Mycobacterium neoaurum NwIB-01降解甾醇母核关键酶3-甾酮-△~1-脱氢酶和3-甾酮--羟化酶基因的鉴定及其基因工程改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甾体类药物具有重要的生理活性,在临床上有广泛的应用,是仅次于抗生素的第二大类药物。目前甾体药物生产中常用的方法有化学合成和微生物转化两种,其中微生物转化法显示出其巨大的优势。分枝杆菌可降解植物甾醇生成系列代谢中间体,例如雄甾-4--3,17-二酮(AD)、雄甾-1,4-二-3,17-二酮(ADD)、9a-羟基雄甾-4--3,17-二酮(-OH-AD)等,这些产物可作为前体用于制备临床甾体药物。国内对生产甾体菌种的研究仅限于简单筛选诱变,并未对菌种在分子水平上进行深入的探索,这也限制了国内甾体药物生产的进一步发展,而在国外,上述研究已经展开并进展迅速。随着分子生物学的发展和人们对甾体代谢机制研究的深入,基因工程在甾体药物生产中必将得到广泛的应用。
     本课题针对本研究室新筛选的一株具有应用前景的新金分枝杆菌NwIB-01 (Mycobacterium neoaurum NwIB-01),从基因水平上对甾体转化过程中的关键酶进行研究并在此基础上通过基因操作对筛选菌种的生产性状进行改良。NwIB-01能够转化植物甾醇同时生成AD与ADD,但AD与ADD结构相似,在工业生产中很难进行分离,这限制了该菌的进一步应用。基于此考虑,我们从NwIB-01中克隆出AD(D)相互转化并积累的关键酶基因,3-甾酮-△’-脱氢酶(KsdD)及3-甾酮--羟基化酶(KSH)基因,进而,通过基因工程的方法对这些关键酶进行了基因敲除强化等分子操作并初步构建了具有应用前景积累ADD的基因工程菌,上述基因都是在新金分枝杆菌中的首次报道。具体而言,本论文主要做了以下工作:
     1.菌种的筛选及性状研究
     鉴定出一株新金分枝杆菌(Mycobacterium neoaurum NwIB-01),在3.7-L发酵罐中NwIB-01可以转化15g/l的植物甾醇生成1.76g/l的AD及4.23 g/1 ADD,底物的摩尔转化率为57.8%。
     2.关键基因3-甾酮-△1-脱氢酶基因(ksdDM)的研究
     首次在新金分枝杆菌中克隆出3-甾酮-△1-脱氢酶的全序列。分析表明,ksdDM大小1701 bp,以GTG为起始密码子,可能的核糖体结合位点为其上游的GAAAGG序列,该基因与Mycobacterium smegmatis str. MC2155 (Genbank CP000480) ksdD的核苷酸序列一致性为82%(NCBI最高序列一致性)。通过pET系列质粒实现了ksdDM在大肠杆菌BL21(DE3)中的异源表达,pET-22b所表达的KsdDM酶活为0.8 U/mg蛋白。
     3.关键基因3-甾酮--羟基化酶基因(kshA)及3-甾酮--羟基化酶还原酶基因(kshB)的研究
     通过设计简并引物和基因走读的方法,分别得到了kshA及kshB基因的全长序列。kshA大小1188 bp,以GTG为起始密码子,其核糖体结合位点为以其上游的GGGAGG序列,这是kshA在新金分枝杆菌中的首次报道。kshA与NCBI中Mycobacterium smegmatis str. MC2155 (Genbank ACV87349)的核苷酸序列一致性为85%(NCBI最高序列一致性)。利用大肠杆菌表达载体pET-22b对kshA进行了克隆表达及全菌转化实验,同时将基因kshA及kshB在载体pET-22b中进行了共表达。
     4.3-甾酮-△1-脱氢酶基因(ksdDM)的无标记敲除
     利用分枝杆菌基因敲除质粒p2NIL和pGOAL19构建ksdDM自杀质粒,通过双交换基因重组技术实现目的基因的无标记敲除。ksdDM基因敲除菌(重组分枝杆菌NwIB-02)主要积累AD,在含0.1 g/L底物的摇瓶实验中,发酵96 h后,产物中AD和ADD的摩尔比为11.5:1,而野生菌主要积累ADD (AD:ADD=1:2.4)。
     5.3-甾酮-/△1-脱氢酶基因(ksdDM)的强化表达和产ADD基因工程菌的构建
     利用分枝杆菌复制型质粒pMV261及整合型质粒pMV306,将ksdDM在新金分枝杆菌NwIB-01中进行强化表达,构建分枝杆菌强化表达菌株NwIB-03及NwIB-04。发酵实验表明,NwIB-043.7-L发酵罐上产物中ADD的产量在加入底物96 h后达到最大值4.94g/l,此时AD的含量只有0.096g/l,产物中AD与ADD的摩尔比为AD:ADD=1:51.5。最终产物中ADD的纯度超过95%。
     6.甾体降解基因簇研究
     利用质粒pCC2FOS,构建新金分枝杆菌NwIB-01的Fosmid基因组文库,通过筛选及测序,得到了大约81 kb的基因簇序列并找到了多个甾体代谢关键酶。
     综上所述,本论文首次克隆出新金分枝杆菌中负责甾体代谢的关键基因ksdDM、kshA及kshB,并通过基因工程的方法改良了菌株的生产特性,得到了生产ADD的基因工程菌,这为甾体生产菌株的基因改良及甾体药物中间体的制备奠定了基础。
Due to the significant physiological activity, steroid drugs have been widely used in clinic application as its second place following antibiotic drugs. In contrast to the chemical synthesis, biotransformation provides an alternative method in the production of steroid medicine intermediates and has been used extensively as a common and economical process in the pharmaceutical industry. Phytosterols can be catabolized to a series of steroidal derivatives by Mycobacterium. Among these,4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) and 9a-hydroxy-4-androstene-3,17-dione (-OH-AD) are the major products usually applied in the industry due to their essential value in producting various steroid medications. Present domestic research of steroid production strains is just limited to strain isolation and mutation screening, but not involved in the steroid degradation genes at the molecular level, which hinder the development of domestic steroid drug industry. In abroad, rapid progress in this research has been occured. With the development of molecular biology and in-depth studies on steroid degradation system, genetic engineering is surely to play an important role in the production of steroid drugs.
     We obtained and investigated the key enzyme genes involved in the steroid degradation and modified Mycobacterium neoaurum NwIB-01 at the genetic level in this study. Consequently, strain NwIB-01 exhibited powerful ability of cleaving the side chain specifically from soybean phytosterols to accumulate AD (4-androstene-3,17-dione) and ADD (1,4-androstadiene-3,17-dione). However, the difficulty in separation of AD from ADD is one of the key bottlenecks to the microbial transformation of phytosterols in the industry. Due to the structural similarity, the AD and ADD mixture complicates their purification and decreases their yield, which impedes the further commercial application of strain NwIB-01. In this paper, we obtained some genes for key enzyme including 3-ketosteroidΔ1-dehydrogenase and 3-ketosteroid 9a-hydroxylase and this is the first report of the genes in Mycobacterium neoaurum. Moreover, We have tackled the problem via the gene disruption and augmentation of the key genes. The KsdDM augmentation mutant showed to be good 1,4-androstadiene-3,17-dione (ADD)-producing strains respectively. The detailed work was introduced as following:
     1. Strain screening and research on phenotype
     Strain NwIB-01 was selected and identified as Mycobacterium neoaurum. It was showed that when cultured in 15 g/1 phytosterols, the yield of ADD reached 4.23 g/1 while accompanied by 1.76 g/1 AD in 96-h-old culture (the molar yield of AD+ADD is 57.8%).
     2. Investigation of the key gene 3-ketosteroidΔ1-dehydrogenase (ksdDM)
     Complete open reading frame of 3-ketosteroidΔ1-dehydrogenase has been obtained from Mycobacterium neoaurum for the first time. The results show that the full length of ksdDM is 1701 bp with GTG as its starting codon, and the upstream sequence of GAAAGG is probably the ribosome binding site. Homology analysis revealed that ksdDM in NwIB-01 is 82% identical to the ksdD nucleotide sequence (Genbank CP000480) in Mycobacterium smegmatis str. MC2155 (NCBI highest homology). In addition, plasmids of pET series were used to the heterologous expression in E. coli BL21(DE3). The KsdDM activity was assayed by the spectrophotometrical method and the maximum activity of the intracellular soluble parts of KsdDM was 0.8 U/mg.
     3. Study of the key genes coding for 3-ketosteroid 9a-hydroxylase (kshA) and 3-ketosteroid -hydroxylase reducase (kshB)
     Complete gene sequences of 3-ketosteroid 9a-hydroxylase (kshA) and 3-ketosteroid 9a-hydroxylase reducase (kshB) have been obtained respectively relying on design of degenerate primers and genome walking. The results show that the full length of kshA is 1188 bp with GTG as its start codon, and a 6 bp sequence GGGAGG acts for the corresponding ribosome biding sites. Homology analysis revealed that kshA in NwIB-01 is 85%identical to the 3-ketosteroid 9a-hydroxylase nucleotide sequence (ACV87349) in Mycobacterium smegmatis str. MC2155 (NCBI highest homology). Subsequently, the whole open reading frame of kshA has been cloned and heterologously expressed using vector pET-22b in E.coli and co-expression system of kshA and kshB through vector pET-22b has been finally achieved.
     4. Gene knock-out of ksdDM
     The suicide plasmid of KsdD was constructed with the plasmids p2NIL and pGOAL19. At 96 h after adding phytosterols, the molar ratio of AD:ADD in products of strain NwIB-01 was 1:2.4, while the molar ratio reached 11.5:1 in products of mutant NwIB-02 (ksdDM knock-out mutant).
     5. Overexpression of ksdDM and construction of industrial strain producing ADD.
     Mycobacterial replicating vectors pMV261 and pMV306 were used to over-express ksdDM in NwIB-01 and the mutant NwIB-04 by overexpression ksdDM was constructed. For strain NwIB-04, ADD reached the maximum 4.94 g/1 at 96 h of culture, while AD showed no obvious accumulation during the whole time course and only 0.096 g/1 at 96 h. The molar ratio of AD:ADD is 1:51.5 in products of mutant NwIB-04, and the final purity of ADD exceeded 95%.
     6. Preliminary research on the steroid degradation gene cluster
     The genomic fosmid library was built by using plasmid pCC2FOS and the steroid degradation gene cluster was selected using degenerate primers. And about 81 kb fragment of the steroid degradation gene cluster was obtained. Furthermore, some key enzymes involved in steroid degradation have been discerned in this research.
     In short, this is the first report of the KsdD and Ksh genes in Mycobacterium neoaurum and the first report of gene-augmentation of a sterol catabolic enzyme to construct a sterol pathway intermediate (ADD)-producing strain. This study provides a feasible way to achieve excellent phytosterol-transforming strains with high product purity.
引文
[1]Murray H.C., Peterson D.H. Oxidation of steroids by Muoorales fungi. United States patent 2602729.1952
    [2]Trouillas P., Corbiere C., Liagre B., Duroux J.L., and Beneytout J.L. Struchture-function relationship for saponin effects on cell cycle arrest and apoptosis in the human 1547 osteosarcoma cells:a molecular modeling approach of natural molecules structurally close to diosgenin. Bioorg. Med. Chem.2005,13:1141-1149
    [3]吴时敏,吴谋成.植物甾醇的研究进展与趋势.中国油脂.2002,27(3):60-62
    [4]徐诗伟,徐清,法幼华.犁头霉11α-羟基化制备16p-甲基-11a,17a,21-三羟基孕甾-1,4-二-3,20-二酮.生物工程学报.2000,16(4):482-484
    [5]Kondo E., Masuo E. "Pseudo-crystallofermentation" of steroids:A new process for preparing prednisolone by a microorganism. J. Gen. Appl. Microbiol.1961,7:113-117
    [6]王敏,王春霞,路福平,杜连祥.甾体11β-羟基生物转化新工艺的研究.天津轻工业学院学报.2000,2:1-5
    [7]http://www.hw.org.cn/health/article/2,19580,生理学,医学书籍,文献资料
    [8]王敏.新月弯孢霉的甾体11β—羟基化作用研究.天津轻工业学院博士学位论文.2001:1-2
    [9]计志忠主编.化学制药工艺学.化学工业出版社.2000:148-163
    [10]封玉贤,周振起.我国薯芋皂甙元的工业生产和资源的回顾与展望.天然产物的研究与开发.1994,6:93-97
    [11]Fokina V.V., Karpov A.V., Sidorov I.A., Andrjushina V.A., Arinbasarova A.Y. The influence of β-cyclodextrin on the kinetics of 1-en-dehydrogenation of 6a-methylhydro cortisone by Arthrobacter globiformis cells. Appl. Microb. Biotechnol.1997,47:645-649
    [12]Jeries J., Raphael B. Microbial transformation in a cyclodextrin medium.Part 3. Cholesterol oxidation by Rhodococcus erythropolis. Appl. Microb. Biotechnol.1993,40: 230-240
    [13]Krook M., Hewitt B.D. Preparation of 6-methyleneaneandrosta-1,4-diene-3,17-dione, uses a dehydrogenation reaction using A.simplex cells. W O Patent 0104342.2001
    [14]Abou E.I., Hawa M., Mahfouz W., Taha O., Sallam A.R. Δ1-Dehydrogenation of cortisol with bacteria:some biochemical aspects of Δ1-dehydrogenation of cortisol with Coryne bacteriume-gui. E. J. Microb.1993,28(3):281-287
    [15]Adham N.Z., El Hady A.A., Naim N. Biochemical studies on the microbial Δ1-dehydro-genation of cortisol by Pseudomonas fluorescens. Process Biochem.2003,38(6): 897-902
    [16]徐诗伟,徐清,法幼华.甾体1,4-脱氢和11 α-羟化反应的两种不同微生物转化.生物工程学报.2000,16(5):651-652
    [17]Alekhina T.M., Ryzhkova V.M., Gusarova T.I., et al. Microbiological Transformation of steroid-13-cyclodextrininclusion compounds. Khim. Farm. Zh.1993,27(4):59-62
    [18]Belikov V.Q., Kompantseva E.V., Gavrilin M.V. Potential use of cyclodextrin to improve the procedure for obtaining predinsolone. Khim. Farm. Zh.1991,25(2):48-49
    [19]Morii S., Fujii C, Miyoshi T., et al. 3-Ketosteroid-Δ1-dehydrogenase of Rhodococcus rhodochrous sequencing of the genomic DNA and hyperexpression purification, and characterization of the recombinant enzyme. J. Biochem.1998,124:2029-2036
    [20]Lestrovaya N.N. Localization of 3-oxosteroid-A'-dehydrogenase in Mycobacterium rubru and Arthrobacter globilormis cells. Mikrobiologiya.1981,50(4):619-725
    [21]Adham N.Z., E1 Hady A.A., Naim N. Biochemical studies on the microbial dehydrogenation of cortisol by Pseudomonas fluorescens. J. Process. Biochem.2003, 38(6):897-902
    [22]Lestrovaya N.N., Matveeva N.I. Interaction of phospholipids with 3-oxo-Δ1-dehydrogenase in adsorption membrane models, Interaction of the Mycobacterium rubrum enzyme with liposomes. J. Biokhimiya,1982,47(8):1272-1277
    [23]Buchland B.C., Dunnill P., Lilly M.D., et al. The enzymatic transformation of water-in soluble reactants in nonaqucous solvents. Conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp. Biotechnol. Bioeng.2000,67(6):714-719
    [24]Yukimatsu K., Kaji A. Preparation of androsta-3,17-diones. JP54067096.1979
    [25]Levy M.A., Holt D.A., Martin B., Metcalf B.W. Inhibition of 3(17)beta-hydroxysteroid dehydrogenase from Pseudomonas testosteroni by steroidal A ring fused pyrazoles. Biochemistry.1987,26(8):2270-2279
    [26]Levy R.A., Talalay P. Studies on the enzymatic mechanism of ring A dehydrogenation, J. Biol. Chem.1999,234:2014-2021
    [27]Itagaki E., Matushita H., Hata T. The enzymatic transformation of water-insoluble reactants in nonaqueous solvents. Conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp. J. Biochem.1990,108:122-127
    [28]Plesia P., Grandguillot M., HarayamaS., etal. Cloning, seqencing, andexpession of Pseudomonas testosteroni gene encoding 3-oxosteroid Δ1-Dehydrogenase. J. Bacteriol.1991,9:7210-7219
    [29]Choi K.P., Molnar I.J., Yamashita M., et al. Purification and characterization of the 3-ketosteroid-deltal-dehydrogenase of Arthrobacter simplex produced in Streptomyces lividans. J. Biochem.1995,'117(5):1043-1049
    [30]Molnar I., Choi K.P., Yama shita M., et al. Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-Δ1-Dehydrogenase,3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein. Mol. Microbiol.1995,15(5):895-905
    [31]Kaufmann G, Thole H., Kraft R., Atrat P. Steroid-1-dehydrogenase of Rhodococcus erythropolis:purification and N-terminal amino acid sequence. J Steroid Biochem Mol Biol.1992,43(4):297-301
    [32]Van der Geize R., Hessels G.I., van Gerwen R., et al. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid-Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS. Microbiol. Lett.2001, 18:197-202
    [33]Van der Geize R., Hessels G.I., Van gerwen R., Vrijbloed J.W. Targeted Disruption of the kstD Gene Encoding a 3-Ketosteroid-Δ1-Dehydrogenase Isoenzyme of Rhodococcus erythropolis Strain SQ1. Appl. Environ. Microbiol.2000,66(5):2029-2036
    [34]Abul Hajj Y.J. Stereochemistry of C1,2-dehydrogenation of 5β-pregnane-3,11,20-trione by Septomyxa affnis. J Biol Chem.1972,247(3):686-691
    [35]Fernandes P., and Cabral J.M.S. Phytosterols:Applications and recovery methods. Bioresour Technol.2007,98:2335-2350
    [36]Van der Geize R., Hessels G.I., khuizen L., et al. Molecular and functional characterization of the kstd2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid-dehydrogenase isoenzyme. Microbio.2002,148:3285-3292
    [37]Drew D.E., Heiine G.V., Nordlund P., et al. Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS. Letters.2001, 507(2):220-224
    [38]Kim Chul B., Lee J.M., Ahn J.S., and Kim B.S. Cloning, Sequencing, and Characterization of the Pradimicin Biosynthetic Gene Cluster of Actinomadura hibisca P157-2. J. Microbiol. Biotechnol.2007,17:830-839
    [39]Knol J., Bodewits K., Hessels G.I., Dijkhuizen L., and Van der Geize R. 3-Keto-5a-steroid A'-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. J. Biochem.2008,410:339-346
    [40]Marsheck W.J., Kraychy S., and Muir R.D. Microbial Degradation of Sterols. Appl. Environ. Microbiol.1972,23:72-77
    [41]Fernandes P., Cruz A., Angelova B., et al. Microbial conversion of steroid compounds: recent developments. Enzyme. Microb. Technol.2003,32:688-705
    [42]Holland H.L. Recent advances in applied and mechanistic aspects of the enzymatic hydroxylation of steroids by whole-cell biocatalysts. Steroids.1999,64:178-186
    [43]Mahato S.B., and Garai S. Advances in microbial steroid biotransformation. Steroids. 1997,62:332-345.
    [44]Finnerty W.R. The biology and genetics of the genus Rhodococcus. Annu. Rev Microbiol.1992,46:193-218
    [45]张辉,姜文勇等.大豆甾醇的微生物降解及酶抑制剂的选择.哈尔滨理工大学学报.2000,5(4):75-78
    [46]Goswami P.C., Singh H.D., et al. Factors limiting the microbial conversion of sterols to 17-ketosteroids in the presence of metal chelate inhibitors. Folia. Microbiol.1984, (29): 209-216
    [47]Larkin M.J., Kulakov L.A., and Allen C.C. Biodegradation and Rhodococcus—masters of catabolic versatility. Curr. Opin. Biotechnol.2005,16:282-290
    [48]McLeod M.P., Warren R.L., Hsiao W.W., et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci USA. 2006,103:15582-15587
    [49]Van der Geize R., and Dijkhuizen L. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol.2004,7: 255-261
    [50]Van der Geize R., Hessels G.I., Van Gerwen R., et al. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid -hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol. Microbiol.2002,45:1007-1018
    [51]Chang F.N., and Sih C.J. Mechanisms of steroid oxidation by microorganisms. VII. Properties of the 9a-hydroxylase. J. Biochem.1964,3:1551-1557
    [52]Andor A., Jekkel A., Hopwood D.A., et al. Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9a-hydroxylase in Mycobacterium smegmatis mc2155. Appl. Environ. Microbiol.2006, 72:6554-6559
    [53]Arnell R., Johannisson R., Lindholm J., et al. Biotechnological approach to the synthesis of 9alpha-hydroxylated steroids. Prep. Biochem. Biotechnol.2007,37:309-321
    [54]Van der Geize R., Yam K., Heuser T., et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. USA.2007,104:1947-1952
    [55]Capyk J.K., D'Angelo I., Strynadka N.C., et al. Characterization of 3 ketosteroid -hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J. Biol. Chem.2009,284:9937-9946
    [56]Martin C.K.A. Microbial cleavage of sterol side chains. Adv. Appl. Microbiol.1977,22: 29-58
    [57]Meyer J.D.F., Deleu W., Garcia-Mas J., and Havey M.J. Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon(Cucumis melo). Mol. Genet. Genomics.2008,279: 473-480
    [58]Papavinasasundaram K.G., Colston M.J., and Davis E.O. Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol. Microbiol. 1998,30:525-534
    [59]Parish T., and Stoker N.G. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. J. Gen. Microbiol.2000,146:1969-1975
    [60]Rezwan M., Laneelle M.A., Sander P., and DaffeM. Breaking down the wall: Fractionation of mycobacteria. J. Microbiol. Methods.2007,68:32-39
    [61]Hoffmann C., Leis A., Niederweis M., et al. Disclosure of the mycobacterial outer membrane:Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci. USA.2008,105:3963-3967
    [62]Kieslich K. Bioconversion and binding of sterols by thermophilic moulds. J. Basic Microbiol.1985,25:461-474
    [63]Marscheck W.J. Microbiological transformation of prostaglandins:Ⅱ.Stereospecific reduction of A (±)-Δ8(12)-15-dehydro-prostaglandin. Appl. Microbiol.1972,23:72-76
    [64]Szentirmai A. Microbial physiology of side-chain degradation of sterols. J. Ind. Microbiol.1990,6:101-116
    [65]Wovcha M.G., BrooksK E., Kominek L.A. Evidence for two steroid 1,2-dehydrogenasea ctivities in Mycobacterium fortuitum. Biochim. Biophys. Acta.1979,574:471-479
    [66]Fernandes P., Cruz A., Angelova B., et al. Microbial conversion of steroid compounds: Recent developments. J. Enzyme. Microb. Technol.2003,32:688-705
    [67]陈驹声.近代工业微生物学(下册)[M].上海:上海科学技术出版社,1982
    [68]沈裕康.微生物转化在甾体激素生产中的应用[J].工业微生物.1987,17:26-33
    [69]法幼华,朱慧天,张丽青等.全国微生物学1963年学术年会论文摘要集.196345-49
    [70]计志忠.高聚物合成工艺设计基础.北京:化学工业出版社.1994
    [71]刘志恒、姜成林.放线菌现代生物学与生物技术.科学出版社.2004
    [72]Marscheck W.J. Microbial degradation of steroids. Appl. Microbial.1972,23:72-76
    [73]王敬一,殷芝华等.β-谷甾醇侧链的降解:△4-雄甾-3,17-二酮的生成.药学学报.1991,27(1):22-25
    [74]陈知本,熊那等.β-谷甾醇侧链的微生物降解.中国药科大学学报.1991,22(4):221-224
    [75]史济平,褚志义等.珊瑚红球菌降解胆甾醇制备雄甾-1,4-二-3,17-二酮的研究.中国医药工业杂志.1993,23(5):204-207
    [76]王黎明,董贞等.诺卡菌降解胆固醇边链的发酵研究.上海医科大学学报.1991,18(1):98-101
    [77]李莹,戈梅等.雄甾二酮转化菌的诱变育种.中国医药工业杂志.2003,34(7):322-324
    [78]吴宝华,李菁等.降解大豆甾醇微生物菌株的诱变研究.哈尔滨师范大学自然科学学报.2002,18(4):88-92
    [79]车成彬,刘景春等.大豆甾醇侧链的生物降解.哈尔滨理工大学学报.2002,7(1):93-95
    [80]Bhattecharyya P.K., Rao M.K., et al. Microbial Oxidation of Sterol Side-chains. Indian. Chem. Soc.1984,61(1):26-32
    [81]叶丽,李增霞等.分枝杆菌降解β-谷甾醇制备雄甾-1,4-二-3,17-二酮.复旦学报(医学版).2002,29(4):280-283
    [82]Nury L., Blanca F., et al. Glucose and Lactose effect on AD and ADD bioconversion by
    Mycobacterium sp. Biotech. Lett.1995,17(11):1237-1241
    [83]Malaviya A., Gomes J. Androstenedione production by biotransformation of phytosterols. Biores. Technol.2008,99:6725-6737
    [84]Sih C.J. Process for preparing steroids. US Patent.1984,4:444-884
    [85]Lanne C., Boeren S., et al. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng.1987,30:81-87
    [86]Hocknall M.D., Lilly M.D. The use of free and immobilised Arthrobacter simplex in organic solvent/aqueous two-liquid-phase reactors. Appl. Microbiol. Biotechnol.1990,33: 148-153
    [87]郝雪秦,许激扬,陈代杰等.固定化分枝杆菌BD 696—6产雄二酮发酵条件的研究.药物生物技术.2003,10(3):169-173
    [88]Cruz A., Fernades P., et al. Effect of phase composition on the whole-cell bioconversion of β-sitosterol in biphasic media. J. Mol. Catal B:Enzymatic.2002,19:371-375
    [89]Cruz A., Fernades P., et al. Whole-cell bioconversion of β-sitosterol in aqueous-organic two-phase systems. J. Mol. Catal B:Enzymatic.2001(11):579-585
    [90]Wang Z., Zhao F., Hao X., et al. Microbial transformation of hydrophobic compound in cloud point system. J. Mol. Catal B:Enzym.2004,27:147-153
    [91]Wang Z., Zhao F., Hao X., et al. Model of bioconversion of cholesterol in cloud point system. J. Biochem. Engin.2004,19:9-13
    [92]Wang Z., Zhao F., Chen D., et al. Cloud point system as a tool to improve the efficiency of biotransformation. Enzyme. Microb. Technol 2005,36:589-594.
    [93]Wang Z., Zhao F., Chen D., et al. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process. Biochem.2006,41:557-561.
    [94]Nikado H., Jarlier V. Permeability of the Myeobacterial cell wall. Microbiol.1991,142: 440-445
    [95]Pandey A.K., Sassetti C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA.2008,105:4376-4380
    [96]Mohn W.W., Van der Geize R., Stewart G.R., et al. The Actinobacterial mce4 Locus Encodes a Steroid Transporter. J. Biol. Chem.2008,283:35368-35374
    [97]田琳,李玉,路福平等.植物甾醇侧链降解菌1,2脱氢酶基因敲除与应用.中国生物工程杂志.2007,27(5):39-44
    [98]Van der Geize R., Hessels G.I., Nienhuis-Kuiper M., et al. Characterization of a second Rhodococcus erythropolis SQ13-ketosteroid-9a-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. Appl. Environ. Microbiol.2008,74:7197-7203
    [99]Mathieu, J.M., Mohn, W.W., Eltis, L.D., LeBlanc, J.C., Stewart, G.R., Dresen, C. 7-Ketocholesterol Catabolism by Rhodococcus jostii RHA1. Appl. Environ. Microbiol. 2010,76(1):352-355
    [100]Mohn W.W., Van der Geize R., Stewart G.R., et al. The Actinobacterial mce4 Locus
    Encodes a Steroid Transporter. J. Biol. Chem.2008,283:35368-35374
    [101]Brzostek A., Sliwinski T., Rumijowska-Galewicz A., et al. Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. Microbiol.2005,151:2393-2402
    [102]Brzostek A., Dziadek B., Rumijowska-Galewicz A. Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. Excerpta Medica Abstract J Section 4, Microbiol:Bacteriol, Mycol, Parasitol and Virol.2007,275:106-112
    [103]Yang X., Dubnau E., Issar S., et al. Rv1106c from Mycobacterium tuberculosis is a 3β-Hydroxysteroid Dehydrogenase. Biochem.2007,46:9058-9067
    [104]Donova M.V. Transformation of steroids by actinobacteria:A review. Appl Biochem Microbiol.2007,43:1-14
    [105]Donova M.V., Gulevskaya S.A., Dovbnya D.V., et al. Mycobacterium sp. mutant strain producing 9a-hydroxyandrostenedione from sitosterol. Appl. Microbiol. Biotechnol. 2005,67:671-678
    [106]Donova M.V., Egorova O.V., Nikolayeva V.M. Steroid 17β-reduction by microorganisms-a review. Process. Biochem.2005,40:2253-2262
    [107]Donova M.V., Dovbnya D.V., Sukhodolskaya G.V., et al. Microbial conversion of sterol-containing soybean oil production waste. J. Chem. Technol. Biotechnol.2005,80: 55-60
    [108]Donova M.V., Dovbnya V.M., Dovbnya D.V., et al. Methyl-P-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiol.2007,153:1981-1992
    [109]Egorova O.V., Nikolayeva V.M., Donova M.V. Contents continued. J. Mol. Catal B: Enzym.2009,57(1-4):III-IV
    [110]Voishvillo N.E., Andryushina V.A., Savinova T.S., et al. Identification of a New Steroid-Transforming Strain of Mycobacteria as Mycobacterium neoaurum. Appl. Biochem. Microbiol.2003,39:152-157
    [111]Molchanova M.A., Andryushina V.A., Savinova T.S., et al. Preparation of androsta-1,4-diene-3,17-dione from sterols using Mycobacterium neoaurum VKPM Ac-1656 strain. Russian J. Bioorg Chem.2007,33:354-358
    [112]Rodina N.V., Molchanova M.A., Voishvillo N.E. Conversion of phytosterols into androstenedione by Mycobacterium neoaurum. Appl. Biochem. Microbiol.2008,44: 48-54
    [113]Malaviya A., Gomes J. Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. J. Ind. Microbiol. Biotech.2008,35:1235-1239
    [114]Malaviya A., Gomes J. Nutrient broth/PEG200/TritonX114/Tween80/Chloroform microemulsion as a reservoir of solubilized sitosterol for biotransformation to androstenedione. J. Ind. Microbiol. Biotech.2008,35:1435-1440
    [115]Malaviya A., Gomes J. Rapid Screening and Isolation of a Fungus for Sitosterol to Androstenedione Biotransformation. Appl. Biochem. Microbiol.2009,158(2):374-386
    [116]Perez C., Falero A., Llanes N., et al. Resistance to androstanes as an approach for androstandienedione yield enhancement in industrial mycobacteria. J. Ind. Microbiol. Biotechnol.2003,30:623-626
    [117]Perez C., Falero A., Hung E.B.R., et al. Bioconversion of phytosterols to androstanes by mycobacteria growing on sugar cane mud. J. Ind. Microbiol. Biotechnol.2005,32: 83-86
    [118]Cruz A., Fernandes P., Pinheiro H.M.. Whole-cell bioconversion of β-sitosterol in aqueous-organic two-phase systems. J. Mol. Catal B:Enzym.2001,11:579-585
    [119]Llanes N., Fernandes P., Leon R., et al. Conversion of β-sitosterol by Mycobacterium sp. NRRL B-3805 cells immobilized on Celite supports. J. Mol. Catal B:Enzym.2001, 11:523-530
    [120]Cruz A., Fernandes P., Cabral J.M.S., et al. Effect of phase composition on the whole-cell bioconversion of β-sitosterol in biphasic media. J. Mol. Catal B:Enzym.2002, 19-20:371-375
    [121]Staebler A., Cruz A., Van der Goot W., et al. Optimization of androstenedione production in an organic-aqueous two-liquid phase system. J. Mol. Catal B:Enzym.2004, 29:19-23
    [122]Cruz A., Fernandes P., Cabral J.M.S., et al. Solvent partitioning and whole-cell sitosterol bioconversion activity in aqueous-organic two-phase systems. Enzym. Microb. Technol.2004,34:342-353
    [123]Rumijowska-Galewicz A., Ziolkowski A., Korycka-Machala M., et al. Alterations in lipid composition of Mycobacterium vaccae cell wall outer layer enhance b-sitosterol degradation. World J. Microbiol. Biotechnol.2000,16:237-244
    [124]Brzostek A., Korycka-Machala M., Ziolkowski A., et al. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds. Microbiol.2001,147:2769-2781
    [125]Rumijowska-Galewicz A., Korycka-Machala M., Lisowska K., et al. The Composition of Cell Wall Skeleton and Outermost Lipids of Mycobacterium vaccae is Modified by Ethambutol Treatment. Pol. J. Microbiol.2008,57(2):99-104
    [126]杨英,姜绍通,操丽丽等.双液相系统中生物降解植物甾醇制备雄二酮工艺.农业机械学报.2008,39(9):19-86
    [127]姜绍通,胡锦艳,杨英等.食品科学.分枝杆菌Mycobacterium ZLP生产雄二酮(4-AD)的优化工艺.2007,28(11):386-390
    [128]姜绍通,赵俊平,杨英等.两相系统发酵转化植物甾醇为雄二酮的研究.食品与发酵工业.2008,34(6):46-48
    [129]杨英,姜绍通,潘丽军.双水相系统微生物转化植物甾醇制备雄二酮研究.食品与发酵工业.2008,34(9):61-64
    [130]邹膺,黄为一,戈梅等.分支杆菌Mycobacterium fortuitum HCCB003 Δ~1-脱氢酶的初步研究.工业微生物.2003,33(3):33-35
    [131]付磊,李莹,王旻等.微生物降解甾醇侧链转化雄甾-4--3,17-二酮的研究进展.药学进展.2004,28(4):176-178
    [132]凌良飞,戈梅,付磊等.微生物转化技术在现代医药工业中的应用.微生物学报.2005,45(4):526-528
    [133]戈梅,夏兴,陈代杰等.睾酮转化菌的诱变育种.中国医药工业杂志.2007,38(7):488-490
    [134]马玉梅、杨根生.基于中试规模条件分枝杆菌降解甾醇侧链的初步研究.浙江化工.2008,39(9):6-9
    [135]廖伟宏,饶志明,方慧英等.菌株Bacillus sp ST06-95转化植物甾醇为雄甾酮发酵条件的优化.食品工业科技.2008,29(8):57-63
    [136]张辉,姜文勇,牟宏晶.大豆甾醇的微生物降解及酶抑制剂的选择.哈尔滨理工大学学报.2000,5(4):75-78
    [137]Lin Y., Song X., Fu J., et al. Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld. Biores. Technol.2009,100:1864-1867
    [138]Van der Geize R., Hessels G, Dijkhuizen L. WO 01/31050 Al.2001
    [139]Van der Geize R., Van der Meijden P., Dijkhuizen L. WO 2003/070925 A3.2003
    [140]Van der Geize R., Hessels G, Dijkhuizen L. WO 2009/024572 Al.2009
    [141]Chen W., Georgiou G. Cell surface display of heterolngous proteins:From high-throughput screening to environmental applieations. J. Bio-technol. bioeng.2002,79: 496-503
    [142]Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. J. Nucleic. Acids. Res.1997,25:3389-3402
    [143]Horinouchi, M., T. Hayashi, T. Yamamoto, and T. Kudo.2003. A New Bacterial Steroid Degradation Gene Cluster in Comamonas testosteroni TA441 Which Consists of Aromatic-Compound Degradation Genes for Seco-Steroids and 3-Ketosteroid Dehydrogenase Genes. Appl. Environ. Microbiol.69:4421-4430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700