after immobilization with phosphate[J]. Water Air & Soil Pollution.2008,195:257-273
    14. Brown S, Chaney R, Hallfrisch J, Ryan J A, Berti W R. In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium[J]. Journal of Environmental Quality. 2004,33:522-531
    15. Brown S, Chaney R L, Hallfrisch J G, Xue Q. Effect of biosolids processing on lead bioavailability in an urban soil[J]. Journal of Environmental Quality.2003,32:100-108
    16. Cao R X, Ma L Q, Chen M, Singh S P, Harris W G. Phosphate-induced metal immobilization in a contaminated site[J]. Environmental Pollution.2003a,122:19-28
    17. Cao X, Ma L Q, Chen M, Hardison D W, Harris W G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA[J]. The Science of The Total Environment. 2003b,307:179-189
    18. Cao X, Ma L Q, Chen M, Singh S P, Harris W G. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site[J]. Environmental Science & Technology. 2002,36:5296-5304
    19. Cao X, Ma L Q, Rhue D R, Appel C S. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environmental Pollution.2004,131:435-444
    20. Cao X, Ma L Q, Singh S P, Zhou Q. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions[J]. Environmental Pollution.2008,152:184-192
    21. Cao X, Wahbi A, Ma L, Li B, Yang Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials.2009,164:555-564
    22. Cengiz B, Gokce Y, Yildiz N, Aktas Z, Calimli A. Synthesis and characterization of hydroxyapatite nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2008,322:29-33
    23. Chen X, Wright J V, Conca J L, Peurrung L M. Effects of pH on heavy metal sorption on mineral apatite[J]. Environmental Science & Technology.1997,31:624-631
    24. Chen M, Ma L Q, Singh S P, Cao R X, Melamed R. Field demonstration of in situ immobilization of soil Pb using P amendments [J]. Advances in Environmental Research.2003,8:93-102
    25. Chen S, Xu M, Ma Y, Yang J. Evaluation of different phosphate amendments on availability of metals in contaminated soil[J]. Ecotoxicology and Environmental Safety.2007,67:278-285
    26. Chen S B, Zhu Y G, Ma Y B. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils[J]. Journal of Hazardous Materials.2006,134:74-79
    27. Chrysochoou M, Dermatas D, Grubb D G. Phosphate application to firing range soils for Pb immobilization:The unclear role of phosphate [J]. Journal of Hazardous Materials.2007,144:1-14
    28. Da Rocha N C C, De Campos R C, Rossi A M, Moreira E L, Barbosa A F, Moure G T. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment[J]. Environmental Science & Technology.2002,36:1630-1635
    29. Da Rocha N C C, Mavropoulos E, Da Silva M H P, De Campos R C, Rossi A M. Studies on cadmium uptake by hydroxyapatite[J]. Key Engineering Materials.2007,330-332:123-126
    30. Daniels Y, Alexandratos S. Design and synthesis of hydroxyapatite with organic modifiers for application to environmental remediation[J]. Waste and Biomass Valorization.2010,1:157-162
    31. Eshtiagh-Hosseini H, Housaindokht M R, Chahkandi M. Effects of parameters of sol-gel process on the phase evolution of sol-gel-derived hydroxyapatite[J]. Materials Chemistry and Physics. 2007,106:310-316
    32. Fan X, Parker D J, Smith M D. Adsorption kinetics of fluoride on low cost materials[J]. Water Research.2003,37:4929-4937
    33. Fathi M H, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method[J]. Materials Letters.2007,61:3978-3983
    34. Fedoroff M, Jeanjean J, Rouchaud J C, Mazerolles L, Trocellier P, Maireles-Torres P, Jones D J. Sorption kinetics and diffusion of cadmium in calcium hydroxyapatites[J]. Solid State Sciences. 1999,1:71-83
    35. Freundlich H M F. Uber die adsorption in losungen[J]. Journal of Chemical Physics. 1906,57:385-470
    36. Gao S, Cui J, Wei Z G Study on the fluoride adsorption of various apatite materials in aqueous solution[J]. Journal of Fluorine Chemistry.2009a,130:1035-1041
    37. Gao S, Sun R, Wei Z G, Zhao H Y, Li H X, Hu F. Size-dependent defluoridation properties of synthetic hydroxyapatite[J]. Journal of Fluorine Chemistry.2009b,130:550-556
    38. Gupta V K, Ali I, Saini V K. Defluoridation of wastewaters using waste carbon slurry[J]. Water Research.2007,41:3307-3316
    39. Hashimoto Y, Sato T. Removal of aqueous lead by poorly-crystalline hydroxyapatites[J]. Chemosphere.2007,69:1775-1782
    40. Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil lead using phosphorus [J]. Journal of Environmental Quality.2001,30:1214-1221
    41. Hettiarachchi G M, Pierzynski G M. Soil lead bioavailability and in situ remediation of lead-contaminated soils:A review[J]. Environmental Progress.2004,23:78-93
    42. Ho Y S, McKay G Pseudo-second order model for sorption processes[J]. Process Biochemistry. 1999,34:451-465
    43. Hodson M E, Valsami-Jones E, Cotter-Howells J D. Bonemeal additions as a remediation treatment for metal contaminated soil[J]. Environmental Science & Technology.2000,34:3501-3507
    44. Huang C J, Liu J C. Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer[J]. Water Research.1999,33:3403-3412
    45. Islam M, Patel R K. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime[J]. Journal of Hazardous Materials.2007,143:303-310
    46. Jagtap S, Thakre D, Wanjari S, Kamble S, Labhsetwar N, Rayalu S. New modified chitosan-based adsorbent for defluoridation of water[J]. Journal of Colloid and Interface Science. 2009,332:280-290
    47. Jarudilokkul S, Tanthapanichakoon W, Boonamnuayvittaya V. Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2007,296:149-153
    48. Jeanjean J, Fedoroff M, Faverjon F, Vincent U, Corset J. Influnce of pH on the sorption of cadmium ions on calcium hydroxyapatite[J]. Journal of Materials Science.1995,30:6156-6160
    49. Jiang J Q, Cooper C, Ouki S. Comparison of modified montmorillonite adsorbents:Part I: preparation characterization and phenol adsorption[J]. Chemosphere.2002,47:711-716
    50. Karthikeyan G, Sundarraj A S, Meenakshi S, Elango K P. Adsorption dynamics and the effect of temperature of fluoride at alumina-solution interface[J]. Journal of the Indian Chemical Society. 2004,81:461-466
    51. Kawasaki T, Niikura M, Kobayashi Y. Fundamental study of hydroxyapatite high-performance liquid chromatography:II. Experimental analysis on the basis of the general theory of gradient chromatography[J]. Journal of Chromatography A.1990,515:91-123
    52. Koutsoukos P G, Nancollas G H. Influence of strontium ion on the crystallization of hydroxyapatite from aqueous solution[J]. The Journal of Physical Chemistry.1981,85:2403-2408
    53. Ku Y, Chiou H M. The Adsorption of Fluoride Ion from Aqueous Solution by Activated Alumina[J]. Water Air & Soil Pollution.2002,133:349-361
    54. Ku Y, Chiou H M, Wang W. The removal of fluoride ion from aqueous solution by a cation synthetic resin[J]. Separation Science & Technology.2002,37:89-103
    55. Kumar V, Rana A, Yadav M S, Pant R P. Size-induced effect on nano-crystalline CoFe2O4[J]. Journal of Magnetism and Magnetic Materials.2008,320:1729-1734
    56. Lagergren S. About the theory of so-called adsorption of soluble substances [J]. Kungliga Sven Vetenskapsakad Handl.1989,24:1-39
    57. Langmuir I. The dissociation of hydrogen into atoms. III. The mechanism of the reaction[J]. Journal of the American Chemical Society.1916,38:1145-1156
    58. Laperche V, Traina S J, Gaddam P, Logan T J. Chemical and mineralogical characterizations of Pb in a contaminated soil:reactions with synthetic apatite[J]. Environmental Science & Technology. 1996,30:3321-3326
    59. Larsen M J, Pearce E I F. Partial defluoridation of drinking water using fluorapatite precipitation[J]. Caries Research.1992,26:22-28
    60. Leyva-Ramos R, Medellin-Castillo N A, Jacobo-Azuara A, Mendoza-Barron J, Landin-Rodriguez L E, Martinez-Rosales J M, Aragon-Pina A. Fluoride removal from water solution by adsorption activated alumina prepared from pseudo-boehmite[J]. Journal of Environmental Engineering and Management.2008,18:301-309
    61. Lin J, Raghavan S, Fuerstenau D W. The adsorption of fluoride ions by hydroxyapatite from aqueous solution[J]. Colloids and Surfaces.1981,3:357-370
    62. Lin K, Pan J, Chen Y, Cheng R, Xu X. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders[J]. Journal of Hazardous Materials.2009,161:231-240
    63. Liu C, Huang Y, Shen W, Cui J. Kinetics of hydroxyapatite precipitation at pH 10 to 11[J]. Biomaterials.2001a,22:301-306
    64. Liu D M, Troczynski T, Tseng W J. Water-based sol-gel synthesis of hydroxyapatite:process development[J]. Biomaterials.2001b,22:1721-1730
    65. Liu H S, Chin T S, Lai L S, Chiu S Y, Chung K H, Chang C S, Lui M T. Hydroxyapatite synthesized by a simplified hydrothermal method[J]. Ceramics International.1997,23:19-25
    66. Long M, Hong F S, Li W, Li F C, Zhao H Y, Lv Y Q, Li H X, Hu F, Sun L D, Yan C H, Wei Z G. Size-dependent microstructure and europium site preference influence fluorescent properties of Eu3+-doped Ca10(P04)6(OH)2 nanocrystal[J]. Journal of Luminescence.2008,128:428-436
    67. Lower S K, Maurice P A, Traina S J. Simultaneous dissolution of hydroxylapatite and precipitation of hydroxypyromorphite:direct evidence of homogeneous nucleation[J]. Geochimica et Cosmochimica Acta.1998a,62:1773-1780
    68. Lower S K, Maurice P A, Traina S J, Carlson E H. Aqueous Pb sorption by hydroxylapatite; applications of atomic force microscopy to dissolution, nucleation, and growth studies[J]. American Mineralogist.1998,83:147-158
    69. Lusvardi G, Malavasi G, Menabue L, Saladini M. Removal of cadmium ion by means of synthetic hydroxyapatite[J]. Waste Management.2002,22:853-857
    70. Ma L Q, Rao G N. Aqueous Pb reduction in Pb-contaminated soils by florida phosphate rocks[J]. Water Air & Soil Pollution.1999,110:1-16
    71. Ma L Q, Rao G N. Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils[J]. Journal of Environmental Quality.1997,26:788-794
    72. Ma Q Y, Logan T J, Traina S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks[J]. Environmental Science & Technology.1995,29:1118-1126
    73. Ma Q Y, Logan T J, Traina S J, Ryan J A. Effects of NO3-, Cl-, F, SO42-, and CO32- on Pb2+ Immobilization by Hydroxyapatite[J]. Environmental Science & Technology.1994a,28:408-418
    74. Ma Q Y, Traina S J, Logan T J, Ryan J A. Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite[J]. Environmental Science & Technology.1994b,28:1219-1228
    75. Ma Q Y, Traina S J, Logan T J, Ryan J A. In situ lead immobilization by apatite[J]. Environmental Science & Technology.1993,27:1803-1810
    76. Malagelada J R, Go V L W, Summerskill W H J. Different gastric, pancreatic, and biliary responses to solid-liquid or homogenized meals[J]. Digestive Diseases and Sciences.1979,24:101-110
    77. Mall I D, Srivastava V C, Agarwal N K, Mishra I M. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2005,264:17-28
    78. Mandjiny S, Matis K A, Zouboulis A I, Fedoroff M, Jeanjean J, Rouchaud J C, Toulhoat N, Potocek V, Loos-Neskovic C, Maireles-Torres P, Jones D. Calcium hydroxyapatites:evaluation of sorption properties for cadmium ions in aqueous solution[J]. Journal of Materials Science. 1998,33:5433-5439
    79. Mandjiny S, Zouboulis A I, Matis K A. Removal of cadmium from dilute solutions by hydroxyapatite. I. Sorption studies[J]. Separation Science and Technology.1995,30:2963-2978
    80. Manecki M, Bogucka A, Bajda T, Borkiewicz O. Decrease of Pb bioavailability in solis by addition of phosphate ions[J]. Environmental Chemistry Letters.2006,3:178-181
    81. Manecki M, Maurice P A, Traina S J. Uptake of aqueous Pb by Cl-, F-, and OH- apatites: Mineralogic evidence for nucleation mechanisms [J]. American Mineralogist.2000,85:932-942
    82. Marchat D, Bernache-Assollant D, Champion E. Cadmium fixation by synthetic hydroxyapatite in aqueous solution-Thermal behaviour[J]. Journal of Hazardous Materials.2007,139:453-460
    83. Martinez C E, Jacobson A R, McBride M B. Lead phosphate minerals:solubility and dissolution by model and natural ligands[J]. Environmental Science & Technology.2004,38:5584-5590
    84. Mavropoulos E, Rossi A M, Costa A M, Perez C A C, Moreira J C, Saldanha M. Studies on the mechanisms of lead immobilization by hydroxyapatite[J]. Environmental Science & Technology. 2002,36:1625-1629
    85. Medellin-Castillo N A, Leyva-Ramos R, Ocampo-Perez R, Garcia de la Cruz R F, Aragon-Pina A, Martinez-Rosales J M, Guerrero-Coronado R M, Fuentes-Rubio L. Adsorption of fluoride from water solution on bone char[J]. Industrial & Engineering Chemistry Research.2007,46:9205-9212
    86. Meenakshi S, Viswanathan N. Identification of selective ion-exchange resin for fluoride sorption[J]. Journal of Colloid and Interface Science.2007,308:438-450
    87. Melamed R, Cao X, Chen M, Ma L Q. Field assessment of lead immobilization in a contaminated soil after phosphate application[J]. The Science of The Total Environment.2003,305:117-127
    88. Middelburg J J, Comans R N J. Sorption of cadmium on hydroxyapatite[J]. Chemical Geology. 1991,90:45-53
    89. Miyake M, Watanabe K, Nagayama Y, Nagasawa H, Suzuki T. Synthetic carbonate apatites as inorganic cation exchangers. Exchange characteristics for toxic ions[J]. Journal of the Chemical Society, Faraday Transactions 1.1990,86:2303-2306
    90. Mobasherpour I, Heshajin M S, Kazemzadeh A, Zakeri M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method[J]. Journal of Alloys and Compounds. 2007,430:330-333
    91. Mohapatra M, Anand S, Mishra B K, Giles D E, Singh P. Review of fluoride removal from drinking water[J]. Journal of Environmental Management.2009,91:67-77
    92. Mouflih M, Aklil A, Sebti S. Removal of lead from aqueous solutions by activated phosphate[J]. Journal of Hazardous Materials.2005,119:183-188
    93. Nelson D G A. The influence of carbonate on the atomic structure and reactivity of hydroxyapatite[J]. Journal of Dental Research.1981,60:1621-1629
    94. Nriagu J O. Lead orthophosphates-Ⅱ. stability of cholopyromophite at 25℃[J]. Geochimica et Cosmochimica Acta.1973,37:367-377
    95. Nriagu J O. Lead orthophosphates-Ⅳ formation and stability in the environment[J]. Geochimica et Cosmochimica Acta.1974,38:887-898
    96. Nriagu J O. A silent epidemic of environmental metal poisoning?[J]. Environmental Pollution. 1988,50:139-161
    97. Padmanabhan S K, Balakrishnan A, Chu M C, Lee Y J, Kim T N, Cho S J. Sol-gel synthesis and characterization of hydroxyapatite nanorods[J]. Particuology.2009,7:466-470
    98. Peld M, Tonsuaadu K, Bender V. Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems[J]. Environmental Science & Technology.2004,38:5626-5631
    99. Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders[J]. Biomaterials.2002,23:1065-1072
    100. Ruby M V, Davis A, Kempton J H, Drexler J W, Bergstrom P D. Lead bioavailability-dissolution kinetics under simulated gastric conditions[J]. Environmental Science & Technology. 1992,26:1242-1248
    101. Ruby M V, Davis A, Nicholson A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science & Technology.1994,28:646-654
    102. Ruby M V, Davis A, Schoof R, Eberle S, Sellstone C M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology.1996,30:422-430
    103. Liu R X, Guo J L, Tang H X. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange Fiber[J]. Journal of Colloid and Interface Science.2002,248:268-274
    104. Ryan J A, Scheckel K G, Berti W R, Brown S L, Casteel S W, Chaney R L, Hallfrisch J, Doolan M, Grevatt P, Maddaloni M, Mosby D. Reducing children's risk from lead in soil[J]. Environmental Science & Technology.2004,38:18A-24A
    105. Ryan J A, Zhang P, Hesterberg D, Chou J, Sayers D E. Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite[J]. Environmental Science & Technology. 2001,35:3798-3803
    106. SarI A, Tuzen M, Soylak M. Adsorption of Pb(Ⅱ) and Cr(Ⅲ) from aqueous solution on Celtek clay[J]. Journal of Hazardous Materials.2007,144:41-46
    107. Shashkova I L, Rat'ko A I, Kitikova N V. Removal of heavy metal ions from aqueous solutions by alkaline-earth metal phosphates [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1999,160:207-215
    108. Sheha R R. Sorption behavior of Zn(Ⅱ) ions on synthesized hydroxyapatites[J]. Journal of Colloid and Interface Science.2007,310:18-26
    109. Simon V, Lazar D, Turcu R V F, Mocuta H, Magyari K, Prinz M, Neumann M, Simon S. Atomic environment in sol-gel derived nanocrystalline hydroxyapatite[J]. Materials Science and Engineering:B.2009,165:247-251
    110. Smiciklas I D, Milonjic S K, Pfendt P, Raicevic S. The point of zero charge and sorption of cadmium (Ⅱ) and strontium (Ⅱ) ions on synthetic hydroxyapatite[J]. Separation and Purification Technology.2000,18:185-194
    111. Sneddon I R, Orueetxebarria M, Hodson M E, Schofield P F, Valsami-Jones E. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil:A leaching column study[J]. Environmental Pollution.2006,144:816-825
    112. Spuller C, Weigand H, Marb C. Trace metal stabilisation in a shooting range soil:Mobility and phytotoxicity[J]. Journal of Hazardous Materials.2007,141:378-387
    113. Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite[J]. Journal of Colloid and Interface Science.2005,290:28-38
    114. Srivastava V C, Swamy M M, Mall I D, Prasad B, Mishra I M. Adsorptive removal of phenol by bagasse fly ash and activated carbon:Equilibrium, kinetics and thermodynamics [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,272:89-104
    115. Stotzel C, Muller F A, Reinert F, Niederdraenk F, Barralet J E, Gbureck U. Ion adsorption behaviour of hydroxyapatite with different crystallinities[J]. Colloids and Surfaces B:Biointerfaces. 2009,74:91-95
    116. Stranick M A, Root M J. Influence of strontium on monofluorophosphate uptake by hydroxyapatite XPS characterization of the hydroxyapatite surface[J]. Colloids and Surfaces.1991,55:137-147
    117. Sugiyama S, Ichii T, Matsumoto H, Hayashi H. Effect of calcination and sieving of calcium hydroxyapatite on ion-exchangeability with lead cation in the presence and absence of HC1[J]. Advances in Environmental Research.2002,6:285-289
    118. Sundaram C S, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale:Equilibrium and kinetic studies[J]. Journal of Hazardous Materials. 2008a,155:206-215
    119. Sundaram C S, Viswanathan N, Meenakshi S. Fluoride sorption by nano-hydroxyapatite/chitin composite[J]. Journal of Hazardous Materials.2009,172:147-151
    120. Sundaram C S, Viswanathan N, Meenakshi S. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite[J]. Bioresource Technology.2008b,99:8226-8230
    121. Suzuki T, Hatsushika T, Hayakawa Y. Synthetic hydroxyapatites employed as inorganic cation-exchangers [J]. Journal of the Chemical Society, Faraday Transactions 1.1981,77:1059-1062
    122. Takeuchi Y, Arai H. Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder[J]. Journal of Chemical Engineering of Japan.1990,23:75-80
    123. Tang X Y, Zhu Y G, Chen S B, Tang L L, Chen X P. Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test[J]. Environment International.2004,30:531-537
    124. Theodoratos P, Papassiopi N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion[J]. Journal of Hazardous Materials.2002,94:135-146
    125. Unuabonah E I, Adebowale K O, Olu-Owolabi B I. Kinetic and thermodynamic studies of the adsorption of lead (Ⅱ) ions onto phosphate-modified kaolinite clay[J]. Journal of Hazardous Materials.2007,144:386-395
    126. Viswanathan N, Sairam Sundaram C, Meenakshi S. Development of multifunctional chitosan beads for fluoride removal[J]. Journal of Hazardous Materials.2009,167:325-331
    127. Wang L F, Huang J Z. Outline of control practice of endemic fluorosis in China[J]. Social Science & Medicine.1995,41:1191-1195
    128. Wang Y J, Chen J H, Cui Y X, Wang S Q, Zhou D M. Effects of low-molecular-weight organic acids on Cu(Ⅱ) adsorption onto hydroxyapatite nanoparticles[J]. Journal of Hazardous Materials. 2009,162:1135-1140
    129. Webi T W, Chakravort R K. Pore and solid diffusion models for fixed-bed adsorbers[J]. AIChE Journal.1974,20:228-238
    130. Wei W, Sun R, Wei Z G; Zhao H Y; Li H X, Hu F. Elimination of the interference from nitrate ions on oxalic acid in RP-HPLC by solid-phase extraction with nanosized hydroxyapatite[J]. Journal of Liquid Chromatography & Related Technologies.2009a,32:106-124
    131. Wei W, Wang Y, Wei Z G, Zhao H Y, Li H X, Hu F. Roles of organic acids and nitrate in the long-distance transport of cobalt in xylem saps of alyssum murale and trifolium subterraneum[J]. Biological Trace Element Research.2009b,131:165-176
    132. Wei W, Wei Z G; Zhao H Y; Li H X; Hu F. Simultaneous determination of organic acids and nitrate in xylem saps of the hyperaccumulator Alyssum murale by RP-HPLC after solid-phase extraction with nanosized hydroxyapatite[J]. Journal of Chromatographic Science. Accepted
    133. Wu H X, Wang T J, Chen L, Jin Y, Zhang Y, Dou X M. The roles of the surface charge and hydroxyl group on a Fe-Al-Ce adsorbent in fluoride adsorption[J]. Industrial & Engineering Chemistry Research.2009,48:4530-4534
    134. Wu L, Forsling W, Schindler P W. Surface complexation of calcium minerals in aqueous solution:1. Surface protonation at fluorapatite-water interfaces[J]. Journal of Colloid and Interface Science. 1991,147:178-185
    135. Xie L, Giammar D E. Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite[J]. Environmental Science & Technology.2007,41:8050-8055
    136. Xu Y, Schwartz F W. Lead immobilization by hydroxyapatite in aqueous solutions[J]. Journal of Contaminant Hydrology.1994,15:187-206
    137. Xu Y, Schwartz F W, Traina S J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces[J]. Environmental Science & Technology.1994,28:1472-1480
    138. Yang M, Zhang Y, Shao B, Qi R, Myoga H. Precipitative removal of fluoride from electronics wastewater[J]. Journal of Environmental Engineering.2001,127:902-907
    139. Yasukawa A, Yokoyama T, Kandori K, Ishikawa T. Reaction of calcium hydroxyapatite with Cd2+ and Pb2+ ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2007,299:203-208
    140. Ge Y, Wang Y, Zhang C H, Zhou Q S. Determination of speciation and bioavailability of Cd in soil solution using a modified soil column Donnan membrane technique[J]. Chemical Speciation and Bioavailability,2009,21:7-13
    141. Zhang F, Zhou Z H, Yang S P, Mao L H, Chen H M, Yu X B. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer[J]. Materials Letters. 2005,59:1422-1425
    142. Zhang P, Ryan J A. Formation of chloropyromorphite from galena (PbS) in the presence of hydroxyapatite[J]. Environmental Science & Technology.1999a,33:618-624
    143. Zhang P, Ryan J A. Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying ph conditions [J]. Environmental Science & Technology.1998,32:3318-3324
    144. Zhang P, Ryan J A. Transformation of Pb(II) from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH[J]. Environmental Science & Technology. 1999b,33:625-630
    145. Zhang P, Ryan J A, Bryndzia L T. Pyromorphite formation from goethite adsorbed lead[J]. Environmental Science & Technology.1997,31:2673-2678
    146. Zhang P, Ryan J A, Yang J. In vitro soil Pb solubility in the presence of hydroxyapatite[J]. Environmental Science & Technology.1998,32:2763-2768
    147. Zhang X, Vecchio K S. Hydrothermal synthesis of hydroxyapatite rods[J]. Journal of Crystal Growth.2007,308:133-140
    148. Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite[J]. Environmental Pollution. 2010,158:514-519
    149. Zhou Y, Yu C, Shan Y. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin[J]. Separation and Purification Technology.2004,36:89-94
    150. Zhu R, Yu R, Yao J, Mao D, Xing C, Wang D. Removal of Cd2+ from aqueous solutions by hydroxyapatite[J]. Catalysis Today.2008,139:94-99
    151.白卯娟,褚衍洋.铝酸钙渣处理含氟废水研究[J].环境科学技术.2008,31:117-120
    152.陈杰华.纳米羟基磷灰石在重金属污染土壤治理中的应用研究[D].重庆:西南大学,2009
    153.陈世宝,朱永官.不同含磷化合物对中国芥菜(Brassica Oleracea)铅吸收特性的影响[J].环境科学学报.2004,24:707-712
    154.陈世宝,朱永官,马义兵.不同磷处理对污染土壤中有效态铅及磷迁移的影响[J].环境科学学报.2006,26:1140-1144
    155.樊国栋,陈春兰,张春梅,王强.纳米羟基磷灰石的合成工艺研究[J].无机盐工业.2002,42:15-17
    156.巩雄,张桂兰,汤国庆,陈文驹,杨宏秀.纳米晶体材料研究进展[J].化学进展.1997,9:349-360
    157.韩颖超,王欣宇.纳米级磷灰石粉末制备工艺进展[J].硅酸盐通报.2002,21:27-29
    158.黄志良,刘羽,王大伟,魏军,何亚林.溶胶-凝胶法合成的羟基磷灰石的热稳定性研究[J].武汉化工学院学报.2002,24:35-39
    159.胡耐根.重金属铅、汞污染对人的影响[J].科技信息.2009:1186-1187
    160.黄志良,刘羽,王大伟,张术根,陈露军.合成磷灰石的去氟机理研究[J].岩石矿物学杂志. 2001:568-572
    161.李洁莹,陈金龙,费正皓.大孔吸附树脂对邻甲酚的吸附行为研究[J].离子交换与吸附.2004,20:430-437
    162.李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态.2003,1:24-26
    163.李伟.纳米羟基磷灰石合成的比较研究及其吸附水溶液中稀土离子的研究[D].南京:南京农业大学,2008
    164.李新云,黄志英,齐明春,高秀玲,吴宏,叶锤英.天然地热矿泉水脱氟装置:中国,88221009.2[P].1989
    165.李新云,吕其琪.矿泉水脱氟专用的羟基磷灰石制法:中国,88104296.X[P].1991
    166.李新云,吴宏,邵永怡.SHA型脱氟剂处理地热水中氟化物的研究[J].中国环境科学出版社.1990,10:156-158
    167.李新云,郑大威,应波.羟基磷灰石降氟剂合成方法降氟机理研究进展[J].卫生研究.2002,31:136-138
    168.梁文懂,刘强.用改性磷灰石去除废水中重金属离子的研究[J].武汉科技大学学报(自然科学版).2000,23:242-244
    169.廖建国,张利,左奕,王雨利,李玉宝.硬脂酸改性纳米羟基磷灰石表面性能的研究[J].无机化学学报.2009,25:1267-1273
    170.刘斌,寇小丽,王奎,钱晓良.人工合成羟基磷灰石对水溶液中Pb2+, Cd2+离子的固定作用[J].应用化工.2005,34:415-418
    171.刘海波,左文武,林文周.合成羟基磷灰石除氟研究[J].南华大学学报(自然科学版).2007,21:61-63
    172.刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报.2001,1:9-12
    173.刘羽,胥焕岩.磷块岩对二价镉离子的吸附性能研究[J].矿物学报.2001,21:406-408
    174.刘羽,胥焕岩,黄志良,罗惠华.羟基磷灰石吸附水溶液中Cd2+的影响因素的研究[J].岩石矿物学杂志.2001,20:583-586
    175.刘转年,周安宁,金奇庭.新型煤基吸附剂吸附硝基苯的机理研究[J].煤炭转化煤炭转化.2006,29:73-76
    176.龙梅.纳米羟基磷灰石性质及其应用于修复环境铅污染的研究[D].南京:南京农业大学,2007
    177.龙梅,胡锋,李辉信,赵海燕,吕元琦,魏正贵.低成本含磷材料修复环境重金属污染的研究进展[J].环境污染治理技术与设备.2006,7:1-10
    178.罗惠华,石和彬,钟康年,刘羽.天然及改性碳氟磷灰石对水中Pb2+的吸附性能研究[J].非金属矿.2000,23:43-49
    179.莫利蓉,李玉宝,吕国玉,李吉东,杨维虎.不同条件下合成的纳米羟基磷灰石晶体的性能研 究[J].化学研究与应用.2006,18:230-234
    180.潘家永.纳米羟基磷灰石粉体的制备对水溶液中酚类化合物的吸附研究[D].上海:华东师范大学,2007
    181.彭继荣,李珍,刘明阳,蒋莉.羟基磷灰石的湿法制备及其对F吸附特性研究[J].环境科学与技术.2005,28:33-35
    182.任卫,曹献英,冯凌云,江昕,贾莉,姬钢,李世普.纳米羟基磷灰石合成及表面改性的途径和方法[J].硅酸盐通报.2002,1:38-43
    183.沈卫,顾燕芳,刘昌胜,孙祥明,胡黎明.羟基磷灰石的表面特性[J].硅酸盐通报.1996,1:45-52
    184.石和彬,罗惠华,刘羽,钟康年.磷矿石的铅离子吸附性能研究[J].武汉化工学院学报.1999,21:34-37
    185.孙榕.高表面活性磷灰石材料应用于吸附草酸和硝基苯的研究[D].南京:南京农业大学,2009
    186.宋云京,李木森,温树林,姜庆辉,宿庆财.温度和pH值对羟基磷灰石粉体合成的影响[J].硅酸盐通报.2003,22:7-10
    187.谭凯元,陈晓峰,王迎军.微乳液法合成羟基磷灰石纳米微晶及其性能研究[J].材料导报.2006,20:144-146,149
    188.夏傲,苗鸿雁,韩蕾,樊蕃.水热法合成纳米羟基磷灰石晶须制备[J].无机盐工业.2006,38:33-34
    189.徐惠,张斯凡,刘小育,苟国俊.水热合成微孔纳米羟基磷灰石[J].应用化学.2008,25:1255-1258
    190.徐立新.沉淀法制备羟基磷灰石粉末的探索[J].甘肃科技.2003,19:33-34
    191.王连芳,王生玲,白鸿.水中某些无机离子对骨碳除氟的影响[J].地方病通报.1993,18:16-18
    192.王奎,钱晓良,刘石明,邢长生.均匀沉淀法制备羟基磷灰石的研究[J].佛山陶瓷.2004,14:8-11
    193.王瑜,周权锁,葛滢.自由态Cd离子浓度测定装置的改进[J].分析试验室.2007,26增刊:324-327
    194.魏杰,李玉宝,左奕,杨爱萍.水热合成法制备纳米磷灰石晶体的比较研究[J].高技术通讯.2003,9:76-79
    195.胥焕岩,刘羽,石和彬.磷灰石及其对水溶液中Cd2+离子的固定作用[J].矿产保护与利用.2000,4:21-26
    196.胥焕岩,彭明生,刘羽.pH值对羟基磷灰石除镉行为的影响[J].矿物岩石地球化学通报.2004,24:305-309
    197.胥焕岩,王鹏,刘羽,彭明生.基于除镉作用机理探讨的碳羟磷灰石溶解特性研究[J].矿物岩 石.2005,25:6-10
    198.于方丽,周永强,张卫珂.羟基磷灰石生物材料的研究现状、制备及发展前景[J].陶瓷.2006,2:7-12
    199.战颖.纳米羟基磷灰石的研究进展[J].华北煤炭医学院学报.2010,12:30-31
    200.张爱娟.溶胶-凝胶法制备纳米羟基磷灰石的研究进展[J].材料工程.2006,增刊1:463-465
    201.张俊,王德平,姚爱华,黄文旵.纳米羟基磷灰石对Ni2+的吸附性能及机理研究[J].无机材料学报.2009,24:269-274
    202.张力,汪超,苑庆兰,李哲.沉淀法制备羟基磷灰石影响产物结晶和晶粒粒度的因素[J].武警医学院学报.2002,12:143-149
    203.张丽娜.纳米羟基磷灰石及其复合材料的研究[D].青岛:青岛大学,2004
    204.赵丽红,李素霞,柯滨,刘爽.铅污染现状及其修复机理研究进展[J].武汉生物工程学院学报.2006,2:43-46
    205.钟康年,魏以和,罗惠华.改性磷灰石的造粒和去除重金属离子[J].中国矿业.2001,10:18-21
    206.朱晏军,王玮竹,闫玉华.纳米羟基磷灰石(HAP)的制备方法及应用[J].佛山陶瓷.2003,7:9-1
    207.左奕,李玉宝,魏杰,严永刚.纳米羟基磷灰石的常压合成与表征[J].高技术通讯.2003,4:58-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700