Ca~(2+)和饵料脂肪对中华绒螯蟹性早熟能量学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中华绒螯蟹(Eriocheir sinensis)为研究对象,分别研究了早熟蟹和正常蟹在能量收支等方面的不同;养殖用水中Ca~(2+)浓度(18mg/L、40mg/L、80mg/L、120mg/L和160mg/L)和饵料中脂肪含量(3%、6%、9%、12%)对中华绒螯蟹的影响。从生物能量学的角度探讨环境因子对中华绒螯蟹能量代谢和性腺发育的影响。得出以下结果:第一部分早熟蟹和正常蟹能量代谢和肝胰腺指数与性腺指数的比较
     早熟蟹和正常蟹在生长上表现出了明显地不同,早熟蟹的生长速率明显低于正常蟹的生长速率,早熟蟹的生长能比例明显低于正常蟹生长能所占比例(P<0.05);二者的肝胰腺指数和性腺指数显著不同,早熟蟹肝胰腺指数小,性腺指数大,正常蟹肝胰腺指数大,性腺指数小。肝胰腺碱性磷酸酶(AKP)活性无显著差异,而性腺AKP活性早熟蟹明显高于正常蟹(P<0.05);在肝胰腺能荷方面,早熟蟹明显低于正常蟹,说明早熟蟹的代谢速率明显低于正常蟹。
     第二部分水中Ca~(2+)浓度对中华绒螯蟹能量代谢和性腺发育的影响
     随着Ca~(2+)浓度的升高,以Ca~(2+)浓度为40mg/L作为分界点,中华绒螯蟹的特定生长率和饲料转化率、均先升高后降低,成双向剂量反应;在能量分配方面,中华绒螯蟹的生长能分配随Ca~(2+)浓度的升高,以Ca~(2+)浓度为40mg/L作为分界点,生长能所占比例先升高后降低,Ca~(2+)浓度为40mg/L处理组显著高于对照组(P<0.05),与其他处理组没有显著性差异(P>0.05);肝胰腺指数在随Ca~(2+)浓度升高而降低,浓度为18mg/L的对照组与160mg/L的处理组,存在显著性差异(P<0.05),对照组与浓度40mg/L、80mg/L、120mg/L的处理组差异性不显著(P>0.05),且这三组之间无显著差异(P>0.05)。性腺指数受Ca~(2+)浓度胁迫呈升高趋势,在Ca~(2+)浓度为160mg/L时达到最高。Ca~(2+)促使更多营养物质消耗,促进性腺发育;随Ca~(2+)浓度的升高,肝胰腺的AKP活性降低但不显著(P>0.05),而性腺的AKP活性呈升高趋势,在Ca~(2+)浓度为160mg/L时达到最高。肝胰腺能荷值也是在Ca~(2+)浓度40mg/L时最高,细胞活动活跃,此时代谢旺盛,生长最好。
     上述结果表明,Ca~(2+)对中华绒螯蟹生长的胁迫作用主要是通过营养物质的消耗实现的。高浓度的Ca~(2+)抑制生长,促进性腺发育。
     第三部分饵料脂肪对中华绒螯蟹能量代谢和性腺发育的影响
     饵料中的脂肪对中华绒螯蟹的影响主要体现在中华绒螯蟹的特定生长率和饵料转化率上。随饵料脂肪含量的升高,中华绒螯蟹的生长能分配先升高后降低,在饵料中的脂肪含量为9%时生长能所占比例最高,且与其他处理组差异显著(P<0.05)。脂肪对于中华绒螯蟹肝胰腺指数的影响为随着饵料中脂肪含量的升高而降低,脂肪含量为12%的处理组肝胰腺指数最低与其他各组差异显著(P<0.05),其他各组之间差异不显著(P>0.05);性腺指数的变化与肝胰腺指数的变化趋势相反,脂肪含量为3%的处理组性腺指数最低,与其他各组呈显著性差异(P<0.05),脂肪含量为12%的处理组性腺指数最高,与其他各组差异显著(P<0.05)。随脂肪含量的升高,肝胰腺的AKP活性升高,但不显著(P>0.05),性腺的AKP活性同样呈升高趋势,在脂肪含量为12%时达到最高。肝胰腺能荷值也是在脂肪含量为9%时最高,细胞代谢旺盛,活动活跃,生长状态最佳。
     Ca~(2+)与脂肪对于中华绒螯蟹生长具有双刃剑的作用,当浓度或含量较低时,能够促进中华绒螯蟹的生长,并且当浓度或含量达到最适值时中华绒螯蟹的各项生理指标都处于一个最适的状态,且生长状态最佳;当浓度或含量过高时,会促进中华绒螯蟹的性腺提前发育,导致性早熟现象的发生,抑制中华绒螯蟹的生长。
     在实际生产中,为了在最大程度上获得经济效益,养殖者必须要时刻注意水质的变化,防止Ca~(2+)浓度过高而导致中华绒螯蟹性早熟,抑制中华绒螯蟹的生长;还要合理配比饵料的营养各种营养成分,合理的营养配比使中华绒螯蟹的生长状态处于最佳。
This study investigated the following aspects, including difference on energy budget between preconcious and normal Chinese mitten crab; effects of aqueous Ca~(2+) concentration (18mg/L, 40mg/L, 80mg/L, 120mg/L and 160mg/L) on energy budget and precociousness of Chinese mitten crabs; and dietary fat concentration (3%, 6%, 9% and 12%) on energy budget and precociousness of Chinese mitten crabs. The following conclusions were reached: Part one: Comparison of the energy budget, hepatopancreas index (HPI) and gonads index (GSI) between precocious and normal crabs.
     There was significant difference between precocious and normal crabs, growth rate and growth energy percentage in precocious crabs were significantly lower than that in normal crabs (P<0.05). Precocious crabs HPI was significantly lower than normal crabs (P<0.05), but GSI was significantly higher than normal crabs (P<0.05). There was no significant difference between precocious and normal crab in AKP activities in hepatopancreas (P>0.05), while there was significant difference between preconscious and normal crab in AKP activities in gonads (P<0.05). Energy charge in hepatopancreas in precocious crabs was significantly lower than that in normal crabs, and it suggested that metabolism rate in precocious crabs was significantly lower than that in normal crabs.
     Part two: Effects of aqueous Ca~(2+) concentration on energy budget and precociousness of Chinese mitten crabs
     The SGR and K first increased and then decreased with increasing aqueous Ca~(2+) concentration. Demarcation point was at aqueous Ca~(2+) concentration 40mg/L. So the energy allocated to growth, the crabs at aqueous Ca~(2+) concentration 40mg/L were significantly higher than the crabs at aqueous Ca~(2+) concentration 18mg/L, but the former was not significantly higher than the crabs at other aqueous Ca~(2+) concentration. The HIS decreased with increasing aqueous Ca~(2+) concentration, HIS at aqueous Ca~(2+) concentration 18mg/L was significantly higher than that at aqueous Ca~(2+) concentration 160mg/L; The GSI increased with increasing aqueous Ca~(2+) concentration, GSI at aqueous Ca~(2+) concentration 18mg/L was significantly lower than that at aqueous Ca~(2+) concentration 160mg/L. aqueous Ca~(2+) urged nutrients cosumption and gonad development. The activities of AKP in hepatopancreas decreased insignificantly and the activities of AKP in gonads increased significantly with increasing aqueous Ca~(2+) concentration. The energy charge in hepatopancreas was highest at aqueous Ca~(2+) concentration 40mg/L, the cells were active; metabolism was vigorously; and growth was best. These results showed that the effects of aqueous Ca~(2+) on Chinese mitten crabs was mainly attributed to nutritive material consumption.
     Part three: Effects of dietary fat concentration on energy budget and precociousness of Chinese mitten crabs
     SGR and K showed the effects of dietary fat on Chinese mitten crabs. The energy allocated to growth first increaseed and then decreaseed with the increasing dietary fat concentration, and that was the highest at dietary fat concentration 9%, significantly higher than others. The HIS decreased with increasing dietary fat concentration, HIS at dietary fat concentration 12% was significantly lower than others. The GSI increased with increasing dietary fat concentration, GSI was the lowest at dietary fat concentration 3%, significantly lower than others; GSI was the highest at dietary fat concentration 12%, significantly higher than others. The activities of AKP in hepatopancreas increased insignificantly and the activities of AKP in gonads increased significantly with increasing dietary fat concentration. The energy charge in hepatopancreas was highest at dietary fat concentration 9%, the cells were active; metabolism was vigorously; and growth was best.
     Ca~(2+) and dietary fat are just like a double-edged sword, both of them will urge the growth of Chinese mitten crabs, every physiological exponent is the best, if the concentration is the appropriate; They will urge gonad development, lead to premature, inhibit the growth, if the concentration is too high.
     To harvest most in practice for the Chinese mitten crab culture, Culturists must pay attention to alterative water quality, prevent high aqueous Ca~(2+) concentration, in case of inhabiting growth; they must make reasonable ratio of nutritive material, it make the growth best.
引文
[1]堵南山.甲壳动物学(下)[M].北京:科学出版社, 1993, 898-902.
    [2]梁象秋,方纪祖,杨和荃.水生生物学(形态和分类)[M].北京:中国农业出版社, 1996: 361-364.
    [3]王成辉,李思发.中华绒螯蟹种质研究进展[J].中国水产科学, 2002, 9(1): 82-86.
    [4]李康民.中华绒螯蟹在美国[J].科学养鱼, 2002, 21(6): 17.
    [5]乔德亮.谈谈河蟹性早熟[J].内陆水产, 2001, 26 (2): 41-42.
    [6]张烈士,徐琴英.自然及养殖水体河蟹性成熟和性早熟的研究[J].水产科技情报, 2001, 28(3): 106-111.
    [7]杜晓燕,张德隆,赵金利.池养中华绒螯蟹性早熟现象的初步分析[J].大连水产学院学报, 2000 ,15 (4): 254-258.
    [8]李云峰,康现江,赵晓瑜,温秀荣,韩力强.河蟹性早熟发生的相关内在因素研究进展[J].水产科学, 2005, 24(2): 34-36.
    [9]陈再忠,成永旭,王武.早熟期间中华绒螯蟹肝胰腺指数、肝脂含量及脂肪酸组成的变化[J].水产学报, 2003, 27(1): 57-61.
    [10]朱雅珠,张根玉,王建军,陈慧达.饲料中适宜的动植物蛋白比与河蟹蟹种生长及性早熟的相关[J].水产科技情报, 1999, 26(1): 21-25.
    [11]袁春营,崔青曼,赵春民.神经内分泌调控中华绒螯蟹性早熟的前景[J].水利渔业, 2004, 24(3): 11-14.
    [12]顾景龄,杜育哲,刘学军.冬季河蟹人工育苗的生产试验[J].天津农学院学报, 1998, 5(2): 15-19.
    [13]王世节,汪祖军,潘志辉.河蟹性早熟及解决方法[J].科学养鱼, 2002, (9): 36-37.
    [14]陈士明.河蟹性早熟原因剖析[J].渔业致富指南, 2001, (14): 34.
    [15] Touch E F. Changes in estradiol and progesterone immunoreanctivity in tissue of the lobster(Homarus americanus), with developing and immatuare ovaries[J]. Comp. Biochem. Physical, 1987, 67A: 765-770.
    [16]郭东辉,李少菁,林元烧.甲壳动物促雄性腺激素研究进展[J].海洋科学, 2006, 30(11): 88-92.
    [17]蔡生力.甲壳动物内分泌学研究与展望[J].水产学报, 1998, 22(2): 154-161.
    [18]罗荣兰,王幽兰,曹梅讯.中华绒螯蟹血淋巴20-羟基蜕皮酮诱发蜕皮和卵巢发育的作用[J].动物学报, 1990, 36(2): 157-164.
    [19]陈贤龙,沈江平.一龄河蟹性早熟现象观察[J].水产科技情报. 1999, 26(1): 28-31.
    [20]丁茂昌,徐锟,张威.蟹种性早熟原因与预防[J].水产科学. 2000, 19(2): 38-39.
    [21]韦众,鲍传和.池塘养殖与湖泊放流河蟹的性腺肝脏指数比较[J].淡水渔业, 1999, 29(9): 16-17.
    [22]张列士,朱选才,宫伦祥.河蟹生活史研究及蟹苗的捕捞[J].产科技情报, 1973, (2): 5-21.
    [23] Wheatly M G. Calcium recognition: mechanisms and control in crustceans and lower vertebrates[J]. Physiol Zcol, 1994, 69: 351-382.
    [24]董双林,堵南山,赖伟. pH值和Ca~(2+)浓度对日本沼虾生长和能量收支的影响[J].水产学报, 1994, 18(2): 121-122.
    [25]王慧,房文红,来琦芳.水环境中Ca~(2+)、Mg~(2+)对中国对虾生存及生长的影响[J].中国水产科学, 2003, 7(1): 82-86.
    [26] Dishy P S B. Calcufucation in crustacean: The fundamental proess[J]. Physiologist, 1980, 23: 105-106.
    [27]王顺昌,魏亦军,申德林.中华绒螫蟹蜕皮过程中肌肉、肝胰脏和甲壳中钙和磷含量的变动[J].水产学报, 2003, 27(3): 219-224.
    [28]徐如卫,江锦坡,陆开宏,徐镇.河蟹性早熟原因的初步研究[J].浙江海洋学院学报(自然科学版), 2001, 20(3): 195-198.
    [29]朱小明,李少菁.生态能学与虾蟹幼体培育[J].中国水产科学, 1998, 5(3): 104-107.
    [30] Anger K. Starvation resistance in larvae of a semiterrestria crab, Sesarma curacaoense (Decapoda: Grapsidae)[J]. J. Exp. Mar. Biol. Ecol., 1995, 187: 161-174.
    [31]朱雅珠,张根玉,王建军,陈慧达.饲料中适宜的动植物蛋白比与河蟹蟹种生长及性早熟的相关[J].水产科技情报, 1999, 26(1): 21-25.
    [32]顾景龄,杜育哲,刘学军.冬季河蟹人工育苗的生产试验[J].天津农学院学报, 1998, 2: 15-19.
    [33]刘家驹.中华绒螯蟹幼蟹的维生素C摄取与克服性早熟[J].南京农专学报, 1998, 3: 11-16.
    [34]金刚,李钟杰,方榕乐,刘伙泉.早熟河蟹的养殖生态学及渔业价值评估[J].水生生物学报, 1998, 22(2): 143-147.
    [35]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社. 1996.
    [36]钱国英,朱秋华.中华绒螯蟹配合饲料中蛋白质、脂肪、纤维素的适宜含量[J].中国水产科学, 1999, 6(3): 61-65.
    [37]林仕梅,罗莉,叶元土.中华绒螯蟹的营养需求[J].科学养鱼, 2001, (4): 41-42.
    [38]陈立侨,周忠良.中华绒螯蟹的摄食与营养生理研究[J].上海水产大学学报, 1998, 7(S): 24-30.
    [39]刘学军,张丙群,张玉兰.人工配合饲料养殖河蟹高产技术试验[J].淡水渔业, 1990, (5): 20-22.
    [40]崔奕波.鱼类生物能量学的理论与方法[J].水生生物学报, 1989, 13: 369-383.
    [41]王兴强,董双林.盐度和蛋白质水平对凡纳滨对虾存活、生长和能量转换的影响[J].中国海洋大学学报, 2005, 35(1): 33-37.
    [42] Klein,B.W.C.M.Food consumption,growth and energy metabolism of juvenile shorecrab(Carcinusm aenas) Netherland.[J]. Sea.Resh., 1975, 9: 255-272.
    [43]张硕,董双林,王芳.虾蟹类能量代谢的研究进展[J].中国水产科学, 1998, 5(4):88-92.
    [44]施正峰,梅志平,罗其志.日本沼虾能量收支和能量利用效率的初步研究[J].水产学报, 1994, 18(3): 191-197.
    [45] Rosas, Carlos, Cecilia, Vanegas. Energy balance of Callinecte srath bunae Contreras 1930 infloating cages in a tropical coastal lagoon [J]. J. of The World Aqua.Socie., 1993, 24(1): 71-79.
    [46] Humberto Villarreal. A partial energy budget for the Australian crayfish Cherax tenuimanus[J]. J. of the World Aqua. Socie, 1991, 22(4): 252-259.
    [47]董双林,堵南山,赖伟.日本沼虾生理生态学研究2.温度和体重对能量收支的影响[J].海洋与湖沼, 1994, 25(3): 238-242.
    [48]施正峰,梅志平,罗其志.日本沼虾能量收支和能量利用效率的初步研究[J].水产学报, 1994, 18(3): 191-197.
    [49] Kurmaly K, Yuie A B, Jones D A. An energy budget forthe larvae of Penaeus monodon(Fabricius)[J]. Aquaculture, 1989, 81: 13-25.
    [50]陈再忠,王武,成永旭.性早熟中华绒鳌蟹肝胰腺与性腺的酸性和碱性磷酸酶活性[J].水产学报, 2005, 29(5): 630-634.
    [51]陈清西,陈素丽,石艳等.长毛对虾碱性磷酸酶性质[J].厦门大学学报:自然科学版, 1996, 35(2): 257 -261.
    [52]缪辉南,陈石根(译).酶法分析手册[M].上海:上海科学技术出版社, 1983.
    [53]陈清西,张喆,庄总来等.锯缘青蟹碱性磷酸酶分离纯化及部分理化性质研究[J].海洋与湖泊, 1998, 29(4): 362-367.
    [54] Cahu C L, Zambonino I J L, Corraze G, et al. Dietary lipid level affects fatty acid composition andhvdrolase activities of intestinal brush border membrane in seabass[J]. Fsh Phvsiol Biochem, 2000, 23( 2): 165- 172.
    [55]王维娜,孙儒泳.环境因子对日本沼虾消化酶和碱性磷酸酶的影响[J].应用生态学报, 2002, 13(9): 1153-1156.
    [56] Fang LS, Chiou SF. Effect of salinity on the activities of digestive proteases from the tilapia fish, Qrrxxhrornis niloticus in different culture environments[J]. Comp Bicrhera Physio, 1989, 93A: 439-443.
    [57]刘存岐,王安利,王维娜等.海水中几种金属离子对中国对虾幼体体内碱性磷酸酶和ATPase的影响[J].水产学报, 2001, 04: 298-303.
    [58]刘存岐,王安利,王维娜.海水中Zn~(2+)和Mn~(2+)对日本对虾仔虾体内碱性磷酸酶活性的影响[J].水产科技情报, 2002, 05: 195-197.
    [59] Muhammad A Latif. Effects of environmental alkalinity on calcium-stimulated dephosphorlating enzyme activity in the gills of postmoult and intermoult giant freshwater prawns Macrobrachium rosenbergii(de Man)[J]. Comp Biochem Physiol, 1992, 107A(4): 597-601.
    [60] Muhammad A Latif. A study of the effects of alkalinity and hardness on postlarvae and juveniles of the giant freshwater prawn Macrobrachium rosenbergii(de Man)[D], U K:Institute of Aquaculture, University of Stirling, 1992.
    [61] ScottL.S,RonaldS. Tjeerdema.Effeets of hypoxia and Toxicant Exosure On Adenylate Energy Charge and Cytosolic ADP Coneenrrations on Abalone.ComP.[J]. Bioehem.Physiol. ll9C1998, (l): 51-57.
    [62] Calow P. On the regulation nature of individual growth: some observations from freshwater snail, 1973.
    [63]王兴强,曹梅,董双林等.盐度对凡纳滨对虾存活注长和量收支的影响[J].海洋水产研究, 2006, 27(1): 8-13.
    [64]田相利,董双林,王芳.不同温度对中国对虾生长及能量收支的影响[J].应用生态学报, 2004, 15(4): 682-678.
    [65]王坚毅.正常蟹种与性早熟蟹种的形态区别特种经济动植[J], 2004, 07: 13.
    [66] Beamish F W H. Ration size and degistion in large bass, Micropterus salmoides Lacepede[J]. Can J Zool, 1972, 50: 153-164.
    [67] From.J, Rasmussen.G.A. growth moddel, gastric evacuation and body composition in rainbow trout [J], Salmo gairdneri Richardson ,1836.Dana Charlottenlund, 1984, 3: 61-139.
    [68] Fenucci J L, Casa de Fenucci A. The assimilation of protein and carbonhydrate from prepared pellet diets by the shrimp ,Penaeus styli rost ris[J]. World Maricult Soc, 1982, 13: 134-135.
    [69] Elliott J M. Energy losses in waste products of brown trout (Salmo trutta L.)[J]. Anim Ecol, 1976, 45: 561-580.
    [70]成永旭,堵南山,赖伟.不同阶段中华绒螯蟹肝胰腺的脂类及脂肪酸组成[J].动物学报, 1998, 4(4):420-429.
    [71]陈再忠,王武,成永旭.性早熟中华绒螯蟹肝胰腺与性腺的酸性和碱性磷酸酶活性[J].水产学报, 2005, Oct. Vol.29, No.5.
    [72] Cahu CL, Zambonino I J L, Corraze G, et al. Dietary lipid level affects fatty acid composition and hvdrolase activities of intestinal brush border membrane in seabass [J]. Fish Phvsiol Biochem, 2000, 23(2): 165-172.
    [73]叶恭银.珍贵绢丝昆虫天蚕生殖生理的研究一内生殖器官的发育及其调控因子[D].浙江农业人学博士论文, 1996.
    [74]张树林,邢克智,杨超. Mg~(2+)·Ca~(2+)对中华绒螯蟹大眼幼体育成Ⅲ期仔蟹成活率和生长的影响[J].安徽农业科学, Journal 0f Anhui A. Sci. 2006, 34(17): 4308-4310.
    [75]陈昌生等. Ca~(2+), Mg~(2+)对中国龙虾叶状幼体存活、变态的影响[J].海洋学报, Vo1. 27, No. 1. January, 2005.
    [76]董少帅等. Ca~(2+)浓度对凡纳滨对虾稚虾生长的影响[J].水产学报, Vo1. 29. No. 2. Apr. 2005.
    [77]陈立侨,堵南山,赖伟.水体和配合饲料中钙、磷含量对河蟹生长的影响[J],淡水渔业, 1994, Vol. 24: No. 1.
    [78]吴嘉敏,姜新耀.中华绒螫蟹血淋巴Ca~(2+)和17β--雌二醇浓度与性早熟的关系[J].水产学报, 2001, 25(2): 112-115.
    [79] OnkenH, Putzenlechner M. AV–ATPase drives active, electrogenic and Na+–independent CI- absorption across the gills of Eriocheirsinensis[J]. J Exp Biol, 1995, 198: 767-774.
    [80]成永旭等.盐度及钙镁离子对中华绒螯蟹大眼幼体育成Ⅲ仔蟹的成活率和生长的影响[J].水产学报. Vol. 21, No.1. March, 1997, 84-88.
    [81]王慧,房文红,来琦芳.水环境中Ca~(2+)、Mg~(2+)对中国对虾生存及生长的影响[J].中国水产科学, Vol, 7. No. 1. Mar. 2000: 82-86.
    [82]戚少燕,汪留全,李海洋等.中华绒螯蟹脂类营养与代谢的研究进展[J].水利渔业, 2002, 12(5): 34-35.
    [83]温小波,陈立桥.磷脂和胆固醉在虾蟹类营养中的研究进展[J].淡水渔业, 2000, 30(5): 25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700