节杆菌催化甾体化合物C_(1,2)脱氢规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了简单节杆菌TCCC 10037(Arthrobacter simplex)和球形节杆菌TCCC 11039(Arthrobacter globiformis)对八种3-酮甾体底物的C1,2位脱氢转化反应,并研究了在四种不同的反应体系中,即完整细胞体系、双液相体系、原生质体体系和破碎细胞抽提液体系中的脱氢转化反应。
     研究球形节杆菌的生长特性,发现球形节杆菌与简单节杆菌的生长状况极其相似,对球形节杆菌的转化条件及工艺进行了优化。
     研究节杆菌在完整细胞体系下的C1,2位脱氢转化。简单节杆菌和球形节杆菌对不同甾体底物的C1,2位脱氢转化各不相同。同一微生物转化不同官能团的甾体底物的转化率有很大差异;不同微生物催化同一种甾体底物的转化率也不同。
     研究节杆菌在双液相体系下的C1,2位脱氢转化,即增大甾体底物溶解度对转化的影响。构建了有机相为四氯化碳,水相为已培养至符合投料条件的发酵液,有机/水相比率为3:7(v:v)的两相系统,其中含有5g/L的甾体底物和0.2 g/L的甲萘醌。双液相体系中的C1,2位脱氢转化率比普通直接转化的转化率有所降低;简单节杆菌在双液相体系中的转化率大多明显高于球形节杆菌。
     研究节杆菌在原生质体体系下的C1,2位脱氢转化,即细胞壁对C1,2位脱氢转化的影响。原生质体的最佳制备条件为:青霉素浓度1.5U/mL,青霉素处理时间8-10小时,溶菌酶浓度10mg/mL,溶菌酶酶解时间80-100分钟。原生质体体系下的C1,2位脱氢转化率明显低于完整细胞转化与双液相转化。
     研究节杆菌在破碎细胞抽提液体系下的C1,2位脱氢转化,即研究细胞壁、细胞膜对C1,2位脱氢转化的影响。破碎细胞抽提液的最佳制备条件为:超声波输出功率380W,工作/间歇时间6s/5s,总时间7min,缓冲液为l/15mol/L pH 7.0的PBS缓冲液。节杆菌在细胞破碎体系中C1,2位脱氢转化率低于完整细胞转化和双液相转化,但高于原生质体转化。
     可以看出在完整细胞中的C1,2位脱氢转化率>双液相体系>破碎细胞体系>原生质体体系,保证细胞的完整性对脱氢转化至关重要,采用Matlab软件建立甾体底物转化率与理化性质之间的数学模型,从数学模型中显示各底物的熔点和吸光系数对C1,2位脱氢转化有着正向促进作用,而比旋度对转化具有较强的负向抑制作用。
Study on the biotransformation of the 3-ketosteroid-C1,2-dehydrogenation by Arthrobacter simplex TCCC 10037 and Arthrobacter globiformis TCCC 11039 on four kinds of reaction system, which include whole-cell biotransformation, biphase biotransformation, protoplast biotransformation and ultrasonication biotransformation.
     The growth characteristics of A. globiformis was studied. We found that it's growth conditions very similar to the A. simplex and transformation conditions were optimized.
     3-ketosteroid was dehydrogenate with whole-cell by Arthrobacter. Biotransformation rate of 3-ketosteroid with different functional groups by A. simplex and A. globiformis have significant difference.
     In order to increase the solubility of steroid substrates, an organic/aqueous two-liquid-phase system was developed to perform the biotransformation. The biphasic system composed of 70%(v/v) broth, and 30%(v/v) carbon tetrachloride containing 5g/L steroid substrate and 0.2g/L menadione as external electron acceptor. The bioconversion rate on biphasic system are lower than that on whole-cell system. And the bioconversion rate of 3-ketosteroid by A. simplex are significantly larger than that by A. globiformis.
     To investigate the effect of the cell wall on biotransformation, the protoplast of strains were prepared. As a result, penicillin 1.5U/mL, penicillin treatment time 8-10 h, lysozyme 10mg/mL, lytic time 80-100 min. The biotransformation rate of protoplast was significantly decreased.
     The broken cell extract was prepared by ultrasonication, in order to make the substrates direct contact with C1,2-dehydrogenase. The optimal condition on cell wall disruption output power 380 W, radiation/intermission time 6 s/5 s, total time 7 min, and 1/15mol/L pH7.0 PBS buffer.
     Experimental results showed the sequence of reaction system, sorted from the highest to the lowest in the order of bioconversion rate, are whole-cell, biphase, ultrasonication, protoplast. It is very important to ensure the cell's integrality in the process of bioconversion. A mathematical model describing the bioconversion rule during the process ofΔ1-dehydrogenation with whole cells was established using MatLab software. The model showed that melting point and absorption coefficient increase the rate of biotransformation, while specific rotation decreases the rate of bioconversion.
引文
[1]Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. Microbial conversion of steroid compounds:recent developments [J]. Enzyme and Microbial Technology, 2003,32:688-705.
    [2]Fiser L, Fieser M. Steroids[M]. Reinhold(eds), New York:Academic Press 1959.
    [3]郭勇.生物制药技术[M].北京:轻工业出版社,2000:225-245.
    [4]吴时敏,吴谋成.植物甾醇的研究进展与趋向[J].中国油脂,2002,27(3):60-62.
    [5]Mahato SB, Mazumder I. Current trends in microbial steroid transformation[J]. Phytochemistry,1995,34(4):883-898.
    [6]Mahato SB, Garai S. Advances in microbial steroids biotransformation[J]. Steroids, 1997,62(4):332-345.
    [7]Tuba Z, Bardin CW, Dancsi A, Molnar C, Falkay G. Synthesis and biological activity progestogen:16-methylene-17α-hydroxy-18-methyl-19-norpregn-4-ene-3,20-dioneaceta te[J]. Steroids,2000,65:266-74.
    [8]Ko D, Heiman AS, Chen M, Lee HJ. New steroidal anti-inflammatory ante drugs: methyl-21-desoxy-21-chloro-11β,17α-dihydroxy-3,20-dioxo-1,4-pregnadien-16α-carbo xylate and their -fluoro derivatives [J]. Steroids,2000,65:210-8.
    [9]Hogg JA. Steroids, the steroid community, and Upjohn in perspective:a profile of innovation [J]. Steroids,1992,257:593-616.
    [10]Mahato SB, Mukherjee A. Steroid transformation by microorganisms [J]. Phytochemistry,1984,23:2131-2154.
    [11]Mahato SB, Bnaerjee S. Steroidt ransformation by microorganisms-Ⅱ [J]. Phytochemistry,1985,24(7):1403-1421.
    [12]Mahato SB, Bnaerjee S, Podder S. Steroid transformation by microorganisms-Ⅲ [J]. Phytochemistry,1989,28:7-40.
    [13]Walsh G. Biopharmaceuticals:biochemistry and biotechnology[M]. Chichester: Wiley,1998.
    [14]Johnston JO, Aromatase inhibitors. In:Parish EJ, Nes WD, editors. Biochemistry and function of sterols[M]. Boca Raton, FL:CRC Press,1987. p.23-54.
    [15]Kutney JP, Novak E, Jones PJ. Process of isolating a phytosterol composition from pulping soap[P]. US Patent 5,770,749(1998).
    [16]Frye LL, Leonard DA. Lanosterol analogs:dual-action inhibitors of cholesterol biosynthesis. In:Parish EJ, Nes WD, editors. Biochemistry and function of sterols[M]. Boca Raton, FL:CRC Press,1987. p.23-54.
    [17]Chung SK, Ryoo CH, Yang HW, Shim JY, Kang MG, Lee KW. Synthesis and bioactivities of steroid derivatives as antifungal agents[J]. Tetrahedron,1998, 54:15899-914.
    [18]Liesch JM, Meinz MS, Onishi JC, Schwartz RE, Bills GF, Giacobbe RA. Antifungal agent produced by Arthrinium arundis ATCC 74359. US Patent 5,712,109(1998).
    [19]Dombrowski AW, Hazuda DJ, Polishook JD, Felock PJ, Singh SB, Zink DL. HIV-integrase-inhibitors. WO Patent,0036132(2000).
    [20]Rupprecht R, Holsboer F. Neuroactive steroids:mechanisms of action and neuropsychopharmacological perspective[J]. Trends neurosci,1999,22:410-6.
    [21]Mellon SH, Griffin LD. Neurosteroids:biochemistry and clinical significance[J]. Trends Endocrinol Metab,2002,13:35-43.
    [22]Brinton MM, Warren L编著,居乃玻,朱庆斐,雷肇祖译.工业微生物学[M].北京:轻工业出版社,1986.
    [23]张丽青.微生物转化在甾体药物合成中的应用[J].中国医药工业杂志,1985,16(1):37-41.
    [24]束怀德.甾体激素药理学[M].北京:人民卫生出版社,1986,107-147.
    [25]翁玲玲,楼荣良.国外正在研制的甾体药物[J].中国药学杂志,1994,29(3):174-176.
    [26]Weber A, Kennekke M, Klages U, Rhode R. Process for the production of 17-oxosteroids via the fermentative oxidation of 17β-hydroxysteroids. US Patent,5, 472,854(1995).
    [27]Charney W, Herzog HL. Microbial transformation of steroids[M]. New York: Academic Press,1967.
    [28]Murry HC. Microbiology of steroid. In:Industry Microbiology[M], Miller B(eds.), New York:Academic Press,1976,79-105.
    [29]Kieslich K. Steroid conversions. In:Economic Microbiology[M], Rose AH(eds.), New York:Academic Press,1980,370-413.
    [30]Roberts SM, Eddolls JP, Willetts AJ, Atkinson A, Murphy JP. Preparation of adrenocorticoid steroids[P]. GB Patent,2318790(1998).
    [31]法幼华.甾体化合物的微生物转化与合成[M].北京:科学出版社,1988,17-32.
    [32]刘其明.我国甾体微生物工业的发展[J].工业微生物,1989,(3):28-31.
    [33]徐诗伟,徐清,法幼华.甾体1,4-脱氢和11α-羟基化反应的两种不同微生物转化.生物工程学报,2000,16(5):651-653.
    [34]王敏,王春霞,路福平,杜连祥.甾体11β-羟基生物转化新工艺的研究[J].天津轻工业学院学报,2000,(2):1-5.
    [35]Akhrem AA and Titov YY. Steroidy i mikroorganizmy (Steroids and Microorganisms) [M]. Moscow:Nauka,1970.
    [36]Bhattacharyya PK, Krishna MR, Natarajan RD, Rangopal M, Madyastha P, and Madyastha KM. J. Indian Chem. Soc.,1984,61(1):1-15.
    [37]Ahmad S, Garg SK, and Johri BN. Biotransformation of sterols:selective cleavage of the side chain[J]. Biotechnology Advances,1992,10(1):1-67.
    [38]Sedlaczek L, Crit Revs. Biotransformations of steroids[J]. Biotechnol.,1988,7(3): 197-226.
    [39]Kieslich K. Biotransformation of industrial use[J]. Acta Bintechnol,1991,1(3): 559-570.
    [40]Angelova B, Mutafov S, Avramova T, Dimova I, and Boyadjieva L. The inducibility of 9 greek small letter alpha-steroid hydroxylating activity in resting Rhodococcus sp. [J]. Process Biochem.,1996,31(2):179-184.
    [41]Smith KE, Ahmed F, Williams RAD, Kelley S. Microbial transformations of steroids-Ⅷ. Transformation of progesterone by whole cells and microsomes of Aspergillus fumigatus[J]. J. Steroid Biochem Mol Biol,1994,49:93-100.
    [42]Reskvar K, Cresnar B, Hadnik PT. Resolution and reconstitution of cytochrome P-450 containing steroid hydroxylating system of Rhizopus nigricans[J]. J. Steroid Biochem, 1987,14:95-99.
    [43]Arinbasarova AY, Karpov AV, Fokina VV, Medentsev AG, Koshcheyenko KA. Kinetic characteristics of 1-en-dehydrogenation of 6a-methylhydrocortisone by cells of Arthrobacter globiformis 193[J]. Enzyme Microb Technol,1996,19:501-506.
    [44]Chen KC, Chang CC, Chiu CF, Ling AC. Mathematical simulation of pseudo-christallofermentation of hydrocortisone by Arthrobacter simplex[J].Biotechnol Bioeng,1985,27:253-259.
    [45]Egorova OV, Gulevskaya SA, Puntus IF, Filonov AE, Donova MV. Production of androstenedione using mutants of Mycobacterium sp.[J]. J Chem Technol Biotechnol, 2002,77:141-147.
    [46]王普,陈希杨,虞炳钧.新技术在甾体药物微生物转化中的应用[J].化工进展,2002,21(11):805-808.
    [47]Llanes N, Pendas J, Falero A, Perez C, Hung BR, Moreira T. Conversion of liposomal 4-androsten-3,17-dione by A.simplex immobilized cells in calcium pectate. The Journal of Steroid Biochemistry and Molecular Biology,2002,80(1):131-133.
    [48]Manosroi J, Sripalakit P, Manosroil A. Bioconversion of hydrocortisone to prednisolone by immobilized bacterium cells in a two-liquid-phase system[J]. J chem Technol Biotechnology,1998,73:203-210.
    [49]Dias ACP, Cabral JMS, and Pinheiro HM. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents[J]. Enzyme Microb Technol,1994,16:708-714.
    [50]孙黎,法幼华.原生质体在甾体转化研究中的发展和应用[J].微生物学通报,1991,18(5):299-301.
    [51]Flygare S, Larsson PO. Steroid transformation in aqueous two-phase systems:side-chain degradation of cholestrol by Mycobacterium sp. [J]. Enzyme Microb Technol, 1989,11:752-759.
    [52]张丽青,王敬一.5α-△9(11)-16α-甲基-3β,17a,21-三羟基-孕甾-3,21-双醋酸酯-20-酮的微生物转化[J].药学学报,1986,21(9):674-679.
    [53]张丽青.5a-△9(11)-16p-甲基-3β,17a,21-三羟基-孕甾-3β,21-双醋酸-20-酮和5a,17α-甲基-17β-羟基雄甾-3-酮的微生物转化[J].药学学报,1981,16:356-358
    [54]Marazban S, Barbara L K, Chen ching-shih. Enzymatic catalysis in cosolvent modified pressurized organic solvents [J]. Biotechnol Bioeng,1999,65(3):258-264.
    [55]Gruz A, Fernandes P, Cabral JMS, et al. Whole-cell bioconversion of β-sitosterol in aqueous-organic two-phase systems[J]. J. Mol. Catal. B:Enzym,2001,11:579-585.
    [56]阳葵,李晓静,冯霞.底物的分散和溶解对甾体微生物酶反应的影响[J].微生物学通报,2001,28(6):68-71.
    [57]Yang K, Wang FD, Feng X, et al. The effects of chemical and physical factors on biocatalytic transformation of steroid[J]. Chinese Journal of Catalysis,1998,19(5): 391-392.
    [58]Schering AG(DG). Preparation of 3-oxo-Δ-1,4-steroids[P]. EP0054810,1980.
    [59]Sukhodol Skaya GV, Donova M V, Nikolaeva V M, et al.. Method for obtaining 1,2-dehydroderivatives of 4-delta-3-ketosteroids [P]. RF Patent,2156302,2000.
    [60]Rehm HJ, Reed G. Biotechnology:Biotransformations[M]. K. Kieslich (eds.), 1984,50.
    [61]鲁梅芳,路福平,王昌禄等.醋酸泼尼松生产菌株的选育及转化条件的研究[J].生物工程学报(增刊),1993,84-89.
    [62]Abou EI-Hawa M, Mahfouz W, Taha O, Sallam AR. Δ1,2-Dehydrogenation of
    cortisone with:bacteria:some biochemical aspects of Δ1,2-Dehydrogenation of cortisone with Corynebacterium equi[J]. Egyptian Journal of Microbiology,1993, 28(3):281-287.
    [63]Sonomoto K, Jin lN, Tanaka SF. Application of urethane prepolymers to immobilization of biocatalysts:dehydrogenation of hydrocortisone by Arthrobacter simplex cells entrapped with urethane prepolymers[J]. Agric Biol Chem,1980,44(5): 1119-1126.
    [64]Lestrovaya NN, Matveeva NI. Interaction of phosphollplds with 3-oxo-Δ1, 2-dehydrogenase in adsorption membrane models, Interaction of the Mycobacteriunm rubrum enzyme with liposomes[J]. Biokhimiya,1982,47(8):1272-1277.
    [65]Naim N, Sallam L. Some properties of a cell-free cortisol 1,2-dehydrogenating system from Bacillus cereus[J]. Microbiologia Espanola,1978,31:93-100.
    [66]Buchland BC, Dunnill P, Lilly MD. The enzymatic transformation of wate-insoluble reactions in nonaqueous solvents conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp[J]. Biotechnol Bioeng,2000,67 (6):714-719.
    [67]Fuska J, Khandlova A, Sturdikova M, et al.. Biotransformation of Withaferin-A by a Culture of Arthrobacter simplex[J]. Fells Mierobiol.,1985,30:427-432.
    [68]Eithan Silbiger, Amihay Freeman. Continuous non-aerated Δ1-dehydrogenation of hydrocortisone by PAAH-bead entrapped Arthrobacter simplex[J]. Appl Microbiol Biotechnol,1988,29:413-418.
    [69]Li Y, Lu F, Sun T and Du L. Expression of ksdD gene encoding 3-ketosteroid-Δ1-dehydrogenase from Arthrobacter simplex in Bacillus subtilis[J]. Letters in Applied Microbiology,2007,44:563-568.
    [70]Fokina VV, Karpov AV, Sidorov IA, et al. The influence of β-cyclodextrin on the kinetics of 1-en-dehydrogenation of 6a-methylhydrocortisone by Arthrobacter globiformis cells[J]. Appl Microbiol Biotechnol,1997,47:645-649.
    [71]Alekhina TM, Ryzhkova VM, Gusarova TI, Kurakov VV, Klubnichkina GA, Khim.-Farm.Zh.,1993,4(4):59-62.
    [72]Levy RA, Talalay P. Bacterial oxidation of steroids.Ⅱ. Studies on the enzymatic mechanism of ring A dehydrogenation[J]. J Biol Chem,1959,234:2014-2021.
    [73]Wovcha MG, Brooks KE, and Kominek LA. Evidence for two steroid 1,2-dehydrogenase activities in Mycobacterium fortuitum[J]. Biochim Biophys Acta, 1979,574(3):471-479.
    [74]Gale PH, Page ACJ, StoUdt TH. Identification of vitamin K3, an apparent cofactor of a steroidal 1-dehydrogenase of Bacillus sphaericus [J]. Biochemistry,1962,1: 788-792
    [75]Ringold HJ, Hayano M, Stefanovic V. J Biol Chem,1963,238:1960-1965.
    [76]Itagaki E, Wakabayashi T, and Hatta T. Purification and characterization of 3-ketosteroid-A'-dehydrogenase from Nocardia corallina[J]. Biochim. Biophys. Acta., 1990,1038:60-67.
    [77]Aggag M and Schlegel HG. Studies on a Gram-Positive Hydrogen Bacterium, Nocardia opaca Strain I b. I. Description and Physiological Characterization[J], Arch. Mikrobiol.,1973,88:299-318.
    [78]Fokina VV, Sukhodolskaya GV, Baskunov B P, et al.. Microbial conversion of pregna-4,9(11)-diene-17,21-diol-3,20-dione acetates by Nocardioides simplex VKM Ac-2033D[J]. Steroids,2003,68:415-421.
    [79]Fokina VV, Sukhodolskaya GV, Baskunov BP, et al.. The 1(2)-Dehydrogenation of Steroid Substrates by Nocardioides simplex VKM Ac-2033D[J]. Microbiology,2003, 72(1):24-29.
    [80]Abul-Hajj YJ. Steroichemistry of C-1,2 dehydrogenation of 5a-pregnane-3,11,20-trione by Septomyxa affinis[J]. J Biol Chem,1972,247(3):686-691.
    [81]Itagaki E, Matushita H, Hatta T. Essential histidine residue in 3-ketosteroid-△1-dehydrogenase[J]. The Journal of Biochemistry,1992,111:594-599.
    [82]Pinheiro HM, Cabral JMS. Screening of whole-cell immobilization procedures for the △1-dehydrogenation of steroids in organic medium[J]. Enzyme Microb Technol 1992, 14:619-624.
    [83]Kaufmann G, Thole H, Kraft R, Atrat P. Steroid-△1-dehydrogenase of Rhodococcus erythropolis:purification and N-terminal amino acid sequence[J]. The Journal of steroid Biochemistry and Molecular Biology,1992,43(4):297-301.
    [84]Lestrovaya NN, Bukhar MI. Evidence for the involvement of two enzyme in the microbiological 1,2-dehydrogenation and reduction of △'-bond in the A ring of steroids[J]. Biokhimiya,1970,35(4):843-845.
    [85]Penasse L, Baulieu EE.3-Oxo-△-4-steroid-△'-oxidoreductase of Arthrobacter simplex[J]. Klasse fur Medizin,1968, (2):201-211.
    [86]Penasse L, Nomine Q. Active centre of the 3-oxosteroid △1-dehydrogenase from Arthrobacter simplex[J]. European Journal of Biochemistry,1974,47(3):555-559.
    [87]Udvardy EN. Kinetics of steroid 1-dehydrogenase induction[J]. Acta microbiological academine Scientiarum hungaricae,1974, (3):237-43.
    [88]Gotovtseva VA, Skvortaova LF, Korovkina AS. Effect of some compounds on the reduction of the 20-keto group in corticosteroids by Mycobacterium globiforme[J]. Mikrobiologiya,1979,48(5):833-837.
    [89]Bae M, Lee MK. Purification of steroid △1-dehydrogenase from Arthrobacter simplex[J]. Journal of Microbiology and Biotechnology,1993,3(3):181-187.
    [90]Pinheiro HM, Cabral JMS, Adlercreutz P. Quinones as external electron acceptors in steroid △1-dehydrogenation with entrapped cells in organic medium[J]. Biocatalysis, 1993,7(2):83-96.
    [91]Lee MK, Bae M. Enzymic characteristics of steroid △1-dehydrogenase from Arthrobacter simplex[J]. Journal of microbiology and biotechnology,1994,4(2): 119-125.
    [92]Choi KP, Kwang-Pil, Molnar 1, Yamashita M. Purification and characterization of the 3-ketosteroid-△1-dehydrogenase of Arthrobacter simplex produced in Streptomyces lividans[J]. J Biochem,1995,117(5):1043-1049.
    [93]中国药典[M].2000年版附录ⅥE.
    [94]金青萍,郑自龙,刘维达.醋酸可的松微生物转化工艺条件的研究[J].微生物学 通报,1985,12(1):19-21.
    [95]Sonomoto K, Matsuno R, Tanaka A. Kinetic study on Δ1-Dehydrogenation of Hydrocortisone by Gel-Entrapped Arthrobacter simplex Cells[J]. J. Ferment. Technol., 1984,62(2):157-163.
    [96]Molnar I, Choi KP and Murooka Y. Molecular cloning,expression in Streptomyces lividans, and nucleotide sequence analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-5-isomerase, and a hypothetic regulatory protein[J]. Mol Microbiol,1995,15(5):895-905.
    [97]Choi KP, Molnar I and Murooka Y. Secretory overproduction of Arthrobacter simplex 3-ketosteroid-Δ1-dehydrogenase by Streptomyces lividans with a multicopy shuttle vector [J]. Appl Microbiol Biotechnol,1995,43:1044-1049.
    [98]Morii S, Fujii C, Miyoshi T, et al..3-Ketosteroid-Δ1-Dehydrogenase of Rhodococcus rhodochrous:Sequencing of the Genomic DNA and Hyperexpression, Purification, and Characterization of the Recombinant Enzyme[J]. J.Biochem.,1998,124,1026-1032.
    [99]Freeman A, Lilly M D. The effect of water miscible solvents on the Δ1-dehydrogenase activity of free and PAAH-entrapped Arthrobacter simplex. Appl Microbiol Biotechnol.1987,25:495-501.
    [100]Leon R, Fernandes P, Pinheiro HM, Cabral JMS. Whole-cell biocatalysis in organic media-Effect of gel hydrophobicity on diverse conversions of testosterone by gel-entrapped Nocardia rhodocrous cells[J]. Enzyme Microb Technol 1998,23(7): 483-500.
    [101]Fernandes P, Cabral JMS, Pinherio HM. Bioconversion of a hydrocortisone derivative in an organic-aqueous two-liquid-phase system[J]. Enzyme Microb Technol,1995,17:163-167.
    [102]张玉彬.生物催化的手性合成[M].化学工业出版社,北京:2002.
    [103]Angelova B, Schmauder HP. Lipophilic compoounds in biotechnology interactions with cells and technological problems[J]. J Biotechnol,1999,67(1):13-32.
    [104]Cruz A, Fernandes P, Cabral JMS. Effect of phase composition on the whole-cell bioconversion of β-sitosterol in biphasic media[J]. Journal of Molecular Catalysis B: Enzy matic,2002,19(2):371-375.
    [105]吴克刚,杨连生,黄通旺.超生波破碎Thraustochytrium提取脂质的侧研究[J].郑州工程学院学报,2001,22(4):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700