甾体药物中间体HMPDD的C_(1,2)位微生物脱氢工艺和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗炎甾体激素药物的母核在C_(1,2)位置导入双键后,能成倍地提高其抗炎活性。与化学方法相比,采用微生物法脱氢,具有反应条件温和、专一性强(包括结构专一性和立体专一性)以及转化率高等优点,已成为甾体激素药物生产中的重要反应之一。
     倍他米松(Betamethasone),即16β-甲基--氟氢化泼尼松(16β-methyl-9 α-fluoroprednisolone),是目前糖类皮质激素中作用最强的药物之一,其抗炎作用是氢化可的松(hydrocortisone)的35倍,比强的松高10倍,是地塞米松的2.5倍,且副作用小。倍他米松的生产,一般采用剑麻或薯蓣皂素为合成的起始原料。在合成路线中,17α—羟基—16β—甲基—孕甾—4,9(11)—二3,20—二酮(简称HMPDD),经微生物脱氢生成17α—羟基—16β—甲基—孕甾—1,4,9(11)—三3,20—二酮(简称HMPTD),是关键反应之一。该反应可由简单节杆菌催化实现。反应式如下:
     论文在对我国甾体药物工业的现状,微生物转化技术在甾体药物生产中的应用,甾体激素的微生物脱氢研究进展,以及新技术的开发等方面加以全面综述的基础上,针对HMPDD生物转化脱氢的研究报道很少,以及在实际生产中存在的转化率偏低等问题,就HMPDD生物转化脱氢的菌种选育,甾体脱氢酶产酶条件,生物转化新工艺以及生物转化的动力学等方面进行了深入的研究。
     首先对适用于HMPDD生物转化脱氢的微生物菌种进行了选育。从实验室收集、保藏的15株简单节杆菌中,通过摇瓶转化的方法,进行菌种的初筛,并经过菌种的分离、纯化,得到转化率较高的2-76菌株。以该菌株为出发菌株,采用紫外线诱变处理,并结合Cs~(137)-γ射线辐照的复合诱变处理方法,选育得到了较佳正变株Q4-2-51,其摇瓶发酵的转化率达86.63%,较原始菌株提高了8%。
    
    浙江大学博士学位论文
    该诱变株经群体连续传代方式考察,遗传性能比较稳定。
     研究中优化了发酵培养基的组成,考察了Q4一2一51菌株产幽体脱氢酶的较佳
    工艺条件。通过单因素实验和正交试验优化,确定的较佳培养基组成为:葡萄糖
    0.4%,玉米浆1.2%,蛋白陈0.3%,KHZPO40.2%。简单节杆菌产幽体脱氢酶
    的最适条件为:接种量20%,培养基初始pH 7.0,摇瓶装量100 ml/250 ml。
    HMPDD可诱导菌体产酶,其较适加量为0.05 g/L,且诱导物以在菌体生长初期
    加入为好。金属离子cuZ十和Fe3+明显抑制菌体产酶,zn2+和Fe2+对产酶的抑制
    作用较弱,c犷+和Mg2+则对产酶有一定的促进作用。培养基中加入适量的表面
    活性剂,如泡敌或吐温一80,对产酶有一定的促进作用。
     论文还就HMPDD的微生物转化工艺条件进行了研究,得到较佳的转化工艺
    条件:接种量巧%,摇瓶装量为100 ml/250 ml,培养基初始pH7.0一7.5,诱导物
    加量O.05g/L。试验中选用乙醇作为HMPDD的增溶介质,其最适加量为7%(v/v)。
    研究中还探讨了水析投料法促进微生物脱氢反应的机理。较适的底物投料浓度为
    0.7%,并且HMPDD以一次性投料为好。转化过程中加入适量的氯化钻、外源
    电子受体(辅酶I、辅酶11、维生素K3)或表面活性剂吐温一80,对转化率的提
    高均有一定的促进作用。论文首次将培养液稀释转化新工艺,应用于简单节杆菌
    催化的HMPDD脱氢过程。研究开发的稀释转化新工艺中选用无菌水为稀释介
    质,当稀释比为1:1(v/v)时,HMPDD的转化率与不稀释的原工艺(对照)相近,
    故能大大减少转化反应中作为生物催化剂的菌体用量,提高设备利用率,降低生
    产成本。此外,还考察了采用超声波分别处理微生物菌体、投料后的菌悬液以及
    HMPDD底物(水析料)对转化结果的影响。结合底物超声波处理的培养液稀释
    转化新工艺,可使摇瓶发酵转化率高达92.54%。研究发现,超声波处理能有效
    地使底物颗粒细化,提高固体颗粒的比表面积,进而提高底物的溶解速率,起到
    强化传质的作用。
     论文分别采用10L罐、3OOL罐和3T罐,对HMPDD的微生物脱氢工艺进
    行了逐级放大试验。10L罐小试中发现,提高转化阶段的通气量,有利于提高转
    化速率,缩短转化周期,提高转化得率。转化30h的HMPDD脱氢转化率可达
    86.54%。采用300L罐进行了三个批次的转化试验,控制菌体生长和转化阶段的
    通气量分别为0.4 VVm和0.3 VVm,搅拌转速为200 r/min,24h时的平均转化
    率达到80.32%。3T罐发酵时,控制菌体生长和转化阶段的通气量分别为0.25
    VVm和0.2 VVm,搅拌转速为200:/min,六个批次的平均转化率为840%。以
    上研究结果表明,HMPDD生物转化反应的放大过程中虽存在一定的放大效应,
    但并不严重。
    
    摘要
     本文首次研究了简单节杆菌游离细胞催化HMPDD脱氢的反应动力学。考察
    了不同投料方式下HMPDD晶体的粒径大小和分布,幽体脱氢酶的稳定性,以及
    底物浓度和酶量等对转化反应初速度的影响,建立了相应的动力学模型。并从实
    验数据回归分析,得到了有关的动力学参数。模型计算结果与实验数据比较表明,
    提出的动力学模型能较好地描述HMPDD的微生物脱氢过程。动力学研究结果为
    调控转化条件,提高脱氢酶的催化活性提供了理论依据。
     街体的生物转化过程不同于常规的发酵过程
After dehydrogenation and double bond formation in C1,2 of steroid ring system, the anti-inflammatory activity of hormone-type medicines will be many times higher than that of the original one. At mild conditions, (such as low temperature, low pressure, etc.), the dehydrogenation reaction of steroid can be catalyzed by certain microorganisms with higher selectivity and productivity comparing with that of the chemical methods, so that the biodehydrogenation has become an important reaction in the production of hormone-type medicines.
    Beta-methasone, 16p-methyl --fluoroprednisolone, was one of the most effective anti-inflammatory drug. The anti-inflammatory activity of beta-methasone is 35, 10 and 2.5 times higher than that of hydrocortisone, prednisone and dexamethasone, respectively. 17α-hydroxy-16β-methyl-pregn-l, 4, 9(ll)-triene-3, 20-dione (HMPTD) is an important intermediate in the production of beta-methasone, which is one of the key reactions in beta-methasone production and is a dehydrogenation product of 17 α-hydroxy-16 β-methyl-pregn-4, 9(ll)-diene-3, 20-dione (HMPDD) , which was catalyzed by Arthrobacter simplex. The reaction is as follows:
    The current status of steroids industry, the progress in microbial dehydrogenation of steroids and the applications of new technology used in the steroid biotransformation are reviewed, and the prospects of steroid medicines are discussed as well. Based on the fact that only a few reports on the bio-dehydrogenation of HMPDD, and low conversion ratio of HMPDD currently, the purposes of this work are: the strain screening, better fermentation conditions for the formation of 1-dehydrogenase, the improvement for efficient bio-dehydrogenation of HMPDD, the research and development of new technology for the bioconversion of HMPDD, and the kinetics of biotransformation processes.
    A strain 2-76 with higher bioconversion ratio of HMPDD was screened out by
    
    
    
    bioconversion test in shake bottle after strain separation and purification from 15 strains of Arthrobacter simplex. The strain 2-76 was further mutated by UV treatment arid Cs137-γ irradiation, and a better strain Q4-2-51 was obtained by isolating and rejuvenescention. The conversion ratio of HMPDD catalyzed by Q4-2-51 reached 86.63%, which was 8% higher than that of the original strain 2-76. The hereditary stability of this positive mutant was satisfactory.
    The effects of medium composition and culture conditions on the dehydrogenase activity of strain Q4-2-51 were evaluated experimentally. The optimized medium composition was as follows (g/L): glucose 4, corn steep liquor 12, peptone 3, KH2PO4 2. The optimized fermentation conditions for cell growth and formation of 1-dehydrogenase were as follows: initial pH value, pH7.0; inoculum volume, 20%; amount of inducer, 0.05g/L; and 100 ml medium in 250 ml shaken flask. Dehydrogenase production was enhanced by Co2+ and Mg2+, and slightly inhibited by Zn2+and Fe2+, but was markedly inhibited in the presence of Cu 2+ and Fe3+. The growth of Arthrobacter simplex and the production of dehydrogenase were also inhibited strongly by detergent and SDS. However, the addition of Tween 80 and a kind of defoamer, triatomic alcohol polyether, was beneficial for the enzyme production.
    The biotransformation conditions for the dehydrogenation of HMPDD were also investigated in depth, and the optimal conditions were obtained as follows: inoculum volume, 15%; loading amount, 100 ml in 250 ml shake vessel; initial pH value of medium, pH7.0~7.5, amount of inducer, 0.05g/L; amount of ethanol used to improve the solubility of steroid substrate, 7% (v/v); and the concentration of HMPDD should be kept at 0.7%. It was found that the addition of appropriate amount of cobalt chloride, external electron acceptor (NADP NAD and menadione), or Tween 80, had a considerable positive effect on the bioconversion ratio. A new strategy was proposed to perform the biotransformation: the fermentation broth was diluted with aseptic water in the ratio of l:l(v/v), and the conversion ratio was m
引文
1.熊宗贵主编,发酵工艺原理,北京:中国医药科技出版社,2000,p379~388
    2.俞俊棠,唐孝宣主编,生物工艺学(下册),上海:华东理工大学出版社,1992,p278~191
    3. Kutney JP, Novak E, Jones PJ. Process of isolating a phytosterol composition from pulping soap. US Patent 5, 770, 749(1998)
    4. Suzuki K, Nakata T, Shimizu T, Enomoto K. Anti-obesity agents. US Patent 5,846,962(1998)
    5. Dombrowski AW, Hazuda DJ, Polishook JD, Felock P J, Singh SB, Zink DL. HIV-integraseinhibitors. WO Patent 0036132(2000)
    6.诸志义,生物合成药物学,化学工业出版社,2000,p647~665
    7. Murray HC, Peterson DH., Oxygenation of steroids by Muoorales fungi, US Patent 2,602,729,1952
    8.郭勇主编,生物制药技术,北京:中国轻工业出版社,2000,p225~245
    9. Charney W, Herzog H L. Microbial transformation of steroids. New York, Academic Press, 1967
    10. Murry H C. Microbiology of steroid. In: Industry Microbiology, Miller B(eds.), 1976, 79~105
    11.法幼华.甾体化合物的微生物转化与合成.In:工业微生物成就(张树政编),北京:科学出版社,1988,17~32
    12. Wang Jun, Chen Chang Zhi, Li Bao an, et al. Production of hydrocortisone from cortexolone-21-acetate by immobilized Absidia orchidis in cosolvent-containing media. Enzyme Microb Technol, 1998, 22: 368~373
    13.刘其明.我国甾体微生物工业的发展.工业微生物,1989,(3):28~31
    14. Lizuka H, Natio A. Microbial conversion of steroids and alkaloids. Springer-Veriag.Berlin Heidelberg. New York. University of Tokyo Press, 1981, 329~347
    15.徐诗伟,徐清,法幼华,犁头霉11α-羟基化制备16β-甲基-11α,17α,21-三羟基孕甾-1,4-二-3,20-二酮,生物工程学报,2000,16(4),482~484
    
    
    16.王敏,王春霞,路福平,杜连祥,甾体11β-羟基生物转化新工艺的研究,天津轻工业学院学报,2000,(2),1~5
    17. Llanes N, Pendás J, Falero A, Pérez C, et al. Conversion of liposomal 4-androsten-3, 17-dione by A.simplex immobilized cells in calcium pectate. The Journal of Steroid Biochemistry and Molecular Biology, 2002, 80(1): 131~133
    18. Manosroi J, Sripalakit P, Manosroil A. Bioconversion of hydrocortisone to prednisolone by immobilized bacterium cells in a two-liquid-phase system. J chem Technol Biotechnology, 1998, 73: 203~210
    19. Dias A C P, Cabral J M S, and Pinheiro H M. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents. Enzyme Microb Technol, 1994, 16: 708~714
    20. Sonomoto K, Jin I N, Tanaka S F. Application of urethane prepolymers to immobilization of biocatalysts: △~1-dehydrogenation of hydrocortisone by Arthrobacter simplex cells entrapped with urethane prepolymers. Agric Biol Chem, 1980, 44(5): 1119~1126
    21. Montes M C, Magana P I. △~1-Dehydrogenation of steroids by Arthrobacter simplex immobilized in calcium polygalacturonate beads. J Ind Microbiol, 1991, 8(4): 259~64
    22. Pinheiro H M, Cabral J M S. Screening of whole-cell immobilization procedures for the △~1-dehydrogenation of steroids in organic medium. Enzyme Microb Technol, 1992, 14: 619~624
    23. Houng J Y, Chiang W P, Chen K G, et al. 11α-hydroxylation of progesterone in biphasic media using alginate-entrapped Aspergillus ochraceus gel beads coated with polyurea. Enzyme Microb Technol, 1994, 16: 485~491
    24. Zhang Y, Yao C Y, Wang M Y, et al. Transformation of cortisone acetate using immobilized Arthrobacter simplex cell. Shengwu Gongcheng Xuebao, 1998, 14(2): 176~180
    25.张瑛,王明耀,姚传义.固定化简单节杆菌转化醋酸可的松动力学.天津大学学报,1999,32(1):41~44
    26. Llanes N, Fernandes P, Léon R, et al. Conversion of β-sitosterol by Mycobacterium sp. NRRL B-3805 cells immobilized on Celite supports. Journal of Molecular Catalysis B: Enzymatic, 2001, 11: 523~530
    27. Krysteva M A, Grigorova P M. Transformation of cortisol to prednisolone by viable cells of Arthrobacter simplex covalently immobilized on cellulose granules. Enzyme Microb Technol, 1987, 9: 534~541
    28. Kaul R, Adlercreutz P, Mattiasson B. Coimmobilization of substrate and biocatalyst: A method for bioconversion of poorly soluble substances in water milieu. Biotechnol Bioeng, 1991, 37: 998~1003
    29.沈裕康.微生物转化在甾体激素生产中的应用.工业微生物,1987,17(1):26~33
    30. Zaim N, Adham N Z, El-rehim H A, et al. Prednisoloneproduction using Pseudomonas fluorescens cells immobilized with polymer carrier. Process Biochemistry 2003,
    
    38(7):1083~1089
    31.孙黎,法幼华.原生质体在甾体转化研究中的发展利应用.微生物学通报,1991,18(5):299~301
    32. Wilmanska D, Milcazarek K, Rumijiowska A, et al. Elimination of by-products in 11β-hydroxylation of substrance S using Curvularia lunata clones regenerated from NTG-treated protoplasts. Appl Microbio Biotechnol. 1992, 37(5): 626~630
    33. Flygare S, Larsson P O. Steroid transformation in aqueous two-phase systems: side-chain degradation of cholestrol by Mycobacterium sp. Enzyme Microb Technol, 1989, 11: 752~759
    34.张丽青,王敬一.5β-△~(9(11)-16α-甲基-3β,17α,21-三羟基-孕甾-3,21-双醋酸酯-20-酮的微生物转化.药学学报,1986,2l(9):674~679
    35.张丽青.5α-△~(9(11))-16β-甲基-3β,17α,21-三羟基.孕甾3β,21-双醋酸-20-酮和5α,17α-甲基-17β-羟基雄甾-3-酮的微生物转化.药学学报,981,16:356~358
    36.陈家任,蒲自莲,曾本秀,等.微生物学方法制备16α-甲基-11α,17α,21-三羟基孕甾-1,4-二-3,20-二酮.微生物学报,1991,31(4):308~314
    37.徐诗伟,徐清,曹桂芳,等.地塞美松中间体的C_(1,4)脱氢和11α-羟基化.生物工程学报,2000,16(6):763~765
    38.徐诗伟,徐清,法幼华.甾体1,4-脱氢和11α-羟基化反应的两种不同微生物转化.生物工程学报,2000,16(5):651~652
    39. Marazban S, Barbara L K, Chen ching-shih. Enzymatic catalysis in cosolvent modified pressurized organic solvents. Biotechnol Bioeng, 1999, 65(3): 258~264
    40.王秀道,章克昌.超临界流体在生物工程中的应用.无锡轻工大学报,1997,16(3):86~90
    41.马海乐.超临界CO_2萃取技术及其在生物资源开发利用中应用的最新进展(Ⅱ).包装与食品机械,2001,19(3):7~10,17
    42. Manosroi J, Sripalakit P, Manosroil A. Bioconversion of Hydrocortisone to Prednisolone by Immobilized Bacterial Cells in a Two-Liquid-Phase System. J Chem Technol Biotechnol. 1998, 73, 203~210
    43. L eón R, Fernandes H M, Cabral J M S. Whole-cell biocatalysis in organic media. Enzyme Microb Technol, 1998, 23: 483~500
    44. Gruz A, Fernandes P, Cabral J M S, et al. Whole-cell bioconversion of β-sitosterol in aqueous-organic two-phase systems. J. Mol. Catal. B: Enzym. 2001, 11: 579~585
    45. Fernandes P, Cruz A, Pinheiro H M, et al. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol, 2003, 32:688~705
    46. Fernandes P, Cabral JMS, Pinherio H M. Bioconversion of a hydrocortisone derivative in an organic-aqueous two-liquid-phase system. Enzyme Microb Technol, 1995, 17:163~167
    47. Buckland B C, Dunill P, Lilly M D. The enzymatic transformation of water-insoluble reactions in nonaqueous solvents conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp. Biotechnol Bioeng, 1975, 17:815~826
    
    
    48.张玉彬.生物催化的手性合成,化学工业出版社,北京:2002
    49.欧志敏.微生物法还原羰基化合物制备手性药物中间体的研究,浙江大学博士学位论文,2003,6
    50.夏仕文,尉迟力,李树本.水-有机溶剂两相体系中甲基单胞菌Z201催化丙环氧化的初步研究.生物工程学报 1997,13(4):446-449
    51. Liu W H, Houng W C, Tsai M S. Bioconversion of cholesterol to cholestenone in aqueous/organic two-phase reactors. Enzyme Microb Technol, 1996, 18:184~189
    52. Bar R, Phase toxicity in a water-solvent two-phase microbial system, Lanne C, Tramper J, Lilly MD, Biocatalysis in organic media, Amsterdan, Elsevier, 1987, 147~153
    53.吴兆亮,胡滨,郑辉杰等.两液相培养中有机溶剂对细胞毒性的研究进展,2000,10(2):37~40
    54.蒋群.有机相微生物活细胞催化羰基还原反应的研究,浙江大学博士学位论文2002,7
    55. Laane C, Boeren S, Vos K, Veeger C. Rules for the optimization of biocatalysis in organic solvents. Biotechnol Bioeng, 1987, 30: 81~87
    56. Hocknull M D, Lilly M D. Stability of the steroid △~1-dehydrogenation system of Arthrobacter simplex in organic solvent-water two-liquid phase enviroments.Enzyme Microb Technol. 1998, 10:669~674
    57. Rajagopal A N. Growth of Gram-negative bacteria in the presence of organic solvents. Enzyme Microb. Technol., 1996, 19(8: 606~613)
    58. Juan L R, Estrolia D, Jose-Juan RodriguezoHerva. Mechanisms for solvent tolerance in Bacteria. J. Biological Chemistry, 1997, 272:3887~3890
    59. Pinheiro H M, Cabral J M S. Activity and stability of an entrapped-cell system for the △~1-dehydrogenation of steroids in organic media. Biotechnol Bioeng, 1992, 40:1123~1127
    60. Boeren S, Laane C. Steroid conversions by Flavobactrium dehyrogenans in two-liquid-phase systems. Biotechnol Bioeng, 1987, 29:305~309
    61. Pinheiro H M, Carbral J M S. Effect of solvent molecular toxicity and microenvironment composition on the △~1-dehydrogenation activity of Arthrobacter simplex cells. Biotechnol Bioeng, 1991, 37:97~102
    62. Gruz A, Fernandes P, Cabral J M S, et al. Effect of phase composition on the whole-cell bioconversion of β-sitosterol in biphasic media. Journal of Molecular Catalysis. B: Enzymatic. 2002, 19: 371~375
    63. Lilly M D, Dervakos G A, Woodley J M. Tow-liquid phase biocatalysis: Choice of phase ratio. In:Opportunities in Biotransformations(Coppinng L G, Dickett J A, BUCKE C, Bunch A WEds.) Elsevier Science, New York, 1990:5~16
    64. Ceen E G, Dunnill P, Herrman J P R. Two-liquid phase reactor studies of 11α-hydroxylation of pregestrone by Aspergillus ochraceus. Biotechnol Bioeng, 1988, 31: 743~746
    65. Luisi P L, Steinmann-Hofman B. Activity and conformation of enzymes in reverse micellar solutions. Methods Enzymol, 1987, 136(1): 188~216
    
    
    66. Smolders A J J, Pinheiro H M, Noronha P, et al. Steroid bioconversion in a microemulsion system. Biotechnol Bioeng, 1991, 38:1210~1217
    67.阳葵,王福东,冯霞,等.磁化水处理菌种在甾体微生物转化过程中的效应.微生物学通报,1999,2(5):336~338
    68.阳葵,李晓静,冯霞,等.底物的分散和溶解对甾体微生物酶反应的影响.微生物学通报,2001,28(6):68~71
    69.冯若,赵逸云,李化茂,等.超声在生物技术中的应用进展.生物化学与生物物理进展,1994(6):500~504
    70. Zabaneh M, Bar R. Ultrasound-enhanced bioprocess Ⅱ: Dehydrogenation of hydrocortisone by Arthrobacter simplex. Biotechnol Bioeng, 1991, 37: 998~1003
    71. Yang K, Wang F D, Feng X, et al. The effects of chemical and physical factors on biocatalytic transformation of steroid. Chinese Journal of Catalysis, 1998, 19(5): 391~392
    72.徐诗伟,法幼华.A环饱和甾体的微生物转化作用Ⅲ.倍他美松中间体16β-甲基-5α-△~(9(11))-孕甾-3β,17α,21-三羟基20-酮-21-醋酸酯的△~(1,4)作用.微生物学报,1984,24(1):46-49
    73. H.J.Rehm, G. Reed. Biotechnology (Volume 6a): Biotransformations, K.Kieslich (eds.),1984, 50
    74. Krook M, Hewitt B D. Preparation of 6-methyleneaneandrosta-1, 4-diene-3, 17-dione, uses a dehydrogenation reaction using A. simplex cells. WO Patent 0104342 (2001)
    75.鲁梅芳,路福平,于昌禄,等.醋酸泼尼松生产菌株的选育及转化条件的研究.生物工程学报(增刊).1993,84~89
    76.张瑛,王明耀,姚传义.固定化简单节杆菌转化醋酸可的松动力学.天津大学学报,1999,32(1):41~44
    77.金青萍,郑自龙,刘维达,等.醋酸可的松微生物转化工艺条件的研究.微生物学通报,1985,12(1):19~21
    78.钟丽婵,曹竹交,李强,等.简单节杆菌转化氢化可的松的△’-脱氢反应动力学Ⅰ.简单节杆菌BY-2-13自由细胞转化氢化可的松的△~1-脱氢反应动力学.微生物学报,1987,27(1):45~51
    79.曹竹安,李强,施燕,等.简单节杆菌转化氢化可的松的△~1-脱氢反应动力学Ⅱ.固定化简单节杆菌细胞转化氢化可的松的△~1-脱氢反应动力学.微生物学报,1987,27(2):151~155
    80. Abou El-Hawa M, Mahfouz W, Taha O, Sallam AR, △ 1-Dehydrogenation of cortisol with bacteria: some biochemical aspects of △ 1-dehydrogenation of cortisol with Corynebacterium equi, Egyptian Journal of Microbiology, 1993, (pub. 1995) 28(3), 281~287
    81. Adham N Z, El-Hady A A, Naim N, Biochemical studies on the microbial △~1-dehydrogenation of cortisol by Pseudomonas fluoreseens, Process Biochemistry, 2003, 38(6), 897-902
    82. Lestrovaya N N, Localization of 3-oxo steroid △~1-dehydrogenase in Mycobacterium rubrum
    
    and Arthrobacter globiformis cells, Mikrobiologiya 1981, 50(4): 619~25
    83. Lestrovaya N N, Matveeva N I, Interaction of phospholipids with 3-oxo-△ 1-dehydrogenase in adsorption membrane models, Interaction of the Mycobacterium rubrum enzyme with liposomes, Biokhimiya, 1982, 47(8): 1272~1277
    84. Naim N, Sallam L, El-Refai A, Some properties of a cell-free cortisol 1,2-dehydrogenating system from Bacillus cereus, Microbiologia Espanola 1978, 30-31:93~100
    85. Buchland B C, Dunnill P, Lilly M D, et al. The enzymatic transformation of water-insoluble reactants in nonaqueous solvents. Conversion of cholesterol to cholest-4-ene-3one by a Nocardia sp. Biotechnol Bioeng, 2000, 67 (6): 714~719
    86. Itagaki E, Matushita H, Hatta T, Steroid transhydrogenase activity of 3-keto-△~1-dehydrogenase from Norcardia corallina, J Biochem, 1990, 108:122~127
    87. Kadode M, Matsushita H, Hiroyuki S, Essential arginine residues of 3-ketosteroid-△~1-dehydrogenase. Flavins Flavoproteins 1993 Proc. Int. Symp. 11th 1993, (Pub.1994): 339~342
    88. Levy RA, Talalay P, Bacterial oxidation of steroids. Ⅱ. Studies on the enzymatic mechanism of ring A dehydrogenation, J Biol Chem 1959, 234: 2014~2021
    89. Gale PH, Page ACJr, Stoudt TH, Identification of vitamin K_(2(35)), an apparent cofactor of a steroidal 1-dehydrogenase of Bacillus sphaericus, Biochemistry 1962, 1: 788~792
    90. Ringold HJ,Hayano M, Stefanovic V, J Biol Chem, 1963, 238: 1960~1965
    91. Abul-Hajj Y J, Steroichemistry of C_(1,2) dehydrogenation of 5β-pregnane-3,11,20-trione by Septomyxa affinis, J Biol Chem, 1972, 247(3): 686~691
    92. Itakagi E, Matushita H, Hatta T, Essential histidine residue in 3-ketosteroid-△~1-dehydrogenase, The Journal of Biochemistry 1992, 111:594~599
    93.张丽青.微生物转化在甾体药物合成中的应用.医药工业.1985,16(1):37~41
    94. Kaufmann G, Thole H, Kraft R, Atrat P, Steroid-l-dehydrogenase of Rhodococcus erythropolis: purification and N-terminal amino acid sequence, The Journal of steroid Biochemistry and Molecular Biology, 1992, 43(4): 297~301
    95. Lestrovaya NN, Bukhar MI, Evidence for the involvement of two enzyme in the microbiological 1,2-dehydrogenation and reduction of △~1-bond in the A ring of steroids, Biokhimiya, 1970, 35(4): 843~845
    96.Brinton M M, Warren L编著,居乃琥,朱庆裴,雷肇祖译.工业微生物学,轻工业出版社,北京:1986
    97. Penasse L, Baulieu EE, 3-Oxo-△~4-steroid-△~1-oxidoreductase of Arthrobacter simplex, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin. Klasse fur Medizin, 1968, (pub1969),(2): 201~211
    98. Penasse L, Nomine G, Active centre of the 3-oxosteroid △~1-dehydrogenase from Arthrobacter simplex, European Journal of Biochemistry, 1974, 47(3): 555~559
    99. Udvardy E N, Kinetics of steroid △~1-dehydrogenase induction, Acta microbiologica
    
    academine Scientiarum hungaricae, 1974, 2(3-4): 237~243
    100. Kim DH, Lee SB, Ryu DY, Solvent effect on enzymatic steroid transformation, Arch Pharmacal Res, 1980, 3(1): 1~5
    101. Gotovtseva VA, Skvortaova LF, Korovkina AS, Effect of some compounds on the reduction of the 20-keto group in corticosteroids by Mycobacterium globiforme, Mikrobiologiya, 1979, 48(5): 833~7
    102. Bae M, Lee MK, Purification of a steroid △~1-dehydrogenase from Arthrobacter simplex, Journal of Microbiology and Biotechnology, 1993, 3(3): 181~187
    103. Pinheiro HM, Cabral JMS, Adlercreutz P, Quinones as external electron acceptors in steroid △~1-dehydrogenation with entrapped cells in organic medium, Biocatalysis, 1993, 7(2), 83-96
    104. Lee MK, Bae M, Enzymic characteristics of steroid △~1-dehydrogenase from Arthrobacter simplex, Journal of microbiology and biotechnology, 1994, 4(2): 119~125
    105. Choi, Kwang-Pil, Molnar I, Yamashita M, Purification and characterization of the 3-ketosteroid-△1-dehydrogenase of Arthrobacter simplex produced in Streptomyces lividans, J Biochem (Tokyo) 1995, 117(5): 1043~1049
    106. Chert KC, Chang CC, Chiu CF, et al. Mathematical simulation of pseudocrystallofermentation of hydrocrotione by Arthrobacter simplex. Biotechnol Bioeng, 1985, 27: 253~259
    107. Maxon W D, Chen J W, Hanson F R. Simulation of a steroid bioconversion with a matermatical model.Ind Eng Chem Process Design Dev, 1966, 5: 285~289
    108. Constantinidis A. Steroid transformation at high substrate concentrations using immobilized Corynebacterium simplex cells. Biotechnol Bioeng. 1980, 22: 119~136
    109.四川微生物研究所,上海第十二制药厂,倍他美松中间体(17α-羟基—16β-甲基孕甾—4,9(11)二3,20-二酮)微生物脱氢的研究,微生物学报1977,17(1):41~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700