苯并芘污染土壤的微生物效应及其降解菌特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的发展,人口不断增加,消费的能源和物质不断增加,且工业生产的规模不断扩大,且大部分地区生产生活水平落后,能源利用率低,这样在生产生活的过程产生了大量废物,而且由于当前大部分的目光主要集中在如何提高社会发展的水平,忽略了这些生活生产废物将会给人类的生产生活带来何种危害。以焦化生产为例,在生产过程中产生的废气、废水和固体废料中含有大量的多环芳香烃,而且由于多环芳香烃自身的物理化学性质,极易在环境中富集,且多环芳香烃会造成细胞突变、抑制微生物生长等危害,所以多环芳香烃已经成为环境中一个重要的污染物。而本文的研究对象之所以为苯并芘,是由于它的致癌性最强。
     本文研究了几种重要环境污染物对土壤微生物的影响,筛选出四株苯并芘高效降解菌,并对其降解特性进行了分析。主要结果如下:
     (1)采用微生物平板计数法研究了不同的环境污染物对土壤中微生物数量的影响,通过分析30d和60d的土壤微生物数量后,得出苯并芘对土壤微生物的抑制作用最持久。
     (2)以苯并芘为唯一碳源筛选出了18株降解菌,并且观察了降解菌的菌落形态、细胞形态、16S rDNA序列,并且测定了18株降解菌对苯并芘的降解率。
     (3)对四株降解能力较高的菌株进行了16S rDNA序列和系统发育学分析,生理生化实验,经菌落形态、细胞形态、16S rDNA测序,生理生化鉴定,分别鉴定为:SL-1属于假单胞菌属(Pseudomonas sp.),SL-2属于苍白杆菌属(Ochrobactrum sp.),SL-4属于短波单胞属(Brevundimonas sp.),SL-10属于假黄色单胞菌属(Pseudoxanthomonas sp.)。测定了以苯并芘为唯一碳源的降解菌的生长曲线、苯并芘降解率的变化曲线、外源物质对降解率的影响。
     (4)应用SPSS软件设计正交试验分析5因素4水平对降解菌的生长影响,选出降解菌最优培养条件:SL-1的最佳培养条件为牛肉膏、NH_4NO_3、pH8.5、转速200 r/min、温度25℃;SL-2的最佳培养条件为牛肉膏、蛋白胨、pH7.5、转速200 r/min、温度15℃;SL-4的最佳培养条件为麦芽糖、(NH_4)_2SO_4、pH6.5、转速225 r/min、温度35℃;SL-10的最佳培养条件为牛肉膏、蛋白胨、pH6.5、转速225 r/min、温度35℃。
     (5)土壤生物修复试验结果为:SL-1的降解率为:76.3%;SL-2的降解率为:86.1%;SL-4的降解率为:85.7%;SL-10的降解率为:35.6%;
With the human society developing, population increasing, and the scale of industrial production expanding, we use more energy and material.And the producing and living level is lowing, so much pollution is emitted.But we put much attention to how to improve our life, ignore the harm to humen's life.In respect of coke production, there are lots of waste gas,waste water and solid waste which contain lots of polycyclic aromatic hydrocarbons during producing. And polycyclic aromatic hydrocarbons is easily accumulating for its physical and chemical properties, and polycyclic aromatic hydrocarbons is an important pollutant for making cell mutating and inhibiting the growth of microorganisms. Benzopyrene is the most carcinogenic material among polycyclic aromatic hydrocarbons, that is why it is the target of this study .
     In this paper, the effects of important pollutions to the microorganisms were researched, high benzopyrene-degrading strains was screened and the degradation conditions were researched too. We deduce:
     (1)we use plate count agar (PCA) method to detect the effect of benzopyrene and other environmental pollutions on the number of microbes in soil, inhibitory effects of pyrene、lead、cadmium、phenanthrene and hexachlorocyclohexanes on bacteria in soil drop gradually. Inhibitory effects of benzopyrene on bacteria in soil is persistent than other pollutions.
     (2)In this paper,benzopyrene was used as sole carbon source to scre en de-grading strains,we get 18 benzopyrene-degrading strains.And we observe the strains' colonial morphology, cells' morphology and measure the gene sequences, the benzopyrene-degrading rate was me asured too.
     (3)4 high benzopyrene-degrading strains were choosen for phyiogeny, physiological and biochemical properties, growth curve and benzopy rene-degrading rate and how exogenous substances effect the benzop yrene-degrading rate was measured. The four strains were identified as Pseudomonas sp., Ochrobactrum sp.,Brevundimonas sp.,Pseudoxa nthomonas sp..Bioremediation of benzopyrene-contaminated oil was also experimentally studied. (4) Optimal conditions of growth for benzopyrene-degrading strain was researched under 5 factors and 4 levels by SPSS software. Optimal conditions of growth for SL-1 is beef extract、NH_4NO_3、pH8.5、200 r/min、25℃; for SL-2 is beef extract、peptone、pH7.5、200 r/min、15℃; for SL-4 is isomaltulose、(NH_4)_2SO_4、pH6.5、225 r/min、35℃; for SL-10 is beef extract、peptone、pH6.5、225 r/min、35℃. (5)The results of experiments for Bioremediation of benzopyrene-con -taminated soil show that the degradation rate of SL-1 is 76.3%, th -e degradation rate of SL-2 is 86.1%, the degradation rate of SL-4 is 85.7%, the degradation rate of SL-10 is 35.6%.
引文
[1] Menzie C A, B B Potoki and J Santodonato. Exposure to carcinogenic PAHs in the en-vironment[J]. Environ Sci Technol, 1992, 26 (7): 1278-1284
    
    [2] Calder J A, J H Lader. Microbial metabolism of polycyclic aromatic hydrocarbons[J]Appl Environ Microbiol, 1976, 32 (1) : 95-101
    
    [3] Wild R S, Waterhouse K S, Mcgrath. Organic contaminants in an agricultural soil with a known history of sewage sludge amendments: polycydic aromatic hydrocarbo ns[J]. Environ Sic Technol, 1990, 24(6): 1706-1711
    
    [4] Mcveety B D, Hites R A. The distribution and accumulation of PAHs in environment[J]. Atomspheric Environment, 1988, 22(1): 511-536
    
    [5] Miton. Analytical Chemistry of Polycyclic Aromatic Compounds[M]. Academic press,1981: 17-40
    
    [6] T Saeed, A Al-Bloushi, K Al-Matrouk. Assessment of levels of hydrocarbons in theoil from Kuwait lakes [J]. Achieves of Environ, Contamination and Toxicity, 1995, 29(1): 45-51
    
    [7]金相灿.有机化合物污染化学-有毒有机物污染化学[M].北京,清华大学出版社,1990: 292-293
    
    [8]梅建鸣.铜陵市环境空气苯并[a]芘污染现状分析[J].皖西学院学报,2005,21(5):55-57
    
    [9]包贞,潘志彦,杨晔.环境中多环芳烃的分布及降解[J].浙江工业大学学报,2003,31(5): 528-544
    
    [10]王连生.有机污染物化学[M].北京,科学出版社,19911-15
    
    [11]李永和.3-4苯并芘对粮食及食品的污染[J].粮食科技与经济,1997,12(4):37-38
    
    [12]王连生.多环芳烃分析技术[M].南京,南京大学出版社,1988
    
    [13]袁彦华,孙连军,郭秀兰.多环芳烃化合物环境污染研究[J].环境与健康杂志,1999, 16(3): 182-185
    
    [14]马西林,丁中华,刘瑞莲.大同市空气中多环芳烃与人尿中1-羟基芘的分析[J].环境化 学,1994,13(6):536-542
    
    [15]唐书彦,侯莉英.包头市城区大气中BaP浓度十年监测浅析[J].内蒙古坏境保护,199 5, 7(1): 31-34
    
    [16]赵起越,张颖川.大同市大气颗粒中苯并[a]芘的日变化研究[J].北方环境,2004,29(4): 17-20
    
    [17]赵起越.大同市大气颗粒中苯并[a]芘污染与气象条件的相关性初探[J].环境科学与管理, 2006.31(1):69-71
    
    [18]蹇兴超.多环芳烃(PAH)的污染[J].环境保护,1995,10(16):31-33
    
    [19]袁彦华,孙连军,郭秀兰.多环芳烃化合物环境污染研究[J].环境与健康杂志,1999, 16(3): 182-185
    
    [20]朱利中,刘勇建,松下秀鹤.室内空气中多环芳烃的污染特征、来源及影响因素分析[J].环??境科学学报,200l,21(1):64-68
    
    [21] James B Hannah, Jo Ellen Hose, Marsha Landolt. Benzo(a)pyrene-induced Morphologi c and Developmental Abnormalities in Rainbow Trout[J]. Arch. Environm. Contain. To xicol, 1982, 11: 727-734
    
    [22] J. E. Hose, t J. B. Hannah, D. DiJulio. Effects of Benzo(a)pyrene on Early Develo pment of Flatfish[J]. Arch. Environm Contam Toxicol, 1982, 11: 167-171
    
    [23]朱雨辰,曹晓煜.浅谈苯并[a]芘[J].江苏环境科学,1999,12(4):43-44
    
    [24] Kottermann MJJ, Vis EH, Field JA. Successive mineral isation and detoxification of benzo [a] pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora [J]. Appl. Environ Microbiol, 1998. 64: 2853-2858
    
    [25]樊飞跃,杨素霞,曹真山.苯并芘致细胞转化与DNA链断裂[J].中华预防医学杂志, 1999,33(2):86-87
    
    [26]蒋义国,陈家,陈学敏.苯并[a]芘代谢物反式二羟环氧苯并芘诱发人支气管上皮细胞恶 性转化[J].卫生研究,2001,3(30):129-131
    
    [27]黄勇,陈家堃,吴中亮.反式二氢二醇环氧苯并芘诱发的细胞DNA断裂损伤[J].中国 职业医学,2004,31(4):15-17
    
    [28]王崇效,余叔文.玉米根系降解苯并[a]芘的某些特性的研究[J].植物生理学报,1984, 10(2): 123-129
    
    [29] Jeremy A.Rentz, Pedro J.J Alvarez, Jerald L. Schnoor. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02[J]. Environmental Pollution, 2007, 151: 669-677
    
    [30]骆苑蓉、胡忠、郑天凌.红树林沉积物中的微生物对苯并[a]芘的降解研究[J].厦门大学 学报,2005,44(sup):75-79
    
    [31]苏丹,李培军,王鑫.3株细菌对土壤中芘和苯并芘的降解及其动力学[J].环境科学,2 007,28(4):913-917
    
    [32]巩宗强,李培军,王新.真菌对土壤中苯并[a]芘的共代谢降解[J].环境科学研究,200114(6): 36-39
    
    [33] Jeremy AR, Pedro JJA, Jerald LS. Benzo [a] pyrene degradation by Sphingomonas yanoikuyae JAR02[J] . Environmental Pollution, 2007, 151: 669-677
    
    [34] Jeremy AR, Pedro JJA, Jerald LS. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02[J]. Environmental Pollution, 2007, 151: 669-677
    
    [35] Etienne V, Catherine R, Patrice Wet al. Preliminary evidence of the role of hydrogen peroxide in the degradation of Benzo [a] pyrene by a non-white rot fungus Fusarium so lani[J]. Environmental Pollution, 2004, 129: 1-4
    
    [36]邹德勋,骆永明,腾应.多环芳烃长期污染土壤的微生物强化修复初步研究[J].土壤, 2006,38(5):652-656
    
    [37]GB15618-1995,土壤环境质量标准[s]
    
    [38]郭明元,刘广锋,冯娟.1株军曹鱼病原弧菌的鉴定及其系统发育树分析[J].中国水产 科学,2006,13(5):823-828
    
    [39]颜子颖,王海林译.精编分子生物学指南[M].北京,科学出版社,1999
    
    [40]韩绍印,席宇等.一株高环境适应性纤维素降解菌的筛选及鉴定[J].河南农业科学, 2007,15(12):51-54
    
    [41]陆军,王菊思,赵丽辉.苯系化合物好氧降解菌的驯化和筛选[J].环境科学,1996,17 (6): 1-4
    
    [42]盛下放,何琳燕等.苯并[a]芘降解菌的分离筛选及其降解条件的研究[J].环境科学学报, 2005,25(6):791-795
    
    [43]苏丹,李培军,台培东.共基质对10株细菌降解苯并芘的作用研究[J].农业环境科学 学报,2007.26(1):290-294
    
    [44]齐邦峰,张会成,陈立仁.萃取-紫外分光光度法测定微晶蜡中3,4-苯并芘含量[J].分 析测试技术与仪器,2003,9(3):169-172
    
    [45]胡志洁.SPSS11.5软件在正交实验设计中的应用[J].医学信息,2007,20(5):737-740
    
    [46]宋玉芳,许华夏,任丽萍.TW-80对污染土壤中菲和芘的生物降解影响[J].应用与环境 生物学报,1995,5(sup):151-154
    
    [47]张路,范成新.底泥中多环芳烃(PAHs)提取方法评析[J].土壤与环境,200110(3): 242-245
    
    [48]温洪宇,廖银章,李旭东.一株假单胞菌HZ-1降解石油烃的初步研究[J].天然产物研 究与开发,2005,5(17):628-631
    
    [49]蔡宝立,李永君,梁靖等.降解萘的假单胞菌ND24菌株的分离和萘污染土壤的生物修 复[J].食品与生物技术学报,2005,6(24):6-9
    
    [50]梁伊丽,曾富华,叶翠芬等.菊苣假单胞菌对有机磷农药乐果的降解作用初报[J].湛江 师范学院学报.2004,6(25):37-40
    
    [51]刘志峻,何光源.假单胞菌诱导筛选菌株PhA苯酚降解动力学及SDS对其影响[J].生 物技术.2004,5(14):31-33
    
    [52]吴锦华,韦朝海,李平等.三相流化床中人常白杆菌的挂膜及其降解苯胺废水[J].环境 工程,2006,6(24):10-12
    
    [53]柏文琴,李梅,邱星辉等.苍白杆菌B2对甲基对硫磷降解途径研究[J].农业学学报, 2004,6(4):48-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700