兔胃体上部不同区域纵行平滑肌的药理学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察卡巴胆碱、组胺和5-羟色胺对兔离体胃体上部不同区域纵行肌功能性活动的影响并探讨其受体机制;分析核苷和核苷酸类物质对兔胃体上部纵行肌的作用和作用特点。
     方法:制备兔胃体上部前壁胃大弯处上、中、下三段纵行肌标本,胃体上部胃大弯旁开一厘米处上、中、下三段纵行肌标本及胃体上部前壁胃小弯处纵行肌标本。观察兔胃体上部不同部位肌条对卡巴胆碱、组胺、5-羟色胺、KCl的反应,分析ATP、ADP、UTP和腺苷对兔胃体上部纵行肌的作用及作用机制。
     结果:
     1胃大弯不同部位纵行肌对同一药物的反应卡巴胆碱(0.01~30μmol?L-1)、组胺(0.1~300μmol?L-1)、5-羟色胺(0.01~30μmol?L-1)及KCl(2~75mmol?L-1)使胃体上部胃大弯上、中、下三段纵行平滑肌产生浓度依赖性收缩反应。在上段纵行肌标本,上述药物所产生的收缩反应显著强于中段和下段(P<0.05);下段纵行肌标本仅在高浓度药物作用下才产生较弱的收缩反应。
     2胃大弯同一部位纵行肌对不同药物的反应在胃大弯上段纵行肌标本,卡巴胆碱产生的最大收缩反应(Emax)显著大于KCl(P<0.05),远大于组胺和5-羟色胺。在胃大弯中段纵行肌标本,卡巴胆碱、组胺和5-羟色胺所致收缩反应的Emax约为KCl Emax的50%、18%和8%。在胃大弯下段纵行肌标本,卡巴胆碱和组胺所致收缩反应的Emax约为KCl Emax的30%和11%,5-羟色胺的Emax与组胺相同。
     3胃小弯纵行肌对不同药物的反应
     三种受体激动药及KCl使胃小弯纵行肌产生浓度依赖性收缩反应,各药物产生Emax的序列为卡巴胆碱>KCl>5-羟色胺>组胺。
     4药物诱发胃大弯及胃小弯纵行肌收缩反应的EC50值卡巴胆碱使胃小弯纵行肌标本产生收缩反应的EC50值为0.36±0.17μmol?L-1,显著小于卡巴胆碱使大弯上纵肌标本产生收缩反应的EC50值(1.32±0.62μmol?L-1)。组胺使胃大弯上、中、下三段纵行肌标本以及胃小弯处纵行肌标本产生收缩反应的EC50值,在各标本间无显著性差异(P>0.05),5-羟色胺的实验结果与组胺相同。实验结束后,称量兔胃体上部不同部位各肌条标本的湿重,未见显著性差异(P>0.05)。
     5胃大弯旁开一厘米处不同部位纵行肌对同一药物的反应三种受体激动药及KCl使胃体上部前壁胃大弯旁开一厘米处上、中、下三段纵行肌产生浓度依赖性收缩反应。在三种标本上,卡巴胆碱产生的Emax及EC50值无显著性差异(P>0.05);组胺及5-羟色胺的作用特点与卡巴胆碱相同。
     6 ATP、ADP、UTP和腺苷对胃体上部纵行肌的作用ATP(0.1~300μmol?L-1)、ADP(0.01~30μmol?L-1)、UTP(0.01~30μmol?L-1)和腺苷(0.1~100μmol?L-1)分别使兔胃体上部纵行肌标本产生浓度依赖性收缩反应。ADP的Emax为0.3μmol?L-1卡巴胆碱诱发收缩反应的16.2±2.6(%),其Emax值明显低于ATP(P<0.05);腺苷的Emax值与ATP相近(P>0.05),二者的Emax值均明显小于UTP(P<0.05)。7 ATP对胃体上部纵行肌的舒张作用
     卡巴胆碱(0.1μmol?L-1)引起的收缩反应为3.99±0.82g,在卡巴胆碱预收缩条件下,ATP产生明显的浓度依赖性舒张反应。
     结论:
     研究结果表明,兔胃体上部组织中,胃大弯处上段纵行肌标本所含的平滑肌数量显著高于下段纵行肌标本。兔胃体上部组织的胃大弯上、中、下纵行肌标本中,所含有的功能性M胆碱受体、组胺受体和5-羟色胺受体的种类相同;但是,这些受体的分布密度在各标本中不同。
     ATP对兔离体胃体上部纵行肌标本具有收缩和舒张双重作用,其诱发收缩反应的特征与UTP、ADP和腺苷不同。核苷及核苷酸类物质所介导的兔胃体上部纵行肌收缩和舒张作用可能与P受体的多种亚型有关。
Objective: To investigate the effects of carbachol, histamine and 5-HT on the longitudinal muscle strips isolated from different regions of the rabbit upper gastric body, and the effects of nucleoside and nucleotides in the longitudinal muscle strips of the rabbit upper gastric body.
     Methods: Three longitudinal muscle strips (upper, middle and lower strips) of the upper gastric body obtained along the greater curvature in anterior surface side, and three longitudinal muscle strips (upper, middle and lower strips) obtained from the region 1 cm to the greater curvature were used in this study. A longitudinal muscle strip near the lesser curvature in anterior surface side was used as control. Responses to carbachol, histamine, 5-HT and KCl were observed in the three longitudinal muscle strips obtained along the greater curvature. The effects of ATP, ADP, UTP and adenosine on longitudinal muscle strips of the rabbit upper gastric body were investigated.
     Results:
     1 Responses of longitudinal muscle strips obtained along the greater curvature to the same agent
     Carbachol (0.01~30μmol?L-1), histamine (0.1~300μmol?L-1), 5-HT (0.01~30μmol?L-1) and KCl (2~75mmol?L-1) produced concentration-dependent contractile responses in the longitudinal muscle strips (upper, middle and lower strips), and the contractile responses to the four agents in upper strip were much stronger than those in middle and lower strips (P<0.05); a small contraction was produced by the four agents only at a higher concentration in lower strip.
     2 Responses to different agents in one longitudinal muscle strip obtained along the greater curvature
     In the upper strip, the maximal contractile response (Emax) calculated from the cumulative concentration-response curve (CCRC) for carbachol was significantly bigger than that for KCl (P<0.05), and much bigger than that for histamine or 5-HT. In the middle strip, the values of Emax calculated from CCRCs for carbachol, histamine and 5-HT were about 50%, 18% and 8% (normalized to KCl Emax). In the lower strip, the values of Emax calculated from CCRCs for carbachol and histamine were about 30% and 11% (normalized to KCl Emax). The experimental result of 5-HT was the same as that of histamine.
     3 Responses to different agents in the longitudinal muscle strip near the lesser curvature
     Carbachol, histamine, 5-HT and KCl produced concentration-dependent contractile responses in longitudinal muscle strips near the lesser curvature, and the order of Emax amplitude was carbachol>KCl>5-HT>histamine.
     4 EC50 values of the agents producing contractile responses in longitudinal muscle strips obtained from the greater curvature and lesser curvature
     The EC50 value of carbachol (0.36±0.17μmol?L-1) in longitudinal muscle strip of the lesser curvature was less than that (1.32±0.62μmol?L-1) in the upper strip of the greater curvature, but the EC50 values of histamine were the same among the 4 longitudinal muscle strips of the greater curvature (upper, middle and lower strips) and the lesser curvature (P>0.05). The experimental result of 5-HT was the same as that of histamine. At the end of each experiment, the wet weight of strip was weighed, and there was no significant difference among the several experiment groups (P>0.05).
     5 Responses of longitudinal muscle strips obtained from the region 1cm to the greater curvature to the same agent
     Carbachol, histamine, 5-HT and KCl produced contractile responses in a concentration-dependent manner in the three longitudinal muscle strips (upper, middle and lower strips). The values of Emax and EC50 calculated from CCRC for carbachol were not different among upper, middle and lower strips (P>0.05). The experimental results of histamine and 5-HT were the same as those of carbachol.
     6 Effects of ATP, ADP, UTP and adenosine on longitudinal muscle strips of the upper gastric body
     ATP (0.1~300μmol?L-1), ADP (0.01~30μmol?L-1), UTP (0.01~30μmol?L-1) and adenosine (0.1~100μmol?L-1) produced concentration-dependent contractile responses in longitudinal muscle strips of the rabbit upper gastric body. Emax value (16.2±2.6 %, normalized to 0.3μmol?L-1 carbachol) of ADP was much weaker than that of ATP (P<0.05). There was no significant difference between Emax values of ATP and adenosine (P>0.05), and the Emax amplitude of ATP and adenosine was much weaker than that of UTP (P<0.05).
     7 Relaxant responses to ATP in longitudinal muscle strips of the upper gastric body
     The contractile response to 0.1μmol?L-1 carbachol was 3.99±0.82g. In the preparations precontracted with carbachol (0.1μmol?L-1), ATP produced obviously relaxant responses in a concentration-dependent manner.
     Conclusion:
     In the rabbit upper gastric body, the upper longitudinal muscle strip of the greater curvature contains much more smooth muscle than the lower longitudinal muscle strip. In longitudinal muscle strips (upper, middle and lower strips) obtained from the greater curvature, the subtypes of functional muscarinic receptor, histamine receptor and 5-HT receptor are the same, however, the distribution density of those functional receptors is significantly different among the upper, middle and lower strips.
     ATP produces contractile and relaxant responses in longitudinal muscle strips of the rabbit isolated upper gastric body. ATP-induced contraction is different from that of UTP, ADP or adenosine in pharmacological profile. The contractile and relaxant responses to nucleoside and nucleotides might be mediated by several subtypes of P receptors.
引文
1 Matharu MS, Hollingsworth M. Purinoceptors mediating relaxation and spasm in the rat gastric fundus. Br J Pharmacol, 1992, 106(2):395~403
    2 Milenov K, Golenhofen K. Differentiated contractile responses of gastric smooth muscle to substance P. Pflügers Archiv, 1983, 397(1):29~34
    3 Qu SY, Song CW, Lee KY, et al. Action of seeretin and/or cholecystokinin on gastric slnouth illuscle in rats. Gastroenterology, 1993, 104(4):A567
    4 Brown GL, McSwiney BA. Reaction to drugs of strips of the rabbit’s gastric musculature. J Physiol, 1926, 61(2): 261~267
    5 Dhasmana KM, Villalon CM, Zhu YN, et al. Role of 5-HT1-like receptors in the increase in intragastric pressure induced by 5-hydroxytryptamine in the rat. Eur J Pharmacol, 1992, 213(2):293~299
    6 任雷鸣, 王秒. ATP通过P2受体调节大鼠近端结肠纵行肌的舒张与收缩反应. 中国药理学与毒理学杂志, 2005, 19(5):321~326
    7 王秒, 赵丁, 赵庆华, 等. 腺苷三磷酸对大鼠离体胃平滑肌运动的影响. 中国药理学通报, 2005, 21(3):351~355
    8 Curro D, Preziosi P. Involvement of vasoactive intestinal polypeptide in nicotine-induced relaxation of the rat gastric fundus. Br J Pharmacol, 1997, 121(6):1105~1112
    9 Niu CQ, Zhao D, Jia XM, et al. α1-adrenoceptor antagonist profile of doxazosin and its enantiomers in isolated rabbit blood vessels. Chin J Pharmacol Toxicol(中国药理学与毒理学杂志), 2003, 17(5):354~359
    10 Ren LM, Zhang M. Distribution of functional P2X1-like receptor in rabbit isolated regional arteries. Acta Pharmacol Sin, 2002, 23(8):721~726
    11 Hinder RA, Kelly KA. Human gastric pacesetter potential site of origin, spread and response to gastric transection and p roximal gastric vagotomy. Am J Surg, 1977, 133(1):29~33
    12 周吕, 柯美云主编. 胃肠动力学. 北京:科学出版社, 1999, 509
    13 柯美云, 谷成明, 姜玉新, 等. 消化不良患者的胃幽门十二指肠运动协调性研究. 中国医学科学院学报, 2000, 22(3):241~245
    14 Collins PJ, Houghton LA, Read NW, et al. Role of the proximal and distal stomach on mixed solid and liquid mealemptying. Gut, 1991, 32(6):615~619
    15 Haba T, Sarna SK. Relationship of gastric pylori and duodenal motor activity to gastric emptying of solid meals. Gastroenterology, 1990, 99(1):124~130
    16 Parkman HP, Harris AD, Krevsky B, et al. Gastroduodenal motility and dismotility: an update on techniques available for evaluation. Am J Gastroenterol, 1995, 90(6):869~892
    1 (?)lhan S(?), Vural (?)M, Dilek(?)z E, et al. Enhancement effects of nicotine on neurogenic contractile responses in rabbit gastric fundus. Eur J Pharmacol, 2007, 561(1-3):182~188
    2 Dass NB, Hill J, Muir A, et al. The rabbit motilin receptor: molecular characterisation and pharmacology. Br J Pharmacol, 2003, 140(5):948~954
    3 Ratz PH, Meehl JT, Eddinger TJ. RhoA kinase and protein kinase C participate in regulation of rabbit stomach fundus smooth muscle contraction. Br J Pharmacol, 2002, 137(7): 983~992
    4 茹立强. 胃肠神经支配与胃肠疾病. 郧阳医学院学报, 1995, 14(3):132~135
    5 Milenov K, Golenhofen K. Differentiated contractile responses of gastric smooth muscle to substance P. Pflügers Archiv, 1983, 397(1):29~34
    6 Qu SY, Song CW, Lee KY, et al. Action of seeretin and/or cholecystokinin on gastric slnouth illuscle in rats. Gastroenterology, 1993, 104(4):A567
    7 Brown GL, McSwiney BA. Reaction to drugs of strips of the rabbit’s gastric musculature. J Physiol, 1926, 61(2): 261~267
    8 Giaroni C, Knight GE, Ruan H-Z, et al. P2 receptors in the murine gastrointestinal tract. Neuropharmacol, 2002, 43(8): 1313~1323
    9 Ren LM, Zhang M. Distribution of functional P2X1-like receptor in rabbit isolated regional arteries. Acta Pharmacol Sin, 2002, 23(8):721~726
    10 Venkova K, Milne A, Krier J. Contractions mediated by α1-adrenoceptors and P2-purinoceptors in a cat colon circular muscle. Br J Pharmacol, 1994, 112(4):1237~1243
    11 Curro D, Preziosi P. Involvement of vasoactive intestinal polypeptide in nicotine-induced relaxation of the rat gastric fundus. Br J Pharmacol, 1997, 121(6):1105~1112
    12 Tamaoki J, Yamauchi F, Chiyotani A, et al. Atypical beta-adrenoceptor-(beta 3-adrenoceptor) mediated relaxation of canine isolated bronchial smooth muscle. J Appl Physiol, 1993, 74(1):297~302
    13 Clemens A, Katsoulis S, Nustede R, et al. Relaxant effectof xenin on rat ileum is mediated by apamin-sensitive neurotensin-type receptors. Am J Physiol, 1997, 272(l): 190~196
    14 孙瑞元主编. 定量药理学. 北京:人们卫生出版社, 1987年, 410~411
    15 Niu CQ, Zhao D, Jia XM, et al. α1-adrenoceptor antagonist profile of doxazosin and its enantiomers in isolated rabbit blood vessels. Chin J Pharmacol Toxicol(中国药理学与毒理学杂志), 2003, 17(5):354~359
    16 Wang M, Zhao D, Zhao QH, et al. Effects of adenosine triphosphate on motility of isolated gastric smooth muscle in rats. Chin Pharmacol Bull, 2005, 21(3):351~355
    17 Burnstock G, Campbell G, Satchell D, et al. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol, 1970, 40(12):668~688
    18 Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther, 1994, 64(3):445~475
    19 Burnstock G, Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol, 1985, 16(5):433~440
    20 Boarder MR, Hourani SMO. The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol Sci, 1998, 19(3):99~107
    21 Scheibler P, Pesic M, Franke H, et al. P2X2 and P2Y1immunofluorescence in rat neostriatal mediumspiny projection neurons and cholinergic interneurones is not linked to respective purinergic receptor function. Br J Pharmacol, 2004, 143(1):119~131
    22 Sabala P, Czajkowski R, Przybytek K, et al. Two subtypes of G protein-coupled nucleotide receptors, P2Y1 and P2Y2 are involved in calcium signaling in glioma C6 cells. Br J Pharmacol, 2001, 132(2):393~402
    23 Ishiguchi T, Takahashi T, Itoh H, et al. Nitrergic and purinergic regulation of the pylorus. Am J Physiol, 2000, 279(4):740~747
    24 Matharu MS, Hollingsworth M. Purinoceptors mediating relaxation and spasm in the rat gastric fundus. Br J Pharmacol, 1992, 106(2):395~403
    25 Gil-Rodrigo CE, Galdiz B, Carou M, et al. Specific inhibition by ATP of histamine-stimulated acid secretion in the gastric glands of the rabbit. Rev Esp Fisiol, 1992, 48(l): 31~36
    26 Baccari MC, Calamai F, Staderini G. Effects of arterial infusions of adenosine 5'-triphosphate (ATP) and vasoactive intestinal polypeptide (VIP) on vagal excitatory motor responses in the rabbit stomach 'in vivo'. J Auton Nerv Syst, 1990, 30(Suppl):15~18
    1 Drury AN, Szent-Gy?rgyi A. The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol, 1929, 68:213~237
    2 Green HN, Stoner HB. Biological Actions of the Adenine Nucleotides. HK Lewis and Co, 1950, 18:107~117
    3 Emmelin N, Feldberg W. Systemic effects of adenosine triphosphate. Br J Pharmacol Chemother, 1948, 3:273~284
    4 Galindo A, Krnjevic K, Schwartz S. Micro-iontophoretic studies on neurones in the cuneate nucleus. J Physiol, 1967, 192:359~377
    5 Holton P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol, 1959,145:494~504
    6 Buchthal F, Folkow B. Interaction between acetylcholine and adenosine triphosphate in normal, curarised and denervated muscle. Acta Physiol, 1948, 15:150~160
    7 Ginsborg BL, Hirst GDS. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol, 1972, 224:629~645
    8 Boettge K. Das adenyls?uresystem. Neuere ergebnisse und probleme. Arzneimittelforschung, 1957, 7:24~59
    9 Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol, 1963, 204:317~322
    10 Burnstock G. Hypoxia, endothelium and purines. Drug Dev Res, 1993, 28:301~305
    11 Burnstock G. History of extracellular nucleotides and their receptors. In The P2 Nucleotide Receptors (Turner, J.T et al., eds), pp. Humana Press, 1997, 160:3~40,
    12 Burnstock G. The action of adrenaline on excitability and membrane potential in the taenia coli of the guinea-pig and the effect of DNP on this action and on the action of acetylcholine. J Physiol, 1958, 143:183~194
    13 Burnstock G, Straub RW. A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J Physiol, 1958, 140:156~167
    14 Burnstock G, Campbell G, Bennett M, et al. Inhibition ofthe smooth muscle of the taenia coli. Nature, 1963, 200:581~582
    15 Burnstock G, Campbell G, Rand MJ. Innervation of the guinea-pig taenia coli: are there intrinsic inhibitory nerves which are distinct from sympathetic nerves? Int J Neuropharmacol, 1964, 3:163~166
    16 Martinson J, Muren A. Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol, 1963, 57:309~316
    17 Burnstock G, Campbell G, Satchell D, et al. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by nonadrenergic inhibitory nerves in the gut. Br J Pharmacol, 1970, 40:668~688
    18 Burnstock G, Dumsday B, Smythe A. Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol, 1972, 44:451~461
    19 Burnstock G. Purinergic nerves. Pharmacol Rev, 1972, 24:509~581
    20 Burnstock G. Purinoceptors: ontogeny and phylogeny. Drug Dev Res, 1996, 39:204~242
    21 Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology, 1997, 36:1127~1139
    22 Abbracchio MP, Williams M. Handbook of Experimental Pharmacology: Purinergic and Pyrimidinergic Signalling.Springer, 2001, 24:464~472
    23 Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience, 1976, 1:239~248
    24 Su C, Bevan JA, Burnstock G. [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science, 1971, 173:336~338
    25 Sneddon P, Burnstock G. Inhibition of excitatory junction potentials in guinea-pig vas deferens by α,β-methylene- ATP: further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol, 1984, 100:85~90
    26 Kasakov L, Burnstock G. The use of the slowly degradable analog, α,β-methylene ATP, to produce desensitization of the P2-purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Eur J Pharmacol, 1982, 86:291~294
    27 Fedan JS, Hogaboom GK, O'Donnell, et al. Contributions by purines to the neurogenic response of the vas deferens of the guinea-pig. Eur J Pharmacol, 1981, 69:41~53
    28 Langer SZ, Pinto JEB. Possible involvement of a transmitter different from norepinephrine in residual responses to nerve stimulation of cat nicitating membrane after pretreatment with reserpine. J Pharmacol Exp Ther, 1976, 196:697~713
    29 Sneddon P, Burnstock G. ATP as a co-transmitter in rat tail artery. Eur J Pharmacol, 1984, 106:149~152
    30 Burnstock G, Warland JJI. A pharmacological study of therabbit saphenous artery in vitro: a vessel with a large purinergic contractile response to sympathetic nerve stimulation. Br J Pharmacol, 1987, 90:111~120
    31 Burnstock G. Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol, 1995, 46:365~384
    32 Burnstock G. Purinergic signalling in lower urinary tract. In Handbook of Experimental Pharmacology, Volume 151/I. Purinergic and Pyrimidinergic Signalling I-Molecular, Nervous and Urinogenitary System Function (Abbracchio MP and Williams M, eds), pp. 2001, 423~515, Springer-Verlag
    33 Burnstock G. Purinergic signalling in gut. In Handbook of Experimental Pharmacology, Volume 151/II. Purinergic and Pyrimidinergic Signalling II-Cardiovascular, Respiratory, Immune, Metabolic and Gastrointestinal Tract Function (Abbracchio MP and Williams M, eds), pp. 2001,141~238, Springer-Verlag
    34 Burnstock G. Cotransmission. Curr Opin Pharmacol, 2004, 4:47~52
    35 Burnstock G. A basis for distinguishing two types of purinergic receptor. In Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (Straub RW and Bolis L, eds), pp. 1978,107~118, Raven Press
    36 Van Calker D, Muller M, Hamprecht B, et al. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem, 1979, 33:999~1005
    37 Burnstock G, Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol, 1985, 16:433~440
    38 Gordon JL. Extracellular ATP: effects, sources and fate. Biochem J, 1986, 233:309~319
    39 O’Connor SE, Dainty IA, Left P. Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci, 1991, 12:137~141
    40 Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Therap, 1994, 64:445~475
    41 Webb TE, Simon J, Krishek BJ, et al. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett, 1993, 324:219~225
    42 Brake AJ, Wagenbach MJ, Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature, 1994, 371:519~523
    43 Valera S. A new class of ligand-gated ion channel defined by P2X receptor for extra-cellular ATP. Nature, 1994, 371:516~519
    44 North RA. Molecular physiology of P2X receptors. Physiol Rev, 2002, 82:1013~1067
    45 King BF, Burnstock G. Purinergic receptors. In Understanding G Protein-coupled Receptors and their Role in the CNS (Pangalos, M. and Davies, C., eds), pp.2002,422~438, Oxford University Press
    46 Fredholm BB, Arslan G, Halldner L, et al. Adenosine receptor signaling in vitro and in vivo. Drug Dev Res, 2001, 52:274~282
    47 Abbracchio MP, Burnstock G. Purinergic signalling: pathophysiological roles. Jpn J Pharmacol, 1998, 78:113~145
    48 Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol, 2004, 240:31~304
    49 Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res, 2001, 26:959~969
    50 Zimmermann H. Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res, 2001, 52:44~56
    51 Burnstock G. Purinergic receptors in the nervous system. In Current Topics in Membranes. Vol. 54. Purinergic Receptors and Signalling (Schwiebert EM, eds), pp. 2003, 307~368, Academic Press
    52 Kucher BM, Neary JT. Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem, 2005, 92:525~535
    53 James G, Butt AM. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol, 2002, 447: 247~260
    54 Vidal M, Hicks PE, Langer SZ. Differential effects of α,β-methylene ATP on responses to nerve stimulation in SHR and WKY tail arteries. Naunyn Schmiedebergs Arch Pharmacol, 1986, 332:384~390
    55 Vonend O, Turner CM, Chan CM, et al. Glomerular expression of the ATP-sensitive P2X7 receptor in diabetic and hypertensive rat models. Kidney Int, 2004, 66:157~166
    56 Burnstock G. Purinergic signalling and vascular cell proliferation and death. Arterio Thromb Vasc Biol, 2002, 22:364~373
    57 Collier HO, James GW, Schneider C. Antagonism by aspirin and fenamates of bronchoconstriction and nociception induced by adenosine-5’-triphosphate. Nature, 1966, 212:411~412
    58 Bleehen T, Keele CA. Observations on the algogenic actions of adenosine compounds on human blister base preparation. Pain, 1977, 3:367~377
    59 Bradbury EJ, Burnstock G, McMahon SB. The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci, 1998, 12:256~268
    60 Burnstock G. A unifying purinergic hypothesis for the initiation of pain. Lancet, 1996, 347:1604~1605
    61 Chizh BA, Illes P. P2X receptors and nociception. Pharmacol Rev, 2001, 53:553~568
    62 Jarvis MF. Contributions of P2X3 homomeric and heteromeric channels to acute and chronic pain. Expert Opin. Ther Targets, 2003, 7:513~522
    63 Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther (in press)
    64 Burnstock G. Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat, 1999, 194:335~342
    65 Vlaskovska M, Kasakov L, Rong W, et al. P2X3 knockout mice reveal a major sensory role for urothelially released ATP. J Neurosci, 2001, 21:5670~5677
    66 Rong W, Burnstock G. Activation of ureter nociceptors by exogenous and endogenous ATP in guinea pig. Neuropharmacology, 2004, 47:1093~1101
    67 Wynn G, Rong W, Xiang Z, et al. Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology, 2003, 125:1398~1409
    68 Cockayne DA, Hamilton SG, Zhu QM, et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature, 2000, 407:1011~1015
    69 McGaraughty S, Wismer CT, Zhu CZ, et al. Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol, 2003, 140:1381~1388
    70 Liang SD, Gao Y, Xu CS, et al. Effect oftetramethylpyrazine on acute nociception mediated by signaling of P2X receptor activation in rat. Brain Res, 2004, 995:247~252
    71 Mantyh PW, Clohisy DR, Koltzenburg M, et al. Molecular mechanisms of cancer pain. Nat Rev Cancer, 2002, 2:201~209
    72 Wheeler-Schilling TH, Munz M, Guenther E, et al. Identification of purinergic receptors in retinal ganglion cells. Brain Res Mol Brain Res, 2001, 92:177~180
    73 Pintor J, Peral A, Pelaez T, et al. Nucleotides and dinucleotides in ocular physiology: New possibilities of nucleotides as therapeutic agents in the eye. Drug Dev Res, 2003, 59:136~145
    74 Sugiyama T, Kobayashi M, Kawamura H, et al. Enhancement of P2X7-induced pore formation and apoptosis: an early effect of diabetes on the retinal microvasculature. Invest Ophthalmol Vis Sci, 2004, 45:1026~1032
    75 Yerxa BR. Therapeutic use of nucleotides in respiratory and ophthalmic diseases. Drug Dev Res, 2001, 52:196~201
    76 Housley GD. Physiological effects of extracellular nucleotides in the inner ear. Clin Exp Pharmacol Physiol, 2000, 27:575~580
    77 Wang JC, Raybould NP, Luo L, et al. Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. Neuroreport, 2003,14:817~823
    78 Gale JE, Piazza V, Ciubotaru CD, et al. A mechanism for sensing noise damage in the inner ear. Curr Biol, 2004, 14:526~529
    79 Gayle S, Burnstock G. Immunolocalization of P2X and P2Y nucleotide receptors in the rat nasal mucosa. Cell Tissue Res, 2005, 319:27~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700