生物活性玻璃微纳米粉体的模板仿生合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然的生物体能够在生物大分子的精确调控下,通过生物矿化过程合成具有特殊形貌和功能的生物矿物。目前,仿生合成各种形貌、尺寸和多级结构的无机材料和有机-无机复合材料引起了材料学家的普遍关注。本研究采用模板技术和仿生技术制备不同形貌的生物活性玻璃微纳米粉体,结合粉体表面修饰技术,提高无机粉体与有机基相的界面亲和性,制备具有三维多孔结构的生物活性骨修复材料。利用XRD、SEM/EDX、FTIR、BET、DSC/TG等各种材料结构、性能分析方法和体外模拟实验方法对溶胶-凝胶生物活性微纳米粉体及其壳聚糖/生物活性玻璃复合多孔材料的显微结构、生物活性和矿化特性进行了深入研究,探讨了生物活性玻璃微纳米粉体的合成机理。
     本研究提出采用模板仿生合成技术结合溶胶-凝胶技术来控制生物活性玻璃的颗粒大小、尺寸及多级结构,实现了多种形貌生物活性玻璃的模板仿生合成。采用体外模拟矿化实验研究了材料的体外矿化性能及生物活性。探讨了制备工艺参数对生物玻璃粉体颗粒大小、形貌及比表面积、孔容等物理性质的控制规律及几种生物活性玻璃微纳米粉体的合成机理。研究表明:(1)在溶胶-凝胶工艺中引入聚乙二醇(PEG)作为分散剂可以调控生物活性玻璃颗粒的分散状态和形貌,控制PEG的加入量是能否达到最好分散效果的关键。采用该技术可以调控生物活性玻璃的粒度大小、比表面积及钙磷离子释放情况。PEG与生物活性玻璃凝胶粒子的作用机理为空间位阻稳定机理;(2)通过模板法结合溶胶-凝胶法成功制备了生物活性玻璃纳米纤维簇,宽度范围在50~120nm,长度范围约为200~500nm,并且纳米纤维簇是由规则排列的纳米纤维堆积形成,纳米纤维宽度约为10nm,其形成机理是由于模板剂吐温-80在溶胶液中形成棒状胶束结构,通过羟基化作用和亲水基团引导调控纳米纤维簇的生成。(3)采用碱性催化剂氨水及十二胺催化制备了不同尺寸的生物活性玻璃微球及多孔微球,探讨了加料方式,反应温度,原料配比等工艺条件对生物活性玻璃粉体的颗粒形貌和粒径大小的影响规律,其中十二胺具有催化剂和模板剂的双重作用,在反应体系中形成蠕虫状胶束,胶束表面的亲水基团与生物活性玻璃的前驱物以氢键作用结合,经高温处理后在生物活性玻璃微纳米球内部成孔。(4)体外模拟矿化实验结果表明,本研究制备的生物活性玻璃微米球、纳米纤维簇和纳米球具有良好的生物矿化性能,证明所制备的不同形貌和大小的生物活性玻璃都具有优良的生物活性。
     采用生物大分子卵磷脂对生物玻璃粉体进行表面改性,并研究了生物活性玻璃与卵磷脂的相互作用。表面改性后生物玻璃粉体在壳聚糖有机基相中均匀分散,在一定程度上提高界面的相容性。采用冷冻干燥法制备了壳聚糖/溶胶凝胶生物活性玻璃仿生型复合多孔支架,探讨了生物玻璃粉体的表面改性及各组分不同用量对壳聚糖/溶胶凝胶生物活性玻璃复合支架显微结构及压缩强度的影响,并对其微观结构、孔隙率、压缩强度、体外矿化等性能进行了研究。研究结果表明:所制备的复合支架材料的孔径尺寸分布均匀,具有高度连通的孔隙结构,孔径大小在50~200μm之间,其气孔率在90%以上。改性后生物玻璃粉体与壳聚糖复合材料的压缩强度比改性前明显提高。
In nature, biological systems are able to generate specifically functionalized crystalline materials with complex morphologies via the process of biomineralization that is delicately controlled by certain biomarcromolecules. Recently, controlled synthesis of inorganic and inorganic/organic hybrid materials of specific morphology, different particle size and hierarchical structure have drawn signifcant attention to the community of material sciences. In this study, bioactive glass micro-nanoscale particles with different shapes were synthesed by organic template method. The surface of micro-nanoscale particles were modified to improve the interfacial interaction between organic matrix and inorganic particles. Bone repairing materials with three dimensional porous structures were obtained with good mechanical strength. The nano-structure, bioactivity and bio-mineralization characteristics of the sol-gel derived bioactive glass and chitosan/bioactive glass (CS/BG) composite materials were investigated in detail by using XRD, SEM/EDX, FTIR, BET and DSC/TG techniques, as well as in vitro methods. The synthetic mechanism of the bioactive glass micro-nanoscale particles was also discussed.
     In this work, the combination of sol-gel and biomimetic organic template technologies were used to prepare micro-sized and nano-sized bioactive glass particles with different shapes and hierarchical structure. In vitro test was used to characterize the biomineralization and bioactive properties of these materials. The effects of fabrication parameters on the properties of final products, including particle size, shape, specific surface area and pore volume were studied while the shape control mechanism of bioactive glass particles was discussed. The results indicated that: (1)The dispersive state and microstructure of bioactive glass could be controlled by sol-gel technology by adding PEG as dispersant, the dispersive effect of bioactive glass was influenced by the content of PEG. Particle size, surface area and ions release behavior could be controlled and the dispersive mechanism could be explained by steric hindrance stabilization theory. PEG could adhere to the surface of bioglass particles to eliminate the interaction among particles. (2)The nano-fiber clusters of bioactive glass were successfully synthesized using sol-gel and tween-80 surfactant templating methods. These nano-fiber clusters, approximately 50~120nm in width and 200~500nm in length, were accumulated by well-ordered nano-fibers of 10nm in width. Tween-80 template in sol solution could form rod shape micelle structure, and the main driving forces for nano-clusters formation were hydroxylation reaction and hydrophilic effect. ( 3 ) Bioactive glass micro-spheres and porous micro-spheres were synthesized using ammonia and dodecylamine as catalyzer while water and ethanol were used as solvent. Technical parameters such as the speed of sample addition, reaction temperature and the ratio of starting materials, etc, were studied. In addition to catalysis, dodecylamine could also served as organic template to trigger the formation of wormlike micelle in our reaction system. The precursor of bioactive glass was reacted with micelle by hydrogen bonding and porous stucture was formed after high temperature treatment. ( 4 ) The results of in vitro test demonstrated outstanding biominerilization properties among the bioglass micro-spheres, nano-fiber clusters and nano-spheres. It further suggested that bioglass of different shapes and particle sizes exhibited great in vitro bioactivity.
     Bioactive glass powders were treated with phosphatidyl cholines, and the interactions between bioactive glass and phosphatidyl cholines were studied. Surface modification of bioactive glass (MBG) particles improved the interfacial interaction between bioactive glass particles and chitosan matrix, such that a uniform distribution of modified bioactive glass particles in the chitosan matrix was observed. A biomimetic porous composite was prepared from chitosan and sol-gel bioactive glass powders by freeze-drying technique. The effects of surface and component modification on the microscopic features and the compressive strength of bioactive glass were studied. The microstructure, porosity, compressvie strength and bio-mineralization characteristics of the chitosan/bioactive glass (CS/BG) composite materials were also investigated. The results suggested that the composite scaffolds were featured with highly interconnected pores with pore size ranging from 50~200μm and the overall porosity of the scaffolds was above 90%. The compressive strength of the composite could be improved by surface modification of bioactive glass.
引文
[1] Salgado A J, Coutinho OP., Reis RL. Bone Tissue Engineering: State of the Art and Future Trends [J] Macromol. Biosci. 2004, 4: P743
    [2] Lavik E, Langer R. Tissue engineering: current state and perspectives.[J] Appl Microbiol Biotechnol 204, 65 :P1-8
    [3]赵秀峰,有机添加剂辅助无机材料形貌控制合成[D],武汉理工大学博士学位论文,2007.4, P1-20
    [4]杜昶,王迎军,骨与牙釉质组织的生物矿化及磷酸钙材料仿生合成研究进展[J],无机材料学报,2009, 24(5):882-888
    [5] S. Mann. Molecular Recognition in Biomineralization. Nature, 1988, 332(10):119-124
    [6] Currey J.D. The mechanical adaptations of bones [M]. Princeton University press, 1984
    [7]欧阳健明.生物矿化的基质调控及其仿生应用[M].北京:化学工业出版社, 2006: 7-9, 46-83, 217-221
    [8] Weiner S, Wagner H.D. The material bone: Structure-Mechanical Function Relations[J]. Annu Rev of Mater Sci, 1998, 28(1): 271-298.
    [9] Lowenstam H A, Weiner S. On Biomineralization[M]. New York: Oxford University Press, 1989
    [10] Landis W J, Song M J, Leith A, et al., Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by higy-voltage electron microscopic tomography and graphic image teconstruction[J]. Journal of Structural Biology, 1993, 110(1):39-54
    [11] Banks E, Nakajima S, Shapiro L C, et al., Fibrous apatite grown on modified collagen[J]. Science, 1977, 198(4322):1164-1166
    [12] Roach H I. Why does bone-matrix contain noncollagenous proteins- the possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralization and resorption[J]. Cell Biology International, 1994, 18(6):617-628
    [13] Boskey A L.Noncollagenous matrix proteins and their role in mineralization[J]. Bone and Mineral, 1989, 6(2):111-123
    [14] Cui F Z, LiY, Ge J. Self-assembly of mineralized collagen composites[J]. Mater Sci Eng R, 2007, 57(1-6):1-27
    [15]欧阳健明.生物矿化的基质调控及其仿生应用[M].北京:化学工业出版社,2006年: 206-207
    [16] J.H. Fendler. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev., 1987, 87:877-899
    [17] J.H. Fendler, F.C. Meldrum. The colloid chemical approach to nanostructured materials. Adv. Mater., 1995, 7:607-632
    [18] Wang Y J, Zhang S H, Wei K, et al. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template [J]. Materials letters, 2006, 60: 1484~1487
    [19] Wang Y J, Chen J D, Wei K, et al. Surfactant-assisted synthesis of hydroxyapatite particles[J]. Materials Letters, 2006, 60 (27): 3227~3231
    [20] Wu Y and Bose S. Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization[J]. Langmuir, 2005, 21: 3232~3234
    [21] Yan L. Li Y, Deng Z, Zhuang J, et al. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods[J]. International Journal of Inorganic Materials, 2001, 3: 633~637
    [22] Somnuk J, Wiwut T, Virote B. Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system[J]. Colloids and Surfaces A: Physicochem, Eng. Aspects, 2007, 196: 149~153
    [23] Jia Y, Wiliana T, Yun C, et al. Hydroxyapatite nanostructure material derived using cationic surfactant as a template[J]. J Mater Chem, 2003, 13: 3053~3057
    [24] Zhang S H, Wang Y J, Wei K, et al. Template-assisted synthesis of lamellar meso structured hydroxyapatites[J]. Mater Lett, 2007, 61: 1341-1345
    [25] Wei K, Lai C, Wang Y J. Solvothermal Synthesis of Calcium Phosphate Nanowires Under Different pH Conditions [J]. J Macromol Sci A, 2006, 43: 1531~1540
    [26] Wang Y J, Lai C, Wei K, et al. Influence of Temperature, ripening time and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts [J]. Mate Lett. 2005, 59: 1098~1104
    [27] S.Liu, N. C. Bilingham, S.P.Armes. A schizophrenic water-soluble diblock copolymer. Angew. Chem. Int. Ed., 2001, 40:2328-2331.
    [28] J. Rodriguez-Hernandez, S. Lecommandoux. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J. Am. Chem. Soc., 2005, 127:2026-2027.
    [29] Salarian M, Solati-Hashjin M,Shafiei S S,et al. Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol[J]. Ceramics International, 2009, 35: 2563~2569
    [30] Wang Y S, Hassan M S. Polyelectrolyt mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure[J]. J Col Inter Sci, 2009, 339: 69~77
    [31] Masanori Kikuchi, Toshiyuki Ikoma, Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen, Composites Science and Technology, 64: 819-825(2004)
    [32] Myung Chul Chang, Preparation of a porous hydroxapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent, Journal of Materials Science Letters, 20:1199-1201(2001)
    [33] Myung Chul Chang, FTIR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde, Biomaterials, 23:4811-4818(2002)
    [34] Myung Chul Chang, XPS study for the microstructure development of hydroxyapatite-collagen nanocomposite cross-linked using glutaraldehyde, Biomaterials, 23:3879-3885(2002)
    [35] L.Borum-Nicholas, O.C. Wilson Jr., Surface modification of hydroxyapatite. PartⅠ.Dodecyl alcohol, Biomaterials 24(2003) 3671-3679
    [36] Huang.J, Best.S. M,Bonfield.W, In vitro assessment of the biological response to nanosized hydroxyapatite, J. mater. sci: Mater. Med., 15:441-445(2004)
    [37] Silva C. C., Pinheiro. A. G., Figueiro. S. D., Goes. J. C., Sasakl. J. M., Miranda. M. A. R., Sombra. A. S. B., Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites. J. Mater. Sci. 37:2061-2070(2002)
    [38]冯庆玲,崔福斋,张伟.纳米/胶原骨修复材料[J].中国医学科学院学报,2002,24(2):124-128
    [39] Hench L. L., Splinter R.J., Allen W.C., et al, J. Biomed. Mater. Res. Sympos. 1971, 2:117-141
    [40] Hench L. L., Bioceramics, J. Am. Ceram. Soc.1991(7)1705-1728
    [41] Hench L. L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74(7): 1487-1510
    [42] Hench L. L. Biomaterials: a forecast for the future. Biomaterials. 1998, 19:1419-1423
    [43] Ohura K, Nahamura T, Yamamuro T, et al. Bone-bonding ability of P2O5-free CaO-SiO2 glasses, J. Biomed. Mater. Res., 1991, 25(3):357-365
    [44] A. M. Gatti, G. Valdrèand ?. H. Andersson,Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue , Biomaterials,1994,15: 208-212
    [45] Sophie Verrier, Jonny J. Blaker, Veronique Maquet, Larry L. Hench, Aldo R. Boccaccini,PDLLA/Bioglasss composites for soft-tissue and hard–tissue engineering: an in vitro cell biology assessment, Biomaterials 2004, 25: 3013–3021
    [46] Kai Zhang, Yue Ma, Lorraine F. Francis,Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces,J Biomed Mater Res 2002,61: 551–563
    [47] Hench. LL ,The story of Bioglass,Journal of Materials Science-Materials in Medicine, 2006, Volume: 17 Issue: 11 Pages: 967-978
    [48] Hench L.L., Xynos I., Edgar A., Buttery L. Polak J.M.,钟吉品,刘宣勇,常江.激活基因的玻璃,无机材料学报,2002,17[5]:807-909
    [49] Larry L. Hench and Julia M. Polak, Third-Generation Biomedical Materials, Science, 2002, vol.295, 1014,1016-1017
    [50] Daniel G. Anderson, Jason A. Burdick, Robert Langer, Smart Biomaterials, Science, 2004,vol.305, 1923-1924
    [51] Hench L.L, West J.K. The sol-gel process[J]. Chem Rev, 1990, 90: 33-72
    [52] Julian R. Jones, Olga Tsigkou, Emily E Coates, et al, Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast cells, Biomaterials, 2007, (28):1653-1663
    [53] Li R, Clark A.E, Hench L.L. Effects of structure and surface area on bioactive powders by sol-gel process[J]. Chemical processing of advanced materials, 1992: 627-633
    [54] Pereira M.M, Clark A.E, Hench L L. Effect of texture on the rate of hydroxyapatite formation on gel-silica surface[J]. J Am Ceram Soc, 1995, 78: 2463–2468
    [55] Filgueiras M.R, LaTorre G.P, Hench L.L. Solution effects on the surface reactions of a bioactive glass[J]. J Biomed Mater Res, 1993, 27: 445– 453
    [56] Peltola T, Jokinen M, Rahiala H, et al. Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro[J]. J Biomed Mater Res 1999, 44: 12–21
    [57] Pereira M.M, Hench L.L. Mechanisms of hydroxyapatite formation on porous gel-silica substrates[J]. J Sol-Gel Sci Technol, 1996, 7: 59-68
    [58] Li R, Clark A.E, Hench L.L. An investigation of bioactive glass powders by sol-gel processing[J]. J Appl Biomater, 1991, 2: 231-239
    [59] Oonishi H, Hench L.L, Wilson J, et al. Comparative bone growth behavior in granules of bioceramic materials of various sizes[J]. J Biomed Mater Res, 1999, 44: 31-43
    [60] Greenspan D.C, Zhong J.P, Chen X.F, et al. The evaluation of degradability of melt and sol-gel derived bioglasst in vitro[J]. Bioceramics, 1997: 391-394
    [61]陈晓峰,李玉莉,赵娜如.溶胶-凝胶生物活性玻璃的纳米结构分析研究[J].硅酸盐通报, 2007, 26(2): 247-251
    [62]李玉莉,生物活性玻璃显微结构分析及其矿化性能分析与表征[D],广州:华南理工大学硕士学位论文,2007.
    [63]王迎军,陈晓峰,赵娜如.纳米仿生骨组织材料的生理响应及生物矿化[J].华南理工大学学报(自然科学报), 2002, 30(11): 149-154
    [64]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社, 2005: 154-161
    [65]干福熹.现代玻璃科学技术(下册)[M].上海:上海科学技术出版社.1990
    [66] Miao X,Tan L.P,Tan L S,et al. Porous calcium phosphate ceramics modified with PLGA–bioactive glass[J]. Materials Science and Engineering,2007,27(2):274-279
    [67] Richard M.D,Aldo R.B. Effect of particulate bioactive glasses on human macrophages and monocytes in vitro[J].J Biomed Mater Res Part A,2005,73A(1):73-79
    [68]冯怡,马天翼,刘蕾等,无机纳米晶的形貌调控及生长机理研究[J].中国科学B辑:化学, 2009, 39(9):864-886
    [69]陈晓峰,郭常亮,赵娜如,谢林,溶胶-凝胶生物活性玻璃超细粉体的制备与生物矿化性能研究[J].无机材料学报,2008, 23(5):1027-1032
    [70] Xiaofeng Chen, Bo Lei, Yingjun Wang, Naru Zhao, Morphological control and invitro bioactivity of nanoscale bioactive glasses[J]. Journal of Non-Crystalline Solids, 2009,355:791-796
    [71] Fathi M H, Doostmohammadi A, Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant[J]. Journal of Materials Processing Technology, 2009, 209(3):1385-1391
    [72] Hong Z K, Liu A X, Chen L, et al, Preparation of bioactive glass ceramic nanoparticles by combination of sol-gel and coprecipitation method[J]. Journal of Non-Crystalline Solids, 2009, 355(6):368-372
    [73] Hong Z, Reis R L, Mano J F, Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles[J]. Journal of Biomedical Materials Research Part A, 2008, 88A(2): 304-313
    [74] Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system[J]. J. Controlled. Release, 2006. 110(3): 522-530.
    [75] Xia W, Chang J, Lin J P, et al. The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites[J]. Eur. J. Pharm. Biopharm, 2008. 69(2): 546-552.
    [76] Xia W, Chang J. Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass[J]. J. Non-Cryst. Solids, 2008. 354(12-13): 1338-1341.
    [77]刘威,钟伟,都有为,有序纳米结构体系的模板合成法[J].材料科学与工程学报,2007,25(3):476-480
    [78] Yan XX, Yu CH, Zhou XF, et al, Highly ordered mesoporous bioactive glases with superior in vitro bone-forming bioactivities[J]. Angew Chem Int Ed 2004, 43: 5980-5984
    [79] Pappas G S,Liatsi P, Kartsonakis I A, et al, Synthesis and characterization of new SiO_2-CaO hollow nanospheres by sol-gel method: Bioactivity of the new system[J]. Journal of Non-Crystalline Solids, 2008,354:755-760
    [80]杨宇霞,王迎军,陈晓峰,CaO-P2O5-SiO_2系统生物活性纳米粒子形貌和粒径分布影响因素探讨[J].硅酸盐通报,2004,23(6):94-97,105
    [81] Brinker, C. J.; Scherer, G. W. Sol-gel science: The physics and chemistry of sol-gel processing[M]., London, 1990.
    [82] Stober W.; Fink, A. Controlled growth of monodispherse silica spheres in the micron size range[J]. J. colloid &interface sci. 1968, 26,62-69
    [83] Hench L.L. Wilson J. An introduction to bioceramics[M].北京:清华大学出版社, 1993 : 41-59
    [84] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials, 2006, 27: 2907-2915
    [85] Ramila A, Vallet-Regi M. Static and dynamic in vitro study of a sol–gel glass bioactivity[J]. Biomaterials, 2001, 22(16): 2301-2306
    [86] Kai Z,Hongwei Y,David C B,et al. Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures[J].J Biomed Mater Res Part A, 2003, 66A(4): 860-869
    [87] Lenka M, Frank A.M. Preparation of SBF with different content and its influence on the composition of biomimetic apatites[J]. Acta Biomaterialia, 2006, 2(2): 181-189
    [88] Hench L. L. Bioceramics: From concept to clinic[J]. J. Am. Ceram. Soc. 1991, 74[7]: 1487-1510
    [89]付廷明,李凤生,包覆式超细复合粒子的制备[J].火炸药学报, 2002(1):33-35
    [90]任力,季培红,王迎军,等.APTES改性生物活性玻璃的工艺研究[J].硅酸盐通报,2008,27(5):889-893
    [91] Q.Z.Chen, K.Rezwan, D. Armitage,et.al., The surface functionalization of 45S5 Bioglass -based glass-ceramic scaffolds and its impact on bioactivity [J]. J Mater Sci: Mater Med(2006) 17(11):979-987
    [92]陈晓峰,溶胶-凝胶生物活性材料的研制及其生物矿化性能研究[D].华南理工大学博士学位论文,2003年5月
    [93] Miao X,Tan L.P,Tan L S,et al. Porous calcium phosphate ceramics modified with PLGA–bioactive glass[J]. Materials Science and Engineering,2007,27(2):274-279。
    [94] Richard M.D,Aldo R.B. Effect of particulate bioactive glasses on human macrophages and monocytes in vitro[J].J Biomed Mater Res Part A,2005,73A(1):73-79。
    [95] Meldrum F.C, Wada V.J, Nimmo D.L, et al. Synthesis of inorganic nanophase materials in supramolecular protein cages[J]. Nature, 1991, 349(21): 684-687
    [96]欧阳健明,段荔,何建华,等.微乳和胶束有序体系中纳米无机矿物的生长及其在生物矿化领域的应用前景[J].化学世界, 2003, 7: 379-387
    [97]邓兰青,欧阳健明.单分子膜和自组装单分子膜调控生物有机晶体生长[J].功能材料, 2006, 37 (1): 18-21
    [98] Archlbald D.D, Mann S. Template mineralization of selfassembled anisotropic lipid microstructures[J]. Nature, 1993, 364 (29): 430-433
    [99] Mann S, Qzin G.A. Synthesis of inorganic materials with complex form[J]. Nature, 1996, 382(25): 313-318
    [100]黄志良,刘羽,王大伟,等.胶原蛋白模板诱导片状纳米羟基磷灰石(HAP)的仿生合成[J].材料导报, 2002, 16(10): 69-71
    [101]黄苏萍,黄伯云,周科朝,等.有机官能团及矿化液离子对羟基磷灰石晶体生长的影响[J].中国有色金属学报, 2004, 14(9): 1604-1608
    [102]赵敬哲,刘艳华.模拟生物矿化过程原位合成活性纳米碳酸钙[J].高等学校化学学报, 2005, 26(1): 13-15
    [103] Tanev P.T,Pinnavaia T.J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies[J]. Science, 1996, 271(5253): 1267-1269
    [104]刘超,成国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附, 2003, 19(4): 374-384
    [105] Cardinal M.F, Lovino M, Bernik D.L. Comparative study of the porosity induced by CTAB and Tween as silica templates [J]. Materials Science and Engineering: C, 2007, 27(1): 75-79
    [106] Yang Xiao-Hong, Wu Qing-Sheng, Li Lia, et al. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264(1-3): 172-178
    [107] Duan J X, Huang X T, Wang E, PEG-assisted synthesis of ZnO nanotubes[J]. Mater Lett, 2006,60:1918-192
    [108]胡曰博.有序介孔TiO_2材料的合成,表征及应用[D].成都:四川大学, 2005
    [109] Khomane R.B, Kulkarni B.D, Ahedi R.K. Synthesis and Characterization of Ferrierite -Type Zeolite in the Presence of Nonionic Surfactants[J]. J Colloid and Interface Sci, 2001, 236: 208-213
    [110] Choi H, Stathatos E, Dionysiou D.D. Synthesis of nanocrystalline photocatalytic TiO_2 thin films and particles using sol–gel method modified with nonionic surfactants[J]. Thin Solid Films, 2006, 510: 107-114
    [111] Kokubo T, Kushitani H, Sakka S, et al, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W[J]. J Biomed Mater Res, 1990, 24(6): 721-734
    [112] Andrade A, Valerio P, Goes A.M, et al. Influence of morphology on in vitro compatibility of bioactive glasses [J]. J Non-Crystalline Solids, 2006, 352: 3508-3511
    [113] Oliveira J.M, Correia R.N,Fernandes M.H. Effects of Si speciation on the in vitro bioactivity of glasses [J]. Biomaterials, 2002, 23(2): 371-379
    [114] Leonelli C,Lusvardi G.. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity [J]. J Non-Crystalline Solids, 2003, 316(2): 198-216
    [115]徐明霞,方洞浦,杨正方,高分子型表面活性剂在氧化锆粉末制备过程中的作用(二)[J].无机材料学报,1991,6(1):39-44
    [116]王焕英,宋秀芹,不同添加剂对纳米氧化锆粉体影响的探讨[J],人工晶体学报,2005,34(5):875-879
    [117] Qiu C F, Xiao XF, Liu RF, Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol[J]. Ceramics Intrenational, 2008, 34:1747-1751
    [118]李元元,樊玲芳,杜丽影等,PEG对溶液燃烧合成超细ZrO_2粉末的影响[J].粉末冶金技术,2009,27(4):281-283,287
    [119]陈庆春,邓慧宇,马燕明,聚乙二醇在新材料制备中的作用及其机理[J].日用化学工业, 2002, 32(5):35
    [120]周洪兆,朱慎林,分散剂对超细硫酸钡粉体制备的影响[J].机械工程材料, 2005, 29(4):17
    [121]张小珍,周健儿,赵学国等,聚乙二醇分散Ca0.6Mg0.4 Zr4(PO4)6纳米粉的制备[J].人工晶体学报, 2007, 36(6):1359-1362,1367
    [122] Oliveira J.M, Correia R.N,Fernandes M.H. Effects of Si speciation on the in vitrobioactivity of glasses[J]. Biomaterials, 2002, 23(2): 371-379
    [123] Leonelli C,Lusvardi G.. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity[J]. J Non-Crystalline Solids, 2003, 316(2): 198-216
    [124] Lenka M, Frank A.M. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites[J]. Acta Biomaterialia, 2006, 2: 181-189
    [125] Andrade A, Valerio P, Goes A.M, et al. Influence of morphology on in vitro compatibility of bioactive glasses [J]. J Non-Crystalline Solids, 2006, 352: 3508-3511
    [126] Ragel C.V, Vallet-Regi M, Rodriguez-Lorenzo LM, Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material [J]. Biomaterials, 2002, 23(9): 1865-1872
    [127] Salinas A.J, Roman J, Vallet-Regi M, et al. In vitro bioactivity of glass and glass-ceramics of the 3CaO·P2O5- CaO·SiO_2–CaO·MgO·2SiO_2 system[J]. Biomaterials, 2000, 21(3): 251-257
    [128] Zhang S.H, Wang Y.J, Wei K, et al. Template-assisted synthesis of lamellar mesostructured hydroxyapatites [J]. Materials Letters, 2007, 61: 1341-1345
    [129] Tanev P.T,Pinnavaia T.J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies [J]. Science, 1996, 271(5253): 1267-1269
    [130] Firouzi A, Kumar D, Bull L.M, et al. Formation of Silicate-surfactant Mesophases[J]. Science, 1995, 267(5201):1138
    [131]刘超,成国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附, 2003, 19(4): 374-384
    [132] Cardinal M.F, Lovino M, Bernik D.L. Comparative study of the porosity induced by CTAB and Tween as silica templates [J]. Materials Science and Engineering: C, 2007, 27(1): 75-79
    [133]卢寿慈,翁达,界面分选原理与应用[M],北京:冶金工业出版社,1992
    [134] Jayasundera M, Adhikari B, Adhikari R, et al., The effect of protein types and low molecular weight surfactants on spray drying of sugar-rich foods, Food Hydrocolloids, 2011, 25(3):459-469
    [135] Beck J.S, Vartuli J.C, Roth W.J, et al. A new family of mesoporous molecular sievesprepared with liquid crystalline templates[J]. J Am Chem Soc, 1992, 114: 10834-10843
    [136] Kresge C.T, Leonowicz M.E, Roth W.J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystalline templates mechanism[J]. Nature, 1992, 359: 710-712
    [137]张金中,王中林,刘俊,等.自组装纳米结构[M].北京:化学工业出版社, 2005: 26-33
    [138] Zhang Jun, Gao Xia, Song Bangcai. A novel technique to synthesize hydroxyapatite whiskers[J]. Materials Letters, 2008, 62: 1162-1164
    [139] Lopes P.P, Ferreira B.J.M.L, Almeida N.A.F. Preparation and study of in vitro bioactivity of PMMA-co-EHA composites filled with a Ca(3PO4)2-SiO_2-MgO glass[J]. Mater Sci and Engi, 2008, C28: 572-577
    [140] Mann, S., Ozin, G. A. Synthesis of inorganic materials with complex form[J]. Nature, 1996,382:313-318
    [141] Kim H. W, Kim H. E, Knowle J.C., Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial [J]. Adv. Funct. Mater. 2006, 16(12):1529-1535
    [142]李玉莉,陈晓峰,王迎军,赵娜如,溶胶-凝胶生物活性玻璃纤维的制备及其体外矿化性能的研究,无机材料学报,2007,22(4):617-621
    [143] Brinker C. J.; Scherer, G. W. Sol-gel science: The physics and chemistry of sol-gel processing[M]. London, 1990.
    [144] Stober W., Fink, A. Controlled growth of monodispherse silica spheres in the micron size range[J]. J. colloid &interface sci. 1968, 26,62-69
    [145] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials, 2006, 27: 2907-2915
    [146] Ramila A, Vallet-Regi M. Static and dynamic in vitro study of a sol–gel glass bioactivity[J]. Biomaterials, 2001, 22(16): 2301-2306
    [147] Kai Z,Hongwei Y,David C B,et al. Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures[J]. J Biomed Mater Res Part A, 2003, 66A(4): 860-869
    [148] Lenka M, Frank A.M. Preparation of SBF with different content and its influence onthe composition of biomimetic apatites[J]. Acta Biomaterialia, 2006, 2(2): 181-189
    [149] Karmakar B, De G, Kundu D, et al.Dense silica microspheres from organic and inarganic hydrolysis of TEOS [J]. J Non-Cryst Solids, 2000, 272:119-126.
    [150] (澳)J. R.安德森著,历杜生等译.金属催化剂的结构[M].北京:化学工业出版社.1985:332-440
    [151] DeBoer J. H.; The structure and properties of porous materials[M]. Butterworths, London.1958:68
    [152] (日)作花济夫著.蒋幼梅等译.玻璃非晶态科学[M].北京:中国建筑工业出版社.1986:1-18
    [153] (德)W.福格尔著,谢于深译.玻璃化学[M].北京:轻工业出版社.1988:25-33
    [154]邱关明,黄良钊.玻璃形成学[M].北京:兵器工业出版社.1987:103-110,24-42
    [155] Andrade A, Valerio P, Goes A.M, et al. Influence of morphology on in vitro compatibility of bioactive glasses[J]. J Non-Crystalline Solids, 2006, 352: 3508-3511
    [156] Oliveira J M, Correia R N,Fernandes M H. Effects of Si speciation on the in vitro bioactivity of glasses[J]. Biomaterials, 2002, 23(2): 371-379
    [157] Leonelli C,Lusvardi G. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity[J]. J Non-Crystalline Solids, 2003, 316(2): 198-216
    [158] Brinker C.J.; Clark D.E.; Ulrich D.R. Eds. Better Ceramics Through Chemistry II. Materials Research Society: Pittsburgh. PA, 1986, Vol.73
    [159] Brinker C.J.; Clark D.E.; Ulrich D.R. Eds. Better Ceramics Through Chemistry III. Materials Research Society: Pittsburgh. PA, 1988, Vol.121
    [160]林健,催化剂对正硅酸乙酯水解-聚合机理的影响[J].无机材料学报,1997,12(3):363-369
    [161]赵丽,纳米微米球形二氧化硅颗粒的制备与表征[D],武汉理工大学硕士学位论文,2003.5
    [162] DeKun Ma, Wu Zhang, Rui Zhang, et al, A facile hydrothermal synthesis route to single-crystalline lead iodide nanobelts and nanobelt bundles, Journal of Nanoscience and Nanotechnology[J]. 2005, 5(5):810-813
    [163]金长子,含钛多孔材料的合成、表征及催化性能研究[D],大连理工大学博士学位论文,2007年
    [164]杜丽,具有特殊形貌介孔材料的合成及其研究[D],华南理工大学博士学位论文,2009年
    [165] Pauly T. R., Pinnavaia T.J.,Pore size modification of mesoporous HMS molecular sieve silicas with wormhole framework structures[J]. Chemistry of Materials, 2001,13(3): 987-993
    [166]马克昌,冯坤,朱太咏,郭建刚.骨生理学[M].郑州:河南医科大学出版社.2000:310,303-318,138-139
    [167] Salinas A J, Martin A L, Vallet-Regi M, Bioactivity of three CaO-P2O5-SiO_2 sol-gel glasses[J]. J. Biomed. Mater. Res., 2002, 61(4):524-532.
    [168] Li N, Jie Q, Zhu S, et al, Preparation and characterization of macroporous sol-gel bioglass[J]. Ceramics International, 2005,31(5) 641-646
    [169] Pereira M M, Clark A E, Hench L L, Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro[J]. Journal of Biomedical Materials Research, 1994, 28(6): 693-698
    [170] Kokubo T, Ito S, Huang T, et al. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W[J]. J Biomed Mater Res, 1990, 24 (3): 331-343.
    [171] Peitl O, Zanotto E D, Hench L L. Highly bioactive P2O5–Na2O–CaO–SiO_2 glass-ceramics[J]. J Non-crystal Solids, 2001, 292 (1-3): 115-126.
    [172] K. Rezwan, Q.Z.Chen, J.J.Blaker, et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006,27(18):3413-3431
    [173] Sophie Verrier, Jonny J. Blaker, Veronique Maquet, et al.,PDLLA/Bioglass? composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment[J]. Biomaterials, 2004,25(15): 3013–3021
    [174]陈琳,廖立,康云清,等.卵磷脂改性型偏磷酸钙晶须研究[J].化工新型材料,2007,35(2):43-44,50
    [175]廖建国,王学江,左奕,等.硅烷偶联剂对纳米羟基磷灰石表面改性的研究[J].无机材料学报,2008,23(1):145-149
    [176]吴胜芳,顾小红,等.卵磷脂的功能特性及其应用[J].食品科技,2001,(4):36-38
    [177]李清春,张景强.卵磷脂的特性及其在食品中的应用[J].保鲜与加工,2001,(1):23-25
    [178]张梅梅,陈晓峰,王迎军,等.CaO-P2O5-SiO_2系统溶胶-凝胶生物活性多孔材料的降解特性及生物活性研究[J].玻璃与搪瓷,2003,V31(3):15-20
    [179]陈晓峰,王迎军,赵娜如,等.溶胶-凝胶生物玻璃多孔材料显微结构和生物活性的扫描电镜及红外光谱分析[J].电子显微学报,2003,22(4):304-310
    [180]任耀彬,郑裕东,王迎军,等.用于骨组织工程的羟基丁酸-戊酸共聚物/生物活性玻璃复合多孔支架材料[J].高分子材料科学与工程,2003,19(4):196-199
    [181]李玉莉,陈晓峰,王迎军,等.溶胶-凝胶生物活性玻璃纤维的制备及其体外矿化性能研究[J].无机材料学报. 2007, 22(4): 617-621.
    [182]张晓凯,刘玮,陈晓峰.溶胶-凝胶生物活性玻璃在SBF中反应的形貌特征[J].化学物理学报, 2004: 17(4): 495-498.
    [183]张光军,许建文,陈正跃.水飞蓟宾-卵磷脂复合物红外光谱和磷核磁共振波谱特征[J].中国新药杂志,2002,11(6):470-471
    [184]曾幸荣,吴振耀.高分子近代测试分析技术[M],第一版,广州:华南理工大学出版社,2007:73-75
    [185] Mario C,Dario V,Mariarosa M,et al. Preparation and evaluation of a melt pelletised paracetamol/stearic acid sustained release delivery system[J]. Journal of Controlled Release,2003, 88(3): 381-391
    [186] Arpornmaeklong P, Pripatnanont P, Suwatwirote N. Properties of chitosan–collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells[J]. International Journal of Oral and Maxillofacial Surgery, 2008,37(4):357-366
    [187] Jin H.H, Lee C.H, Lee W.K, et al. In-situ formation of the hydroxyapatite/chitosan- alginate composite scaffolds[J]. Materials Letters, 2008, 62(10-11): 1630-1633
    [188]毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社, 2004: 252-259, 297
    [189] Yuki Shirosaki, Tomoyuki Okayama, Kanji Tsuru, et al. Synthesis and cytocompatibility of porous chitosan–silicate hybrids for tissue engineering scaffold application[J]. Chemical Engineering Journal, 2008, 137(1): 122-128
    [190]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社, 2000: 203-208
    [191] Lijun K, Yuan G. A study on the bioactivity of chitosan/nano-hydroxyapatite compositescaffolds for bone tissue engineering[J]. European Polymer Journal, 2006, 42(12): 3171-3179
    [192]薛颜彬,吴波震,等.无机纳米填料改性聚丙烯的研究进展[J].塑料科技,2007,35(6):102-107
    [193]顾书英,任杰.聚合物基复合材料[M].第一版.北京:化学工业出版社,2007:156-170
    [194]毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社, 2004:252-259,297
    [195] HUTMACHER D W. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2000, 21(34):2529-2543
    [196]张利,李玉宝等,骨组织工程用纳米羟基磷灰石/壳聚糖多孔支架材料的制备及性能表征[J].功能材料. 2005,36(2):314-317
    [197] GHOSH S, REIS RL, MANO J F. Bio-inspired mineral growth on porous spherulitic textured poly(L-lactic acid)/Bioactive glass composite scaffolds[J]. Advanced Engineering Materials, 2008,10(8): 18- 22
    [198] JONES J R, EHRENFRIED L M, HENCH L L. Optimising bioactive glass scaffolds for bone tissue engineering [J]. Biomaterials, 27(2006):964-973
    [199] ZHANG K, MA Y, FRANCIS L F. Porous Polymer/bioactive glass composite for soft-to-hard tissue interface [J]. J Biomed Mater Res. 2002, 61: 551-563
    [200] PARK Y J, LEE Y M, PARK S N, et al. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration [J]. Biomaterials, 2000, 21(2):153-159
    [201] MADIHALLY S V, MATTHEW H W T. Porous chitosan scaffolds for tissue engineering[J]. Biomaterials, 20(1999):1133-1142
    [202]陈晓峰,王迎军,赵娜如等,溶胶-凝胶生物玻璃多孔材料显微结构和生物活性的扫描电镜及红外光谱分析[J].电子显微学报,2003,22(4):304-310
    [203]任耀彬,郑裕东,王迎军等,用于骨组织工程的羟基丁酸-戊酸共聚物/生物活性玻璃复合多孔支架材料[J].高分子材料科学与工程. 2003,19(4):196-199
    [204] Zhang Y.,Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering[J]. J Biomed Mater Res2001;55:304—312.
    [205] Zhang Y.,Zhang M. Calcitun phosphate-chitosan composite scaffolds for bone tissue engineering [J]. J Biomed Mater Res 2002;62:378—386.
    [206] Zhang Y.,Zhang M. Q. Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates [J]. J Noncrystalline Solids 2001;282(2-3):159-164.
    [207] Zhao F., Yin Y. J., Lu W. W., Leong J. C., Zhang W. J.,Zhang J. Y. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan -gelatin network composite scaffolds[J]. Biomaterials 2002;23(15):3227-3234
    [208]陈景帝,壳聚糖原位复合仿生型骨组织工程支架的制备及其性能研究[D],广州:华南理工大学博士学位论文, 2008.
    [209]吴美升,盖国胜,黄佳木,等.无机非金属矿物填料的研究进展[J].化工矿物与加工2003;4:1-5.
    [210]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002
    [211] Kokubo T, Ito S, Huang ET et al. Ca-P rich layer formed on high strength bioactive glass-ceramic A-W[J]. J Biomed Mater Res. 1990,24:331-337
    [212]赵莉,林开利,常江.生物活性陶瓷材料表面羟基磷灰石形成及其微观结构的研究[J].无机材料学报,2003,18(6):1280-1286
    [213] Han Y, Xu KW, Montay G, et al. Evaluation of nanostructured carbonated hydroxyapatite coatings formed by a hybrid process of plasma spraying and hydrothermal synthesis, Journal of Biomedical Materials Research, 2002, 60(4):511-516
    [214] Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods [J]. J Biomed Mater Res 2002;62:600-612.
    [215] Mcdowell H., Gregory T. M.,Brown W. E. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37℃[J]. J Res Natl Bur Stand, 1977; 81A: 273-281.
    [216] Peppas N. A.,Larger R. New challenges in biomaterials [J]. Science, 1994;263:1715 -1720.
    [217] Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry[J]. Nature, 1993;365:499-505.
    [218] Gower L. B.,Odom D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process [J]. J Crystal Growth, 2000, 210(4):719-734.
    [219] Lijima M.,Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix [J]. Biomaterials, 2005, 26:1595-1603.
    [220] Wen H. B.,Moradian-Oldak J. Modulation of apatite crystal growth on Bioglass by recombinant amelogenin [J]. Biomaterials, 1999, 20:1717-1725.
    [221] Rusu V. M., Ng C. H., Wilke M., Tiersch B., Fratzl P.,Peter M. G. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials[J]. Biomaterials, 2005, 26(26):5414-5426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700