纳米磷酸钙和生物玻璃对牙釉质的仿生修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物矿化的研究表明,纳米磷酸钙材料在生物体的硬组织形成过程中具有非常重要的作用。作为脊椎动物中最重要的两种矿化组织:骨骼和牙釉质,虽然它们的功能、性质、形成过程和分级结构都有所不同,但是它们的基本无机组成单元都是纳米级别的磷灰石。在生物矿物的形成过程中,纳米尺寸的无机基本单元在生物体的调控下,在有机基质形成的框架中经过有序组装,形成具有特殊功能的生物矿物。这些无机组成单元和有机大分子之间的相互作用是生物矿化研究中一个核心的问题。本论文研究了纳米磷酸钙在牙釉质修复中的作用。研究涉及了纳米磷酸钙颗粒对牙釉质的直接修复作用:利用生物矿化的原理,发展出一种简单有效地直接使牙釉质再生的方法;最后尝试利用应用广泛的生物材料一生物玻璃来实现牙釉质结构的再生。全文共分章:
     第一章简要介绍了生物矿化的基本知识,包括磷酸钙体系的生物体硬组织的结构和形成过程以及仿生矿化的概念。总结了牙釉质脱矿形成龋齿的过程和传统的牙修复材料,紧接着回顾了近年来关于牙釉质修复和重构的方法等。通过总结生物矿化的基本原理和牙釉质修复中存在的问题引出我们对这些问题的观点及相关的研究计划。
     第二章研究了具有与牙釉质基本组成单元相类似的纳米羟基磷灰石(HAP)对牙釉质的修复情况。相较于普通的磷灰石和无定形磷酸钙,20nm的HAP纳米颗粒可以牢固的吸附在脱矿的牙釉质表面,并且这些颗粒会沿着釉柱的方向排列。先前的研究已经发现牙釉质的基本组成单元是尺寸在20-40nm左右的纳米羟基磷灰石颗粒,并且这些颗粒在欠饱和或酸性溶液中能保持稳定存在,根据激光共聚焦显微镜的结果表明,20nm的HAP还可以保护牙釉质表面,阻止其在酸性溶液中的继续溶解。由此提出20nm HAP颗粒存修复牙釉质和预防龋齿的发生上有很好的效果。该工作说明了磷酸钙材料具有与生物体矿化组织基本组成单元相似的尺寸在其应用上的重要性。
     第三章的工作以第二章的结果为基础,利用生物矿化的基本原理,发展了一种简单有效的牙釉质结构重构的方法。我们之前的研究表明,纳米磷酸钙颗粒可以在氨基酸的调控下,自组装形成类牙或者类骨的结构。在这部分研究中,我们将吸附了20nm磷酸钙颗粒的牙釉质放入含有100mM谷氨酸的生物模拟体液中培养72个小时。实验结果表明,在纳米磷灰石颗粒和氨基酸的共同作用下,牙釉质表面可以形成一层具有良好机械性质的修复层,而且修复层具有与牙釉质类似的组装结构。在过去的工作中,人们尝试利用各种生物体蛋白质、表面活性剂或者氟离子对牙釉质进行再矿化,但是由这些添加剂参与的方法并不能提供着-种简单方便、安全、经济的修复方法。我们介绍到了一种新的仿生矿化方法,所需的材料具有非常高的生物亲和性,而且修复效果也非常明显。这一研究强调了在生物体硬组织形成过程中纳米材料和有机物调控共同作用的重要性。
     第四章中,我们发展了第三章中的修复方法,利用活性生物玻璃取代之前所用的纳米磷酸钙颗粒,进一步简化了修复方法,增加了其真正的应用前景和可能。由于我们之前所使用的纳米磷酸钙颗粒的制备具有一定的难度,限制了这种方法在实际应用中的发展。而活性生物玻璃较易制备,而且具有良好的生物相容性和矿化能力,所以,我们利用生物玻璃代替纳米磷酸钙颗粒,以模拟口腔唾液为培养液,在谷氨酸的调控作用下,在牙釉质表面生长出了具有类牙结构的修复层,并且修复以后的牙釉质具有与天然牙釉质相媲美的机械性质。此外,我们还发现,谷氨酸还可以通过加快无定形磷酸钙向羟基磷灰石相转化的结晶速率实现快速修复过程,这个特性是在口腔产品中广泛使用的氟离子不具备的。在这部分内容中,我们提出了一种具有应用前景的牙釉质修复和再生的方法,重点强调了仿生方法在硬组织修复和再生中的应用。
     第五章,总结了关于利用纳米磷酸钙和生物玻璃仿生修复牙釉质的创新点,还为今后的研究指出需要解决的关键问题。
The development of biomineralization and biomaterials has demonstrated that nano-sized calcium phosphate particles play an essential role in the formation of hard tissues in biomatiarials. There is a general agreement that the basic building blocks in both bone and enamel are nano-sized apatite particles, although their hierarchical structures and functions are different. These nano building blocks can self-assemble into calcified tissue under the control of an organic matrix during biomineralization process. In our previous work, we demonstrated the remarkable role of nano apatite in enamel repair. The research includes:enamel repair by using nano apatite particles with the similar size as natural enamel blocks; a simple and effective biomimetic way to regenerate enamel structure with nano apatite particles; constructing enamel-like apatite layer on enamel surface by using bioglass under near-physiological conditions. The thesis is composed of five chapters:
     In chapter1, we introduce the conception of biomineralization, the formation process and structure of the hard tissues formed by of calcium phosphate, the concept of biomimetic mineralization, the development of enamel demineralization and caries. Then we review the common restoration materials and the recent development of enamel regeneration or repair. The basic problems in enamel repair are summarized based on these above knowledge and the research concerning these problems is proposed at the end of this chapter briefly.
     In chapter2, we study the role of nano apatite (HAP) particles which have the similar size and morphology with the natural enamel building blocks in enamel repair. Different from the conventional HAP and amorphous calcium phosphate (ACP), the nano HAP particles can tightly absorb on enamel surface and tend to array along the direction of natural enamel rod structure. Our previous studies have already revealed that the natural enamel building blocks are20-40nm calcium phosphate particles. And these building blocks can resist dissolution in acidic conditions. The CLSM (confocal laser scanning microscopy) results indicate that the demineralization of enamel surface was inhibited with the prevention of these nano particles. Thus the caries or second cries can be prevented significantly by the restoration. The results suggest the importance of size effect of calcium phosphate materials for their application in biomedical engineering.
     In chapter3, we develop an effective and simple approach to enamel regeneration. In our previous work, we have revealed that the nano calcium phosphate particles can self-assemble into enamel-like and bone-like structure with the control of amino acids. In this study, we immerse the enamel surface pre-absorbed20nm calcium phosphate particles into SBF solutions (simulated body fluid) containing100mM glutamic acid for72h. The results show that a repaired layer with enamel-like structure is formed on enamel surface in the combined effects of nano particles and glutamic acid. Besides, the regenerated layer has comparable mechanical prooerties with natual enamals. In previous works, various addtives are used in enamel remineralization including proteins, polymers, surfactants and fluoride ions. However, they hardly provide a simple, safe and economic strategy to enamel regeneration. Herein we report that a bio-inspired cooperative effect of glutamic acid and nano HAP can result in the effective regeneration of enamel-like structure under physiological conditions. Importantly, the mechanical characteristics of the repaired enamel are similar as the natual enamal. The study emphasizes the importance of co-reactions between the nano basic building blocks and organic molecules in the calcifications process and the study of biomedical biomaterials.
     Based on these above achievements, a more simple and practical method to regenerate enamel is shown in chapter4. Althoughthe method by using nano HAP and glutamine together has remarkable effect in enamel repair, the complex synthesis and purification of20nm HAP particles limite on its further application. Thus, a althernative substance which can replace the role of HAP nanoparticles are in great demand. Bio-glass can be appropriate candidate due to its excellent bio-compatibility and mineralization ability. Herein, the similar HAP layer with enamellike structure is well regenerated on enamel surface with the presence of bioglass and glutamic in SOF (simulated oral fluid). Again, the repaired layer formed on enamel surface shares the similar mechanical properties with that of natural enamel. Besides, glutamic acid can also accelerate the crystallization process from amorphous calcium phosphate to HAP. The promotion effect of Glu in enamel repair could not be achieved with fluoride which is now wildly used in dental products. Our current achievment provides a practical application to repair enamel clinically and highlight the biomimetic strategy in the regeneration of hard tissues.
     In chapter5, we emphasize the biomimetic strategy for hard tissue repair or regeneration. Our attempts about the enamel reconstruction may contribute to the development of biomaterials for the hard tissues regeneration. Some important but unsolved issues are also suggested in this chapter.
引文
[1]Mann S. Biomineralization:principles and concepts in bioinorganic materials chemistry[M].5 ed. New York:Oxford University Press, USA,2001:103-106.
    [2]Weiner S, Dove P M. An overview of biomineralization processes and the problem of the vital effect[J]. Reviews in Mineralogy and Geochemistry.2003, 54(1):1.
    [3]Lichtenegger H C, Schoberl T, Bartl M H, et al. High abrasion resistance with sparse mineralization:copper biomineral in worm jaws[J]. Science.2002, 298(5592):389.
    [4]Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates[J]. Angewandte Chemie International Edition.2002,41(17): 3130-3146.
    [5]Legeros R Z. Calcium phosphates in oral biology and medicine[J]. Monographs in oral science.1991,15:1.
    [6]Legeros R Z. Formation and transformation of calcium phosphates:relevance to vascular calcification[J]. Zeitschrift fur Kardiologie.2001,90(15).
    [7]Hesse A, Heimbach D. Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification:a review[J]. World journal of urology. 1999,17(5):308-315.
    [8]Legeros R Z. Biological and synthetic apatites[J]. Hydroxyapatite and related materials, CRC Press, Boca Raton.1994,3.
    [9]Daculsi G, Bouler J M, Legeros R Z. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials[J]. International review of cytology.1997,172:129-191.
    [10]Mirtchi A A, Lemaitre J, Terao N. Calcium phosphate cements:study of the [beta]-tricalcium phosphate--monocalcium phosphate system[J]. Biomaterials. 1989,10(7):475-480.
    [11]Mirtchi A A, Lemaitre J, Hunting E. Calcium phosphate cements:action of setting regulators on the properties of the [beta]-tri calcium phosphate-monocalcium phosphate cements[J]. Biomaterials.1989,10(9): 634-638.
    [12]Bermudez O, Boltong M G, Driessens F, et al. Optimization of a calcium orthophosphate cement formulation occurring in the combination of monocalcium phosphate monohydrate with calcium oxide[J]. Journal of Materials Science:Materials in Medicine.1994,5(2):67-71.
    [13]Bermudez O, Boltong M G, Driessens F, et al. Development of some calcium phosphate cements from combinations of a-TCP, MCPM and CaO[J]. Journal of Materials Science:Materials in Medicine.1994,5(3):160-163.
    [14]Driessens F, Boltong M G, Bermudez O, et al. Effective formulations for the preparation of calcium phosphate bone cements[J]. Journal of Materials Science: materials in medicine.1994,5(3):164-170.
    [15]Windholz M, Budavari S, Blumetti R F, et al. The Merck Index-Encyclopedia of Chemicals, Drugs and Biologicals. Rahway, NJ:Merck and Co[J].1983.
    [16]Legeros R Z. Calcium phosphates in enamel, dentin and bone[J]. Calcium Phosphates in Oral Biology and Medicine. Basel, Karger.1991,15:108-129.
    [17]Legeros R Z. Formation and transformation of calcium phosphates:relevance to vascular calcification[J]. Zeitschrift fur Kardiologie.2001,90(15).
    [18]Legeros R Z. Calcium phosphates in oral biology and medicine.[J]. Monographs in oral science.1991.15:1-201.
    [19]Hamanishi C, Kitamoto K, Ohura K, et al. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement[J]. Journal of biomedical materials research.1996,32(3):383-389.
    [20]Kurashina K, Kurita H, Hirano M, et al. In vivo study of calcium phosphate cements:implantation of an a-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste[J]. Biomaterials.1997, 18(7):539-543.
    [21]Driessens F C M, Planell J A, Boltong M G, et al. Osteotransductive bone cements[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.1998,212(6):427-435.
    [22]Takagi S, Chow L C, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements[J]. Biomaterials.1998,19(17):1593-1599.
    [23]Yamamoto H, Niwa S, Hori M, et al. Mechanical strength of calcium phosphate cement in vivo and in vitro[J]. Biomaterials.1998,19(17):1587-1591.
    [24]Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug-delivery system using self-setting calcium phosphate cement.3. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin[J]. Journal of pharmaceutical sciences.1994,83(2):255-258.
    [25]Becker P. Phosphates and phosphoric acid[M]. Dekker New York, NY,1989.
    [26]Schroeder H E. Formation and inhibition of dental calculus.[J]. Journal of periodontology.1969,40(11):643.
    [27]Chow L C, Eanes E D. Octacalcium phosphate[M].18 ed. S Karger Ag,2001.
    [28]Le Geros R Z. Variations in the crystalline components of human dental calculus: Ⅰ. Crystallographic and spectroscopic methods of analysis[J]. Journal of Dental Research.1974,53(1):45-50.
    [29]Tomazic B B, Brown W E, Schoen F J. Physicochemical properties of calcific deposits isolated from porcine bioprosthetic heart valves removed from patients following 2-13 years function[J]. Journal of biomedical materials research.1994, 28(1):35-47.
    [30]Nancollas G H, Wu W. Biomineralization mechanisms:a kinetics and interfacial energy approach[J]. Journal of Crystal Growth.2000,211(1-4):137-142.
    [31]Termine J D, Eanes E D. Comparative chemistry of amorphous and apatitic calcium phosphate preparations[J]. Calcified Tissue International.1972,10(1): 171-197.
    [32]Eanes E D, Termine J D, Nylen M U. An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite[J]. Calcified Tissue International.1973,12(1):143-158.
    [33]Meyer J L, Eanes E D. A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation[J]. Calcified Tissue International. 1978,25(1):59-68.
    [34]Meyer J L, Eanes E D. A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate[J]. Calcified Tissue International.1978,25(1):209-216.
    [35]Wuthier R E, Rice G S, Wallace J E B, et al. In vitro precipitation of calcium phosphate under intracellular conditions:formation of brushite from an amorphous precursor in the absence of ATP[J]. Calcified tissue international. 1985,37(4):401-410.
    [36]Harries J E, Hukins D W L. Analysis of the EXAFS spectrum of hydroxyapatite[J]. Journal of Physics C:Solid State Physics.1986,19: 6859-6872.
    [37]Harries J E, Hukins D, Holt C, et al. Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy[J]. Journal of crystal growth.1987,84(4):563-570.
    [38]Taylor M G, Simkiss K, Simmons J, et al. Structural studies of a phosphatidyl serine-amorphous calcium phosphate complex[J]. Cellular and molecular life sciences.1998,54(2):196-202.
    [39]Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis[J]. Thermochimica Acta.2000,361(1-2):131-138.
    [40]Elliott J C. Structure and chemistry of the apatites and other calcium orthophosphates[M]. Elsevier,1994.
    [41]Bres E, Hardouin P. Les materiaux en phosphate de calcium[J]. Aspects fondamentaux/calcium phosphate materials. Fundamentals. Sauramps Medical, Montpellier.1998,176.
    [42]Skrtic D, Hailer A W, Takagi S, et al. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel[J]. Journal of dental research.1996,75(9):1679-1686.
    [43]Skrtic D, Antonucci J M, Eanes E D. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites[J]. Dental Materials.1996, 12(5-6):295-301.
    [44]Park M S, Eanes E D, Antonucci J M, et al. Mechanical properties of bioactive amorphous calcium phosphate/methacrylate composites[J]. Dental Materials. 1998,14(2):137-141.
    [45]Skrtic D, Antonucci J M, Eanes E D, et al. Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates[J]. Journal of biomedical materials research.2000,53(4):381-391.
    [46]Schiller C, Siedler M, Peters F, et al. Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement[J]. Ceramic Transactions(USA).2001,114:97-108.
    [47]Linhart W, Peters F, Lehmann W, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials[J]. Journal of biomedical materials research.2001,54(2):162-171.
    [48]Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatites[J]. Biomaterials.2002,23(12):2553-2559.
    [49]Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone[J]. Biomaterials.2004,25(6):987-994.
    [50]Elliott J C. Recent studies of apatites and other calcium orthophosphates[J]. Les materiaux en phosphate de calcium, Aspects fondamentaux.1998,25:25-66.
    [51]Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J]. Journal of Materials Research.1998,13(01):94-117.
    [52]Hench L L. Bioceramics[J]. Journal of the American Ceramic Society.1998, 81(7):1705-1728.
    [53]Fountoulakis M, Takacs M F, Berndt P, et al. Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatography[J]. Electrophoresis.1999,20(11):2181-2195.
    [54]Mirshahi M M, Camoin L, Nicolas C, et al. Copurification of selected glycolytic enzymes with retinal S-antigen (arrestin) by hydroxyapatite agarose chromatography of bovine retina[J]. Current eye research.1999,18(5):327-334.
    [55]Freitag R, Vogt S, Modler M. Thermoreactive displacers for anion exchange and hydroxyapatite displacement chromatography[J]. Biotechnology progress.1999, 15(3):573-576.
    [56]Wissing J, Heim S, Flohe L, et al. Enrichment of hydrophobic proteins via Triton X-114 phase partitioning and hydroxyapatite column chromatography for mass spectrometry[J]. Electrophoresis.2000,21(13):2589-2593.
    [57]Shepard S R, Brickm an-Stone C, Schrimsher J L, et al. Discoloration of ceramic hydroxyapatite used for protein chromatography[J]. Journal of Chromatography A.2000,891(1):93-98.
    [58]Yin G, Liu Z, Zhou R, et al. Mass transport characteristics and chromatographic behavior of preparative electrochromatography on hydroxyapatite[J]. Journal of Chromatography A.2001,918(2):393-399.
    [59]戴永定.生物矿物学[M].北京:石油工业出版社,1994.
    [60]Lowenstam H A, Weiner S. On biomineralization[M]. Oxford University Press, USA,1989.
    [61]Simkiss K, Wilbur K M. Biomineralization:cell biology and mineral deposition[M].275 ed. Academic Press San Diego,1989.
    [62]Addadi L, Weiner S. Control and design principles in biological mineralization[J]. Angewandte Chemie International Edition in English.1992, 31(2):153-169.
    [63]Addadi L, Weiner S. Kontroll-und Designprinzipien bei der Biomineralisation[J]. Angewandte Chemie.1992,104(2):159-176.
    [64]Mann S. Biomineralization and biomimetic materials chemistry[J]. J. Mater. Chem.1995,5(7):935-946.
    [65]Ozin G A. Morphogenesis of biomineral and morphosynthesis of biomimetic forms[J]. Accounts of Chemical Research.1997,30(1):17-27.
    [66]Bauerlein E, Baeuerlein E. Biomineralization:from biology to biotechnology and medical application[J].2000.
    [67]Mann S. The chemistry of form[J]. Angewandte Chemie International Edition. 2000,39(19):3392-3406.
    [68]Mann S. Biomimetic materials chemistry[M]. Wiley-VCH,1995.
    [69]Davis S A, Breulmann M, Rhodes K H, et al. Template-directed assembly using nanoparticle building blocks:A nanotectonic approach to organized materials[J]. Chemistry of materials.2001,13(10):3218-3226.
    [70]崔福斋.生物矿化[M].清华大学出版社,2007.
    [71]Estroff L A. Introduction:biomineralization[J]. Chemical Reviews.2008, 108(11):4329-4331.
    [72]Jodaikin A, Weiner S, Talmon Y, et al. Mineral-organic-matrix relations in tooth enamel[J]. International Journal of Biological Macromolecules.1988,10(6): 349-352.
    [73]Fincham A G, Moradian-Oldak J, Diekwisch T, et al. Evidence for amelogenin" nanospheres" as functional components of secretory-stage enamel matrix[J]. Journal of structural biology.1995,115(1):50-59.
    [74]Weiner S, Wagner H D. The material bone:structure-mechanical function relations[J]. Annual Review of Materials Science.1998,28(1):271-298.
    [75]Limeback H. Molecular mechanisms in dental hard tissue mineralization.[J]. Current opinion in dentistry.1991,1(6):826-835.
    [76]Colfen H, Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures[J]. Angewandte Chemie International Edition.2003,42(21):2350-2365.
    [77]Betts F, Posner A S. A structural model for amorphous calcium phosphate[J]. Trans Am Cryst Assoc.1974,10:73-84.
    [78]Posner A S, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure[J]. Accounts of Chemical Research.1975,8(8):273-281.
    [79]Gebauer D, Volkel A, Colfen H. Stable prenucleation calcium carbonate clusters[J]. Science.2008,322(5909):1819.
    [80]Pouget E M, Bomans P H H, Goos J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science.2009, 323(5920):1455.
    [81]Omori M. The mechanisms of biomineralization in animals and plants[M]. Tokai University Press,1980.
    [82]Aizenberg J, Addadi L, Weiner S, et al. Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates[J]. Advanced Materials.1996,8(3):222-226.
    [83]Aizenberg J, Lambert G, Weiner S, et al. Factors involved in the formation of amorphous and crystalline calcium carbonate:a study of an ascidian skeleton[J]. Journal of the American Chemical Society.2002,124(1):32-39.
    [84]Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibrium structure of their surfaces[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.1951:299-358.
    [85]Constantz B R. Coral skeleton construction; a physiochemically dominated process[J]. Palaios.1986,1(2):152.
    [86]Veis A. Mineralization in organic matrix frameworks[J]. Reviews in mineralogy and geochemistry.2003,54(1):249.
    [87]Rucker J B, Carver R E. A survey of the carbonate mineralogy of cheilostome Bryozoa[J]. Journal of Paleontology.1969:791-799.
    [88]Weiss I M, Tuross N, Addadi L, et al. Mollusc larval shell formation:amorphous calcium carbonate is a precursor phase for aragonite[J]. Journal of Experimental Zoology.2002,293(5):478-491.
    [89]Weiner S. Aspartic acid-rich proteins:major components of the soluble organic matrix of mollusk shells[J]. Calcified tissue international.1979,29(1):163-167.
    [90]Swift D M, Wheeler A P. Evidence of an organic matrix from diatom biosilical[J]. Journal of phycology.1992,28(2):202-209.
    [91]Weiner S, Talmon Y, Traub W. Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase[J]. International Journal of Biological Macromolecules.1983,5(6):325-328.
    [92]Estroff L A. Introduction:biomineralization[J]. Chemical Reviews.2008, 108(11):4329-4331.
    [93]Kirkham J, Zhang J, Brookes S J, et al. Evidence for charge domains on developing enamel crystal surfaces[J]. Journal of dental research.2000,79(12): 1943-1947.
    [94]Adair J H, Suvaci E. Morphological control of particles[J]. Current opinion in colloid & interface science.2000,5(1-2):160-167.
    [95]Zhang Y, Lu J. A Mild and Efficient Biomimetic Synthesis of Rodlike Hydroxyapatite Particles with a High Aspect Ratio Using Polyvinylpyrrolidone As Capping Agent[J]. Crystal Growth & Design.2008,8(7):2101-2107.
    [96]Li L, Yang G. Synthesis and properties of hydroxyapatite nanorod-reinforced polyamide 6 nanocomposites[J]. Polymer International.2009,58(4):380-387.
    [97]Zhang J, Jiang D, Zhang J, et al. Synthesis of Dental Enamel-like Hydroxyapaptite through Solution Mediated Solid-State Conversion[J]. Langmuir.2010,26(5):2989-2994.
    [98]Furuzono T, Taguchi T, Kishida A, et al. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process[J]. Journal of biomedical materials research.2000,50(3):344-352.
    [99]Wang L, Nemoto R, Senna M. Micro structure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route[J]. Journal of Nanoparticle Research.2002,4(6): 535-540.
    [100]Ito M., Hidaka Y., Nakajima M. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan and hydroxyapatite composite membrane[J]. Journal of biomedical materials research.1999,45(3): 204-208.
    [101]Yamaguchi I, Tokuchi K, Fukuzaki H, et al. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites[J]. Journal of biomedical materials research.2001,55(1):20-27.
    [102]Rhee S H, Tanaka J. Synthesis of a hydroxyapatite/collagen/chondroitin sulfate nanocomposite by a novel precipitation method[J]. Journal of the American Ceramic Society.2001,84(2):459-461.
    [103]Rhee S H, Tanaka J. Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate[J]. Journal of Materials Science:Materials in Medicine. 2002.13(6):597-600.
    [104]Strong L, Whitesides G M. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals:electron diffraction studies[J]. Langmuir.1988,4(3):546-558.
    [105]Bain C D, Whitesides G M. Molecular-level control over surface order in self-assembled monolayer films of thiols on gold[J]. Science.1988,240(4848): 62-63.
    [106]Schwartz D K, Steinberg S, Israelachvili J, et al. Growth of a self-assembled monolayer by fractal aggregation[J]. Physical review letters.1992,69(23): 3354-3357.
    [107]Motte L, Billoudet F, Pileni M P. Self-assembled monolayer of nanosized particles differing by their sizes[J]. The Journal of Physical Chemistry.1995, 99(44):16425-16429.
    [108]Hong Li W H Y Z. Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers[J]. Materials Science and Engineering C.2007,27: 756-761.
    [109]Wang L, Guan X, Yin H. et al. Mimicking the self-organized microstructure of tooth enamel[J]. The Journal of Physical Chemistry C.2008,112(15): 5892-5899.
    [110]Moradian-Oldak J, Paine M L. Biomineralization. From Nature to Application[J]. Metal Ions in Life Sciences Series.2008,4:507-546.
    [111]Veis A. A window on biomineralization[J]. Science.2005,307(5714): 1419-1420.
    [112]A. G. Fincham J M A J. The Structural Biology of the Developing Dental Enamel Matrix[J]. Journal of Structural Biology.1999,126:270-299.
    [113]Eastoe J E. The chemeical composition of bond and tooth[J]. Advances in fluorine research and dental caries prevention.1965,21:5-17.
    [114]Moradian-Oldak J, Simmer J P, Lau E C, et al. Detection of monodisperse aggregates of a recombinant amelogenin by dynamic light scattering[J]. Biopolymers.1994,34(10):1339-1347.
    [115]Fincham A G, Moradian-Oldak J, Simmer J P, et al. Self-assembly of a recombinant amelogenin protein generates supramolecular structures [J]. Journal of structural biology.1994,112(2):103-109.
    [116]Margolis H C, Beniash E, Fowler C E. Role of macromolecular assembly of enamel matrix proteins in enamel formation[J]. Journal of dental research.2006, 85(9):775-793.
    [117]Moradian-Oldak J, Du C, Falini G. On the formation of amelogenin microribbons[J]. European Journal of Oral Sciences.2006,114:289-296.
    [118]Robinson C, Fuchs P, Weatherell J A. The appearance of developing rat incisor enamel using a freeze fracturing technique[J]. Journal of Crystal Growth.1981, 53(1):160-165.
    [119]Wang L, Guan X. Du C, et al. Amelogenin promotes the formation of elongated apatite micro structures in a controlled crystallization system[J]. The Journal of Physical Chemistry C.2007,111(17):6398-6404.
    [120]Tarasevich B J, Howard C J, Larson J L, et al. The nucleation and growth of calcium phosphate by amelogenin[J]. Journal of crystal growth.2007,304(2): 407-415.
    [121]Yang X, Wang L, Qin Y, et al. How amelogenin orchestrates the organization of hierarchical elongated microstructures of apatite[J]. The Journal of Physical Chemistry B.2010,114(6):2293-2300.
    [122]Beniash E, Simmer J P, Margolis H C. The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro[J]. Journal of structural biology.2005,149(2):182-190.
    [123]Fincham A G, Moradian-Oldak J, Simmer J P. The structural biology of the developing dental enamel matrix[J]. Journal of structural biology.1999,126(3): 270-299.
    [124]Inage T, Shimokawa H, Teranishi Y, et al. Immunocytochemical demonstration of amelogenins and enamelins secreted by ameloblasts during the secretory and maturation stages.[J]. Archives of histology and cytology.1989,52(3):213-229.
    [125]Hu C C, Fukae M, Uchida T, et al. Sheathlin:cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins[J]. Journal of dental research.1997,76(2):648-657.
    [126]Diekwisch T G, Berman B J, Gentner S, et al. Initial enamel crystals are not spatially associated with mineralized dentine.[J]. Cell and tissue research.1995, 279(1):149-167.
    [127]Landis W J, Burke G Y, Neuringer J R, et al. Earliest enamel deposits of the rat incisor examined by electron microscopy, electron diffraction, and electron probe microanalysis[J]. The Anatomical record.1988,220(3):233-238.
    [128]Aoba T, Moreno E C. Changes in the nature and composition of enamel mineral during procine amelogenesis[J]. Calcified tissue international.1990,47(6): 356-364.
    [129]Rey C, Shimizu M, Collins B, et al. Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age:2. Investigations in the v3 PO4 domain[J]. Calcified tissue international.1991,49(6):383-388.
    [130]Bodier-Houlle P, Steuer P, Meyer J M, et al. High-resolution electron-microscopic study of the relationship between human enamel and dentin crystals at the dentinoenamel junction[J]. Cell and Tissue Research.2000, 301(3):389-395.
    [131]Diekwisch T G H. Subunit compartments of secretory stage enamel matrix[J]. Connective tissue research.1998,38(1-4):101-111.
    [132]Cuisinier F, Steuer P, Senger B, et al. Human amelogenesis I:High resolution electron microscopy study of ribbon-like crystals[J]. Calcified tissue international.1992,51(4):259-268.
    [133]Cuisinier F, Steuer P, Senger B, et al. Human amelogenesis:high resolution electron microscopy of nanometer-sized particles[J]. Cell and tissue research. 1993,273(1):175-182.
    [134]He L H, Swain M V. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics[J]. Journal of the Mechanical Behavior of Biomedical Materials.2008,1(1):18-29.
    [135]Cuy J L. Mann A B, Livi K J, et al. Nanoindentation mapping of the mechanical properties of human molar tooth enamel[J]. Archives of Oral Biology.2002, 47(4):281-291.
    [136]Habelitz S, Marshall S J, Marshall G W, et al. Mechanical properties of human dental enamel on the nanometre scale[J]. Archives of Oral Biology.2001,46(2): 173-183.
    [137]Ge J, Cui F Z, Wang X M, et al. Property variations in the prism and the organic sheath within enamel by nanoindentation[J]. Biomaterials.2005,26(16): 3333-3339.
    [138]葛俊,崔福斋,吉宁.纳米硬度仪测量人类牙釉质的纳米力学性能分布[J].牙体牙髓牙周病学杂志.2006,15(10):537-541.
    [139]傅华,叶葶葶.临床预防医学[M].上海:上海医科大学出版社,1999.
    [140]Bowen W H, Tabak L A. Cariology for the Nineties[M]. University of Rochester Press,1993.
    [141]Costerton J W, Geesey G G, Cheng K J. How bacteria stick. [J]. Scientific American.1978,238(1):86.
    [142]Murga R, Stewart P S, Daly D. Quantitative analysis of biofilm thickness variability[J]. Biotechnology and bioengineering.1995,45(6):503-510.
    [143]Peyton B M. Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density[J]. Water Research.1996,30(1): 29-36.
    [144]Sollbohmer O, May K P, Anders M. Force microscopical investigation of human teeth in liquids[J]. Thin Solid Films.1995,264(2):176-183.
    [145]Jones F H. Teeth and bones:applications of surface science to dental materials and related biomaterials[J]. Surface Science Reports.2001,42(3):75-205.
    [146]Kandori K, Shimizu T, Yasukawa A, et al. Adsorption of bovine serum albumin onto synthetic calcium hydroxyapatite:influence of particle texture[J]. Colloids and Surfaces B:Biointerfaces.1995,5(1-2):81-87.
    [147]Bennani-Ziatni M, Lebugle A, Taitai A, et al. Adsorption of glycine from a water-ethanol medium, onto precipitated calcium phosphates[C].1997.
    [148]Characklis W G, Marshall K C. Biofilms[J].1990.
    [149]Rateitschak K H, Rateitschak E M, Wolf H F, et al. Periodontology[M]. Thieme, 1989.
    [150]Tanzer J M. Dental caries is a transmissible infectious disease:the Keyes and Fitzgerald revolution[J]. Journal of Dental Research.1995,74(9):1536-1542.
    [151]Wang L, Tang R, Bonstein T. A new model for nanoscale enamel dissolution[J]. The Journal of Physical Chemistry B.2005,109(2):999-1005.
    [152]Farina M, Schemmel A, Weissmuller G, et al. Atomic force microscopy study of tooth surfaces[J]. Journal of structural biology.1999,125(1):39-49.
    [153]Yamagishi K, Onuma K, Suzuki T, et al. Materials chemistry:a synthetic enamel for rapid tooth repair[J]. Nature.2005,433(7028):819.
    [154]American D A. Dental Amalgam:update on safety concerns. ADA Council on Scientific Affairs[J]. Journal of the American Dental Association.1998,129: 494-503.
    [155]Jagur-Grodzinski J. Biomedical application of functional polymers[J]. Reactive and Functional Polymers.1999,39(2):99-138.
    [156]Nicholson J W. Adhesive dental materials and their durability[J]. International journal of adhesion and adhesives.2000,20(1):11-16.
    [157]Combe E C, Burke F J T, Douglas W H. Dental biomaterials[M]. Kluwer Academic Publishers,1999.
    [158]Phillips R W, Anusavice K J. Phillips' science of dental materials[M]. Saunders/Elsevier,1996.
    [159]Galler K M, D'Souza R N, Hartgerink J D. Biomaterials and their potential applications for dental tissue engineering[J]. J. Mater. Chem.2010,20(40): 8730-8746.
    [160]Haifeng Chen Brian H. Clarkson A. HAP Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure[J]. Journal of Colloid and Interface Science.2005,288:97-103.
    [161]Chen H, Tang Z, Liu J, et al. Acellular Synthesis of a Human Enamel-like Microstructure[J]. Advanced Materials.2006,18(14):1846-1851.
    [162]Zhang J, Jiang D, Zhang J. Synthesis of Dental Enamel-like Hydroxyapaptite through Solution Mediated Solid-State Conversion[J]. Langmuir.2010,26: 2989-2994.
    [163]Iijima M, Moradian-Oldak J. Control of octacalcium phosphate and apatite crystal growth by amelogenin matrices[J]. J. Mater. Chem.2004,14(14): 2189-2199.
    [164]Iijima M, Fan D, Bromley K M, et al. Tooth Enamel Proteins Enamelin and Amelogenin Cooperate To Regulate the Growth Morphology of Octacalcium Phosphate Crystals[J]. Crystal growth & design.2010:4815-4822.
    [165]Li L, Yang G. Synthesis and properties of hydroxyapatite nanorod-reinforced polyamide 6 nanocomposites[J]. Polymer International.2009,58(4):380-387.
    [166]Furuichi K, Oaki Y, Imai H. Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin[J]. Chemistry of materials.2006,18(1):229-234.
    [167]Zhang Y, Lu J. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent[J]. Crystal Growth and Design.2008,8(7):2101-2107.
    [168]Hayakawa S, Li Y, Tsuru K, et al. Preparation of nanometer-scale rod array of hydroxyapatite crystal [J]. Acta Biomaterialia.2009,5(6):2152-2160.
    [169]Tao J, Pan H, Zeng Y, et al. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles[J]. The Journal of Physical Chemistry B.2007,111(47):13410-13418.
    [170]Yin Y, Yun S, Fang J, et al. Chemical regeneration of human tooth enamel under near-physiological conditions [J]. Chemical Communications.2009(39): 5892-5894.
    [171]Busch S. Regeneration of human tooth enamel[J]. Angewandte Chemie International Edition.2004,43(11):1428-1431.
    [172]Yuwei Fan Z S J M. Controlled remineralization of enamel in the presence of amelogenin and fluoride[J]. Biomaterials.2009(30):478-483.
    [173]Lei C, Liao Y, Feng Z. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition[J]. Biomedical Materials.2009,4(3): 35010.
    [174]Fan Y, Sun Z, Wang R, et al. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly[J]. Biomaterials.2007,28(19): 3034-3042.
    [175]Yatsenko E A, Selivanov V N, Shchepeleeva M S. Efficiency of depositing glass enamels by electrophoresis[J]. Glass and Ceramics.2004,61(9):352-354.
    [1]Selwitz. R. H, Ismail A. I and Pitts N. B, Dental caries, Lance,2007,369(9555), 51-59.
    [2]Yamagishi. K, Onuma. Suzuki. K, T, Okada. F, Tagami. J, Otsuki. M and Senawangse. P, Materials chemistry:a synthetic enamel for rapid tooth repair, Nature, 2005,433(7028),819.
    [3]Dorozhkin. S. V and Epple. M, Biological and medical significance of calcium phosphates, Angew.Chem. Int. Ed,2002,41(17),313-3146.
    [4]Fincham. A. G, Moradian-Oldak. J and Simmer. J. P, The Structural Biology of the Developing Dental Enamel Matrix, J. Struct. Biol,1999,126(3),270-299.
    [5]Moradian-Oldak. J, Amelogenins:assembly, processing and control of crystal morphology, Matrix Biol,2001,20(5-6),293-305.
    [6]Fincham. A. G and Moradian-Oldak. J, Recent Advances in Amelogenin Biochemistry Connect. Tissue Res,1995,32(1-4),119-124.
    [7]Cerny. R, Slaby. I, Hammarstrom. L and Wurtz. T, A novel gene expressed in rat ameloblasts codes for proteins with cell binding domains, J. Bone Miner. Res,1996, 11(7),883-891.
    [8]Bonar. L. C, Shimizu. M, Roberts. J. E, Griffin. R. G and Glimcher. M. J, Structural and composition studies on the mineral of newly formed dental enamel:A chemical, X-ray diffraction, and 31p and proton nuclear magnetic resonance study, J. Bone Miner. Res,1991,6(11),1167-1176.
    [9]Robinson. C, Kirkham. J, Stonehouse. N. J and Shore. R. C, Control of Crystal Growth During Enamel Maturation, Connect. Tissue. Res,1989,22(1-4),139-145.
    [10]Smith. C. E, Pompura J. R, Borenstein.S, Fazel. A and Nanci. A Degradation and loss of matrix proteins from developing enamel, Anat. Rec,1989,224(2), 292-316.
    [11]Busch S, Regeneration of Human Tooth Enamel, Angew. Chem, Int. Ed,2004, 43(11),1428-1431.
    [12]Raskin. A, Michotte-Theall. B, Vreven, J and Wilson N. H. F, Clinical evaluation of a posterior composite 10-year report, J. Dent,1999,27(1),13-19.
    [13]Wilson. N. H. F and Mjor. I. A, The teaching of Class I and Class II direct composite restorations in European dental schools, J. Dent,2000,28(1),15-21.
    [14]Hilton. T. J, Can modern restorative procedures and materials reliably seal cavities? In vitro investigations. Part 1, Am. J. Dent.,2002,15(3),198-210.
    [15]Onuma. K, Yamagishi. K and Oyane. A, Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions, A, J. Cryst. Growth,2005,282(1-2),199-207.
    [16]Narasaraju. T. S. B and Phebe. D. E, Some physico-chemical aspects of hydroxylapatite, J. Mater. Sci,1996,31(1),1-21.
    [17]Hench. L. L, Bioceramics:From Concept to Clinic, J. Am. Ceram. Soc,1991, 74(7),1487-1510.
    [18]Ogiso. M, Tabata. T, Ichijo. T and Borgese. D, Bone calcification on the hydroxyapatite dental implant and the bone-hydroxyapatite interface, J. Long-Term Effects Med. Impl,1992,3,137.
    [19]Leeuw. N. H. de, Resisting the Onset of Hydroxyapatite Dissolution through the Incorporation of Fluoride, J. Phys. Chem. B,2004,108(6),1809-1811.
    [20]Suchanek. W and Yoshimura. M, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res,1998,13,94-117.
    [21]Whitters. C. J, Strang. R, Brown. D, Clarke. R. L, Curtis. R. V, Hatton.P. V, Ireland. A. J, Lloyd. C. H, McCabe. J. F, Nicholson J. W, Scrimgeour. S. N, Setcos. J. C, Sherriff. M, Noort. R. van, Watts. D. C and Wood.D, Dental materials:1997 literature review, J. Dent.,1999,27(6),401-435.
    [22]Chen. H. F, Clarkson. B. H, Sun.K and Mansfield. J. F, Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure, J. Colloid Interface Sci.,2005,288(1),97-103.
    [23]Robinson. C, Connell. S, Kirkham. J, Shorea. R and Smith. A, Dental enamel-a biological ceramic:regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy, J. Mater. Chem.,2004,14(14),2242-2248.
    [24]Tang. R. K, Wang. L. J, Orme. C. A, Bonstein. T, Bush. P. J and Nancollas. G. H, Dissolution at the Nanoscale:Self-Preservation of Biominerals, Angew. Chem., Int. Ed,2004,43(20),2697-2275.
    [25]Acil. Y, Mobasseri. A. E, Warnke. P. H, Terheyden. H, Wiltfang, J and Springer.I, Detection of Mature Collagen in Human Dental Enamel, Calcif. Tissue. Int.,2005,76(2),121-126.
    [26]Wallwork. M. L, Kirkham. J, Zhang. J, Smith. D. A, Brookes. S. J, Shore. R. C, Wood. S. R, Ryu. O and Robinson. C, Binding of Matrix Proteins to Developing Enamel Crystals:An Atomic Force Microscopy Study, Langmuir,2001(8),17, 2508-2513.
    [27]Kim. J. W, Kim. L. U and Kim. C. K, Size Control of Silica Nanoparticles and Their Surface Treatment for Fabrication of Dental Nanocomposites, Biomacromolecules,2007,8(1),215-222.
    [28]Ahn. E. S, Gleason. N. J, Nakahira. A and Ying. J. Y, Nanostructure Processing of Hydroxyapatite-based Bioceramics, Nano Lett.,2001,1(3),149-153.
    [29]Cai. Y, Liu. Y, Yan. W, Hu. Q, Tao. J, Zhang. M, Shi. Z and Tang. R, Role of hydroxyapatite nanoparticle size in bone cell proliferation, J. Mater. Chem,2007,17, 3780-3787.
    [30]Tao. J, Pan. H, Zeng. Y, Xu. X and Tang. R, Roles of Amorphous Calcium Phosphate and Biological Additives in the Assembly of Hydroxyapatite Nanoparticles, J. Phys. Chem. B,2007,111(47),13410-13418.
    [31]Mohan. M. S and Nancollas. G. H, The growth of hydroxyapatite crystals, Arch. Oral Biol,1970,15(8),731-745.
    [32]Oliver. W. C and Pharr. G. M, A improve technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res.,1992,7(6),1564-1583.
    [33]Wang. L. J, Tang. R. K, Bonstein. T, Orme. C. A, Bush. P. J and Nancollas. G. H, A New Model for Nanoscale Enamel Dissolution, J. Phys. Chem. B,2005,109(2), 999-1005.
    [34]Shen. P, Cai. P, Nowicki. A, Vincent. J, Reynolds. E. C, Remineralization of Enamel Subsurface Lesions by Sugar-free Chewing Gum Containing Casein Phosphopeptide-Amorphous Calcium Phosphate, J. Dent. Res,2001,80(12), 2066-2070.
    [35]Reynolds. E. C, Remineralization of Enamel Subsurface Lesions by Casein Phosphopeptide-stabilized Calcium Phosphate Solutions, J. Dent. Res,1997,76(5), 1587-1595.
    [36]Skrtic. D, Hailer. A. W, Takagi. S, Antonucci. J. M and Eanes. E. D, Quantitative Assessment of the Efficacy of Amorphous Calcium Phosphate/Methacrylate Composites in Remineralizing Caries-like Lesions Artificially Produced in Bovine Enamel, J. Dent. Res.,1996,75(9),1679-1686.
    [37]Habelitz. S, Marshall. S. J, Marshall Jr. G. W, and Balooch. M, Mechanical properties of human dental enamel on the nanometre scale, Arch. Oral Biol,2001(2), 46,173-183.
    [38]Lane. J. M, Betts F, Posner A. S and Yue D. W, J. Bone Jt. Surg. Am. Vol, 1984,66(8),1289-1293.
    [39]Bodier-Houlle.P, Steuer. P, Meyer. J. M, Bigeard. L and Cuisinier. F. J. G, High-resolution electron-microscopic study of the relationship between human enamel and dentin crystals at the dentinoenamel junction, Cell Tissue Res,2000,301(3), 389-395.
    [40]Skrtic. D, Antonucci. J. M, Eanes. E. D, Eichmiller. F. C and Schumacher. G. E, Physicochemical Evaluation of Bioactive Polymeric Composites Based on Hybrid Amorphous Calcium Phosphates, J. Biomed. Mater. Res,2000,53,381-391.
    [41]Skrtic. D, Antonucci. J. M, Eanes. E. D and Brunworth. R. T, Silica- and zirconia-hybridized amorphous calcium phosphate:Effect on transformation to hydroxyapatite, J. Biomed. Mater. Res,2002,59(4),597-604.
    [42]Skrtic. D, Antonucci. J. M and Eanes. E. D, Amorphous Calcium Phosphate-Based Bioactive Polymeric Composites for Mineralized Tissue Regeneration, J. Res. Natl. Stand. Technol,2003,108(3),167-182.
    [43]Boskey. A. L and Posner. A. S, Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion, J. Phys. Chem,1973,77(19),2313-2317.
    [44]Jones. F. H, Teeth and bones:applications of surface science to dental materials and related biomaterials, Surf. Sci. Rep,2001,42(3-5),75-205.
    [45]Davies. J. E, Bone bonding at natural and biomaterial surfaces, Biomaterials, 2007.28(34),5058-5067.
    [46]Balasundaram. G, Sato. M and Webster. T. J, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials,2006,27(14),2798-2805.
    [47]Hu. Q, Tan. Z, Liu. Y, Tao. J, Cai.Y, Zhang. M, Pan. H, Xu. X and Tang. R, Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells, J. Mater. Chem.,2007, 17(44),4690-4698.
    [48]Butt. H. J, Cappella. B and Kappl. Force measurements with the atomic force microscope:Technique, interpretation and applications, M, Surf. Sci. Rep.,2005, 59(1-6),1-152.
    [49]He. L. H and Swain. M. V, Enamel—A "metallic-like" deformable biocomposite, J. Dent.,2007,35(5),431-437.
    [50]Gao. H, Ji. B, Jager. I. L, Arzt. K. E and Fratzl. P, Materials become insensitive to flaws at nanoscale:Lessons from nature, Proc. Natl. Acad. Sci.USA,2003,100(10), 5597-5600.
    [1]Li. L, Pan. H. H, Tao. J. H, Xu. X. R, Mao C. Y, Gu. X. H, Tang R. K, Repair of enamel by using hydroxyapatite nanoparticles as the building blocks, J. Mater. Chem, 2008,18(34),4079-4084.
    [2]Chen. H. F, Tang. Z. Y, Liu. J, Sun. K, Chang. S-R, Peters. M. C, Mansfield. J. F, Czajka-Jakubowska. A, Clarkson. B. H, A cellular Synthesis of a Human Enamel-like Microstructure, Adv. Mater,2006,18(14),1846-1851.
    [3]Chen. H. F, Clarkson. B. H, Sun.K and Mansfield. J. F, Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure, J. Colloid Interface Sci.,2005,288(1),97-103.
    [4]Fan. Y.W, Sun. Z, Moradian-Oldak. J, Controlled remineralization of enamel in the presence of amelogenin and fluoride, Biomaterials,2009,28(4),478-483.
    [5]Guo. X. Y, Sun. G. F, Sun. Y. C, Oxidative Stress From Fluoride-induced Hepatotoxicity in Rats, Fluoride,2003,36(1),25-29.
    [6]Cai. Y, Liu. Y, Yan. W, Hu. Q, Tao. J, Zhang. M, Shi. Z and Tang. R, Role of hydroxyapatite nanoparticle size in bone cell proliferation, J. Mater. Chem,2007, 17(36),3780-3787.
    [7]Kasuga. T, Hosoi. Y, Nogami. M, Niinomi. M, Apatite Formation on Calcium Phosphate Invert Glasses in Simulated Body Fluid, J. Am. Ceram. Soc,2001,84(2), 450-452.
    [8]Ragel. C. V, Vallet-Regi. M, Rodriguez-Lorenzo. L. M, Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material, Biomaterials,2002,23(8), 1865-1872.
    [9]Oyane. A, Kawashita. M, Nakanishi. K, Kobubo. T, Minoda. M, Miyamoto. T, Nakamura. T, Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions, Biomaterials,2003, 24(10),1729-1735.
    [10]Fincham. A. G, Moradian-Oldak. J and Simmer. J. P, The Structural Biology of the Developing Dental Enamel Matrix, J. Struct. Biol,1999,126(3),270-299.
    [11]Fincham. A. G, Belcourt. A. B, Termine. J. D, Butler. W. T, Cothran. W. C, Amelogenins. Sequence homologies in enamel-matrix proteins from three mammalian species, Biochem. J,1983,211(1),149-154.
    [12]Termine. J. D, Belourt. A. B, Christner. P. J, Conn. K. M, Nylen. M. U, Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel, J. Biol. Chem,1980,255,9760-9768.
    [13]Koutsopoulos. S, Dalas. E, Hydroxyapatite Crystallization in the Presence of Amino Acids with Uncharged Polar Side Groups:Glycine, Cysteine, Cystine, and Glutamine, Langmuir,2001,17(4),1074-1079.
    [14]Robinson. C, Connell. S, Kirkham. J, Shorea. R and Smith. A, Dental enamel-a biological ceramic:regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy, J. Mater. Chem.,2004,14(14),2242-2248.
    [15]Tang. R. K, Wang. L. J, Orme. C. A, Bonstein. T, Bush. P. J and Nancollas. G. H, Dissolution at the Nanoscale:Self-Preservation of Biominerals, Angew. Chem., Int. Ed,2004,43(20),2697-2275.
    [16]Narayan. R. J, Kumta. P. N, Sfeir. C, Lee. D. H, Choi. D, Olton. D, Nanostructured ceramics in medical devices:Applications and prospects, JOM,2004, 56(10),38-43.
    [17]a) Tao. J, Pan. H, Zeng. Y, Xu. X and Tang. R, Roles of Amorphous Calcium Phosphate and Biological Additives in the Assembly of Hydroxyapatite Nanoparticles, J. Phys. Chem. B,2007,111(47),13410-13418; b) Tao. J. H, Zhou. D. M, Zhang. Z. S, Xu. X. X, Tang. R. K, Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean, Proc. Natl. Acad. Sci.(USA),2009,106(52),22096-22101.
    [18]a) Z. Z. Lu, H. Y. Xu, M. D. Xin, K. W. Li, H. Wang, Induced Growth of (001)-Oriented Hydroxyapatite Nanorod Arrays on ZnO-Seeded Glass Substrate, J. Phys. Chem. C,2010,114(2),820-825; b) C. Li, G. S. Hong, P. W. Wang, D. P. Yu, L. M. Qi, Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals, Chem. Mater.2009,21(5), 891-897.
    [19]Murugan. R, Ramakrishna. S, Crystallographic Study of Hydroxyapatite Bioceramics Derived from Various Sources, J. Cryst. Growth. Des,2005,5(1), 111-112.
    [20]a) Colfen. H, Antonietti. M, Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment, Angew. Chem., Int. Ed, 2005,44(35),5576-5591.
    [21]Colfen. H, Mann. S, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures, Angew. Chem, Int. Ed,2003,42(21), 2350-2365.
    [22]a) Chen. X, Wang. Q, Shen. J. W, Pan. H. H, Wu. T, Adsorption of Leucine-Rich Amelogenin Protein on Hydroxyapatite (001) Surface through-COO-Claws, J. Phys. Chem. C,2007,111(3),1284-1290; b) Pan. H. H, Tao J. H, Xu X. R, Tang. R. K, Adsorption Processes of Gly and Glu Amino Acids on Hydroxyapatite Surfaces at the Atomic Level, Langmuir,2007,23(17),8972-8981.
    [23]Zhang. H. G, Zhu. Q. S, Wang. Y, Morphologically Controlled Synthesis of Hydroxyapatite with Partial Substitution of FluorineChem. Mater.2005,17(23), 5824-5830.
    [24]Markovic. M, Fowler. B. O, Brown. W. E, Octacalcium phosphate carboxylates. 2. Characterization and structural considerations, Chem. Mater.1993,5(10), 1406-1416.
    [1]Li L, Mao. C.Y, Wang. J. M, Xu. X. R, Pan. H. H, Deng. Y, Gu. X. H, Tang. R. T, Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles:an approach to biomaterials with optimal characteristics, Adv. Mater,2011,23(40), 4695-4701.
    [2]Hench L. L,10th Inter Cong. On Glass 9—30-41,1976.
    [3]Hench. L. L, Splinter. R. J, Allen. W. C, Greenlee. T. K, Bonding mechanisms at the interface of ceramic prosthetic materials, J Biomed Mater Res,1972,5(6), 117-141.
    [4]Filho. O. P, LaTorre. G. P and Hench. L. L, Effect of crystallization on apatite-layer formation of bioactive glass 45S5, J. Biomed. Mater. Res,1996,30, 509-514.
    [5]Hench. L. L, in:Hulbert. Joy. E, Samuel F. Hulbert (Eds.), Bioceremics, USA, vol.3,1991,43.
    [6]Hench. L. L, Andersson. O. H, LaTorre. G. P, in:Bonfield. W, Hastings. G. W, Turner. K. E (Eds), Bioceramics, UK, vol.4,1991,155.
    [7]Hench. L. L, LaTorre. G. P, in:Yamamuro. T, Kokubo. T, Nakamura. T (Eds.), Bioceramics, Japan, vol.5,1992,67
    [8]Hench. L. L, in:P. Ducheyne, J.E. Lemmons (Eds.), Bioactive ceramics, Bioceramics:Material Characteristics vs In Vivo Behaviour, Vol.523, Annals of the New York Academy of Sciences, New York, NY (1988).
    [9]Hench, L. L., Bioceramics. J. Am. Ceram. Soc.,1998,81,1705-1728.
    [10]Hench, L. L, Bioceramics:from concept to clinic. J. Am. Ceram.Soc.,1991,74, 1487-1570.
    [11]Hench, L. L. and Andersson, O., Bioactive glasses:In an Introduction to Bioceramics, ed. L. L. Hench and J. Wilson. World Scientific, Singapore,1993,41-62.
    [12]Hench. L. L, Bioceramics:From Concept to Clinic, J. Am. Ceram. Soc,1991, 74(7),1487-1510.
    [13]Hutmacher. D. W, Scaffolds in tissue engineering bone and cartilage, Biomaterials,2000,21(24),2529-2543.
    [14]Niinomi. M, Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application, Biomaterials,2004,25(17), 3369-3376.
    [15]Wen. C. E, Xu. W, Hu. W. Y, Hodgson. P. D, Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications, Acta Biomater.2007, 3(3),403-410.
    [16]Hulbert. S. F, Hench. L. L, Forbers. D, Bowman. L. S, History of bioceramics, Ceram. Int,1982,8(4),131-140.
    [17]Radin. S. R, Ducheyne. P, The effect of calcium phosphate ceramic composition and structure on in vitro behavior, J. Biomed. Mater. Res,1993,27(1), 35-45.
    [18]Schepers. E, Clercq. M. de, Ducheyne. P, Kempeneers. R, Bioactive glass particulate material as a filler for bone lesions, J. Oral. Rehab,1991,18(5),439-452.
    [19]Wilson. J, Stanley. H. R, Hench. L.L and Clark J. ed, Clinical Density,4, Chapter 50,1981.
    [20]Lopez-Esteban. S, Saiz. E, Fujino. S, Oku. T, Suganuma. K, Tomsia. A. P, Bioactive glass coatings for orthopedic metallic implants, Journal of the European Ceramic Society,2003,23,2921-2930
    [21]He. L. H, Swain. M. V, Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics, J. Mech. Behav. Biomed, 2008,1(1),18-29; b) He. L. H and Swain. M. V, Enamel—A "metallic-like" deformable biocomposite, J. Dent.,2007,35(5),431-437.
    [22]Wang. Z. Q, Ma. G. B, and Liu. X. Y, Will Fluoride Toughen or Weaken Our Teeth? Understandings Based on Nucleation, Morphology, and Structural Assembly, J. Phys. Chem. B,2009,113(51),16393-16399.
    [23]a) Guo. X. Y, Sun. G. F, Sun. Y. C, Oxidative Stress From Fluoride-induced Hepatotoxicity in Rats, Fluoride,2003,36(1),25-29; b)Termine. J. D, Belourt. A. B, Christner. P. J, Conn. K. M, Nylen. M. U, Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel, J. Biol. Chem,1980,255,9760-9768
    [24]a) Jin Y, Yip HK, Supragingival Calculus:Formation and Control. Crit Rev Oral Biol Med 2002;13:426-41; b) Udert KM, Larsen TA, Biebow M, Gujer W, Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Res 2003; 37:2571-82; c) Fuierer TA, LoRe M, Puckett SA, Nancollas GH, A Mineralization Adsorption and Mobility Study of Hydroxyapatite Surfaces in the Presence of Zinc and Magnesium Ions. Langmuir 1994; 10:4721-25.
    [25]Jones. F. H, Teeth and bones:applications of surface science to dental materials and related biomaterials, Surface Science Reports,2001,42(3-5),75-205.
    [26]Kasuga. T, Bioactive calcium pyrophosphate glasses and glass-ceramics, Acta Biomaterialia,2005,1(1),55-64.
    [27]Yin. Y. J, Yun. S, Fang. J. S and Chen. H. F, Chemical regeneration of human tooth enamel under near-hysiological conditionsw, Chem. Commun,2009,39, 5892-5894.
    [28]Busch S, Regeneration of Human Tooth Enamel, Angew. Chem, Int. Ed,2004, 43(11),1428-1431.
    [29]Mascarenhas. A. K, Risk factors for dental fluorosis:A review of the recent literature, American Academy of Pediatric Dentistry,2000,22(4),269-277.
    [30]Dorozhkin. S. V and Epple. M, Biological and Medical Significance of Calcium Phosphates, Angew. Chem, Int. Ed,2002,41(17),3130-3146.
    [31]Fincham. A. G, Belcourt. A. B, Termine. J. D, Butler. W. T, Cothran. W. C, Amelogenins. Sequence homologies in enamel-matrix proteins from three mammalian species, Biochem. J,1983,211(1),149-154.
    [32]Fan. Y. W, Sun. Z, Moradian-Oldak. J, Controlled remineralization of enamel in the presence of amelogenin and fluoride, Biomaterials,2009,30(4),478-483.
    [33]a) Kim. C. Y, Clark. A. E, Hench. L. L, Early stages of calcium-phosphate layer formation in bioglasses, J. Non-Cryst. Solids,1989,113(2-3),195-202; b) Filgueiras. M. R. T, Torre. G. P. La, Hench. L. L, Solution effects on the surface reactions of three bioactive glass compositions, J. Biomed. Mater. Res,1993,27(12), 1485-1493.
    [34]Li. Y. B, Li. D. X, Xu. Z. Z, Synthesis of hydroxyapatite nanorods assisted by Pluronics, J Mater Sci 2009,44(10),1258-1263.
    [35]Colfen, H.; Mann, S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed.2003,42 (21), 2350-2365.
    [36]West. V. C, Observations on Phase Transformation of a Precipitated Calcium Phosphate, Calc. Tiss. Res,1971,7(1),212-219.
    [37]Termine. J. D, Posner. A. S, Infrared determination of the percentage of crystallinity in apatitic calcium phosphates. Nature,1966,211(5046),268-270.
    [38]Tao. J. H, Zhou. D. M, Zhang. Z. S, Xu. X. R, and Tang. R. K, Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean, PNAS,2009,106(52),22096-22101.
    [39]a) Chen. X, Wang. Q, Shen. J. W, Pan. H. H, Wu. T, Adsorption of Leucine-Rich Amelogenin Protein on Hydroxyapatite (001) Surface through-COO-Claws, J. Phys. Chem. C,2007,111(3),1284-1290; b) Pan. H. H, Tao J. H, Xu X. R, Tang. R. K, Adsorption Processes of Gly and Glu Amino Acids on Hydroxyapatite Surfaces at the Atomic Level, Langmuir,2007,23(17),8972-8981.
    [40]Zhang H. G, Zhu Q. S, Wang Y, Morphologically Controlled Synthesis of Hydroxyapatite with Partial Substitution of Fluorine, Chem. Mater.2005,17(23), 5824-5830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700