不同密度选择压力下玉米耐密性鉴定及遗传性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对高密度压力下玉米自交系选育方法,自交系和杂交种耐密性鉴定,杂种优势表现、配合力和遗传参数进行研究,共分四个方面。第一,以国内生产上应用的6大类群骨干自交系郑58、M017、昌7-2、丹340、PH6WC、PH4CV分别在6万株/hm2、7.5万株/hm2、9万株/hm2、11万株/hm2、13万株/hm2五个密度下种植,研究自交系的耐密性、抗逆性和最佳种植密度。第二,对当前主推和典型代表模式品种先玉335、郑单958、农华101、利民33、JNY301、JNY611、JNY986、JNY886采用裂区试验分别在3万株/hm2、4.5万株/hm2、6万株/hm2、7.5万株/hm2、9万株/hm2、11万株/hm2、13万株/hm2六个密度对其进行产量比较,确定每一杂交种的最佳种植密度。第三,以PHBIM×昌7-2和郑58×PH6WC为基础材料,分别在6万株/hm2、9万株/hm2、12万株/hm2、15万株/hm2的密度压力下选系,于S3代分别选出5个代表系与4个骨干系杂交构成NCII设计,对其产量表现及配合力进行分析,确定最佳选系密度。以郑58×PH6WC为基础材料,对其F2、F2、F4世代在12万株/hm2选择压力下选系,于S5代分别选出5个代表系与4个骨干系杂交构成NCII设计,对其产量表现及配合力进行分析,确定最佳选系世代。第四,在6万株/hm2、7.5万株/hm2、9万株/hm2三个密度下对玉米重要性状的杂种优势、配合力和遗传参数进行分析,探究其变化规律。通过上述研究以期为玉米高密度育种提供理论参考。
     1.自交系耐密性分析
     高密度压力下可以更清晰揭示性状的变异,不同类群自交系在高密度压力下其性状表现存在差异。郑58在5个密度下倒伏率低(0),双穗率较高(5.9%),空杆率低(1.1%),ASI值较低(1.95),群体产量最高时密度为7.5万株/hm2,因此抗倒性、空杆率、双穗率、ASI、群体产量是郑58的耐密优势性状,郑58的耐密性较好。PH4CV在5个密度下空杆率低(1.07),双穗率较高(9.2%),ASI值较低(1.67),秃尖短(1.48cm),群体产量最高时密度为7.5万株/hm2,因此空杆率、双穗率、ASI、秃尖、群体产量是PH4CV的耐密优势性状,PH4CV的耐密性较好。PH6WC在5个密度下空杆率高(38.9%),双穗率低(0.56%),ASI值大(2.93d),群体产量最高时密度为6万株/hm2,因此PH6WC耐密性差。Mo17在5个密度下空杆率较高(6.1%),双穗率低(0.13%),ASI值大(2.96d),群体产量最高时密度为6万株/hm2,因此Mo17耐密性中等。丹340在5个密度下空杆率高(26.8%),双穗率低(0),ASI值大(4.15d),秃尖长(2.57cm),群体产量最高时密度为6万株/hm2,因此丹340耐密性差。
     2.杂交种耐密性分析
     改良Reid×塘四平头模式代表杂交种郑单958的最佳产量密度为7.5万株/hm2,该模式杂交种空杆率低、倒伏率低、秃尖短表现出较强的耐密性。Reid×Lancaster模式代表杂交种先玉335的最佳产量密度为6万株/hm2,该模式杂交种空杆率高、倒伏率高不适宜密植。美杂选×旅大红骨模式代表杂交种农华101的最佳产量密度为6万株/hm2,该模式杂交种空杆率低、倒伏率低高、秃尖短,具有一定的耐密潜力。改良Reid×外杂选模式代表杂交种利民33的最佳产量密度为9万株/hm2,该模式杂交种空杆率低、倒伏率低、秃尖短,耐密性强。
     3.最佳选系方法研究
     选系基础材料PHB1M×昌7-2在12万株/hm2密度下选育出GCA为正值的自交系多,自交系SCA效应值变幅小,配出的高产组合数比其它密度多,因此PHB1M×昌7-2基础材料在12万株/hm2密度下选系最佳。郑58×PH6WC在9万株/hm2密度下选育出GCA为正值的自交系多,自交系SCA效应值变幅小,配出的高产组合数比其它密度多,因此郑58×PH6WC基础材料在9万株/hm2密度下选系最佳。PH6WC×郑58在F2世代密度下选育出GCA为正值的自交系多,自交系SCA效应值变幅小,配出的高产组合数比其它密度多,因此PH6WC×郑58基础材料F2代进行高密度选系最佳。
     4.杂种优势表现、配合力和遗传参数分析
     密度压力下不同杂交组合的杂种优势表现存在差异,密度增加杂种优势随之降低。不同密度条件下自选系和骨干系各性状的GCA存在较大差异,同一自交系在不同密度条件各性状的SCA表现出差异,密度增加与组合SCA效应变化不一致。株高、穗位、穗长、穗行数、百粒重的遗传以加性效应作用为主,秃尖和单株产量的遗传以非加性效应作用为主。株高、穗位、穗长、粒长、穗行数、百粒重的选择宜在早代进行,行粒数和单株产量的选择宜在晚代进行。
The breeding methods of maize inbred lines,inbred lines and hybrids resistant identification,heterosis, combining ability and genetic parameters under different density selection pressure were studied in this paper,what included four aspects.The first, we selected six inbred lines from domesitic maize group which were zheng58, Mo17, Chang7-2, Dan340, PH6WCand PH4CVand Researched their density-tolerance, stress tolerance and the best density under seven densities,60000plants/hm2,75000plants/hm2,90000plants/hm2,110000plants/hm2,130000plants/hm2, respectively.The second, we selected nine hybird including JNY986, JNY611, JNY886, JNY503, JNY787, xianyu335, zhengdan958and dika516. The density-tolerance and selection of the best density under seven densities, respectively,30000plants/hm2,45000plants/hm2,60000plants/hm2,75000plants/hm2,90000plants/hm2,110000plants/hm2,130000plants/hm2were researched. The third, PHB1M×chang7-2and PH6WC×zheng58as basis materials in60000plants/hm2,90000plants/hm2,120000plants/hm2,150000plants/hm2under selection pressure, S3generation were selected five representative departments and four critically excellent inbred lines forming NCII and identified the best selection density by analysing the production performance and the combining ability. On the base of zheng58xPH6WC, F2, F3and F4were selected under density of12000plants/hm2and S3generation were selected five representative departments and four critically excellent inbred lines forming NCII and identified the best selection generation by analysing the production performance and the combining ability. The fourth, under three densities including60000plants/hm2,75000plants/hm2and90000plants/hm2, heterosis and combining ability of maize were analysed and their changing regularity was also researched. Above researches provided theoretical references for breeding under high density.1. Aalysis on density-tolerance of maize inbred lines
     In five densities, empty stem(0), double ears(12.3%), ASI(1.36d), ear tip length(0.61cm), yield per ha were advantage characters for Chang7-2. The density-tolerance of Chang7-2was the best. The lodging resistance(0), double ears(5.9%), empty stem(1.1%), ASI(1.95d) and yield per ha were advantage characters for Zheng58. The double ears(9.2%), empty stem(1.07%), ASI(1.67d) and yield per ha were advantage characters for PH4CV. The density-tolerance of Zheng58and PH4CV was better. The double ears、empty stem and ASI of PH6WC were0.56%,38.9%,2.93d respectively, The double ears、empty stem and ASI of Mo17were0.13%,6.1%,2.96d, respectively. The double ears、empty stem、ASI and ear tip length of Dan340were 0,26.8%,4.13d,2.57cm, respectively. The density-tolerance of PH6WC and Dan340was bad.
     2. Analysis on density-tolerance of maize hybrids
     The best yield density was75000plant per ha in Zhengdan958under the model of improved ReidxTangsipingtou.The short eartip, the low rate of empty stem and lodging for the hybrids under the above model, which showed the better density-tolerance. The best yield density was60000plant per ha in Xianyu335under the model of ReidxLancaster.It was not suitable to close planting for the hybrids who had the high rate of empty and lodging under the above model. The best yield density was60000plant per ha in Nonghua101under the model of USA-hybrid xLvdahonggu. The hybrids had potential on the low short eartip, the low rate of empty stem and lodging for closing planting. The best yield density was90000plant per ha in Limin33under the model of Abroad-hybridxLvdahonggu. It was suitable to close planting for the hybrids who had the low short eartip,low rate of empty and lodging under the above model.
     3.Analysis on the best selection density for inbredline
     All the GCA effects of inbred breeding from PHBlMxChang7-2in12000plants per ha were positive and the variation scope of SCA was small. The number of high yield hybrid more than other density.12000plants per ha was the best selecting density of inbred lines for PHB1M×Chang7-2. All the GCA effects of inbred breeding from PH6WCxZheng58in90000plants per ha were positive and the variation scope of SCA was small. The number of high yield hybrid more than other density,90000plants per ha was the best selectiong density of inbred lines for PH6WCxZheng58. All the GCA effects of inbred breeding from F2of PH6WCxzheng58were positive and the variation scope of SCA was small. The number of high yield-hybrids more than other densities, using F2of PH6WCxzheng58as basis material was the best for selecting lines under high density.
     4. Analysis on heterosis, combining ability and gesnetic parameter
     There were differences between the heterosis of different combinations under the density conditions, which decreased with the increasing of density. There were obvious differences between the traits of the selected and main inbred lines in GCA effects under the different density conditions.What's more,the traits of the same inbred lines in SCA effects showed differences in different density conditions t. Meanwhile, it was inconsistent in the combination of SCA effects changed with density increased. Hereditary for plant height, ear, ear length, rows per ear, kernel weight mainly to the role of additive effects, yield per plant and ear tip length mainly to the role of non-additive effects. Plant height, ear, ear length, grain length, rows per ear, kernel weight of selection should be in the early generations, rows per ear and yield per plant in the late generations.
引文
[1]刘纪麟.玉米育种学[M].北京:中国农业出版社,2001.
    [2]张铭堂,徐国梁,才卓,等,玉米自交系选育的理论基础与实践经验[J].玉米科学,2010,18(2):1-4.
    [3]Goodman M M, BROADENING THE U.S. MAIZE GERMPLASM BASE. Maydica 50 (2005):203-214.
    [4]Paul T. Nelson and Major M. Goodman. Evaluation of Elite Exotic Maize Inbreds for Use in Temperate Breeding. CROP SCIENCE, VOL.48, JANUARY-FEBRUARY 2008,85-92.
    [5]James B. Holland Breeding:Incorporation of Exotic Germplasm Encyclopedia of Plant and Crop Science.222-224.
    [6]Dudley, J. W.1984. Theory for identification and use of exotic germplasm in maize breeding programs[J]. Maydica.29 (4):391-407.
    [7]W. Salhuana, L. M. Pollak, M.Ferrer al. Breeding Potential of Maize Accessions from Argentina, Chile, USA and Uruguay. Crop Science. Vol.38 No.3, p.866-872.
    [8]张世煌,彭泽斌,李新海,等.玉米杂种优势和种质扩增、改良和创新[J].中国农业科学,2003,33(增刊):34~39.
    [9]彭泽斌,刘新芝.我国玉米杂交种种质基础评价[J].安徽农业科学.1994,22(2):97-99.
    [10]曾三省.中国玉米杂交种的种质基础[J].中国农业科学,1990,23(4):1-9.
    [11]史桂荣,郑富贵,曹靖生.2001.黑龙江省玉米主要杂交优势利用模式的研究.中国农学通报.17(4)18-21.
    [12]王懿波.中国玉米主要杂种优势群的划分及其改良利用[J].华北农学报,1998,13(1):74-80.
    [13]吴景峰.我国玉米种质资源的研究利用和发展方向[J].国家玉米品种区试培训材料,1999,18-123.
    [15]王懿波,王振华,陆利行,等.中国玉米种质杂种优势利用模式研究.中国农业科学,1997,29(4):16~24.
    [16]吴景峰.我国主要玉米杂交种种质基础评述[J].《玉米育种研究进展》.1992
    [17]王懿波,王振华,王永普,等.中国玉米种质基础、杂种优势群划分与杂优模式研究[J].玉米科学,1998.6(1):9-14.
    [18]刘新芝,彭泽斌,傅骏骅.RAPD在玉米类群划分研究中的应用[J].中国农业科学,1997,30(3):44-51.
    [19]李新海,李明顺,袁力行.热带、亚热带玉米种质的研究与利用[J].中国农业科学.2000,33(增刊):20~26.
    [20]李新海,徐尚忠,李建生.10个热带、亚热带玉米群体配合办效应研究[J].玉米科学.2001, 9(1):1-5.
    [21]李明顺,张世煌,李新海,等.亚热带优质蛋白玉米自交系的配合力和杂种优势群分析[J].2003年全国作物遗传育种学术研讨会论文集.244-250.
    [22]李明顺,张世煌,彭泽斌,等.玉米半外来群体的构建与利用[J].中国农业科学.2000,33(增刊):15~19.
    [23]陈彦惠,王利明,戴景瑞.中国温带玉米种质与热带、亚热带种质杂优组合模式的研究[J].作物学报.2000,26(5):557~564.
    [24]李新海,李明顺,袁力行.热带、亚热带玉米种质的研究与利用[J].中国农业科学.2000,33(增刊):20-26.
    [25]吴景锋.我国主要玉米杂交种种质基础评述[J].中国农业科学,1983,2:1-8.
    [26]铁双贵,郑用链.玉米人工合成群体产量相关性状选择潜势及杂种优势模式分析[J].华北农学报,2002,17(1):30-34.
    [27]李新海,袁力行,李晓辉,等.利用SRS标记划分70份我国玉米自交系的杂种优势群[J].中国农业科学.2003,36(6):622-627.
    [28]刘雪,李明顺,李新海,等.利用SSR标记分析玉米群体遗传变异的取样方法[J].作物学报,2005,9(1)436-439.
    [29]袁力行,傅骏骅,张世煌,等.利用RFLP和SSR标记划分玉米自交系杂种优势群的研究[J],作物学报,2001,27(2):149-156.
    [30]袁力行,张世煌,傅骏骅,等.玉米遗传多样性与杂种优势群研究[J].中国农业科学,2000,33(增刊):9~14.
    [31]刘新芝,彭泽斌,傅骏骅,等.采用RAPD分子标记、表型和杂种优势聚类分析法对玉米自交系类群的划分[J].华北农学报,1998,13(4):36-41.
    [32]赵久然,郭景伦.应用RAPD分子标记技术对我国骨干玉米自交系进行类群划分[J].华北农学报,1994,14(1):32-37.
    [33]李竞雄.中国大百科全书(生物学卷遗传学分册):杂种优势[M].北京:中国大百科全书出版社1983,230-234.
    [34]彭泽斌 刘新艺.玉米自交系杂种优势类群与杂优模式构建的初步研究[J].作物学报,1998,24(6):711-717.
    [35]张世煌,彭泽斌,李新海.玉米杂种优势和种质扩增、改良和创新[J].中国农业科学,2000,33(增刊):34~39.
    [36]刘正蒙,崔良国.玉米自交系酯酶同工酶酶谱的聚类及其在遗传育种上的应用[J].玉米科学,1994,2(4):12-14,17.
    [37]Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S R. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis and RFLPs[J]. Theor Appl Genet,1990,80:833-840.
    [38]Stuber C W.Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred using molecular markers[J]. Genetics,1992,132:823-839
    [39]赵久然,郭景伦.应用RAPD分子标记技术对我国骨干玉米自交系进行类群划分.华北农学报,1999,14(1):32-37.
    [40]袁力行’傅骏骅,WarburtonM,等.利用RFLP, SSR, AFLP和RAPD标记玉米自交系遗传多样性的比较研究[J].遗传学报。2000,27(8):725-733.
    [41]吴敏生,王守才,戴景瑞.AFLP分子标记在玉米优良白交系优势群划分中的应用[J].作物学报,2000,26(1):9-13.
    [42]Mumm R H. Dudely J W. A classification of 148 U.S. maize inbreds:I. Cluster an alysis based on RFLPs[J]. Crop Sci.,1994,34:842-851.
    [43]高明刚,张怀渝.四川部分玉米强优势组合及其亲本自交系的RAPD分析[J].四川农业大学学报,2002,20(2)96-99。
    [44]龙漫远.利用RFLP资料估计遗传变异[J].遗传,1993,15(3):44-48.
    [45]Melchinger A E, Boppenmaier J, Dhillon B S, Pollmer W G, Herrman R G. Genetic diversity for RFLPs in European maize inbred II. Relation to performance of hybrids within versus between heterosis groups for forge trait[J]. Theoretical and Applied Genetics,1992,84:672-684, Molecular divergence and hybrid performance in rice
    [46]鲍文奎.作物遗传育种理论发展前景展望[J].作物杂志,1993,3:1~6.
    [47]钟金城.活性基因效应假说[J].西南民族学院学报:自然科学版,1994,20(2):203~205.
    [48]刘冬成.作物杂种优势基础研究的进展[J].中国科学院院刊,2001,16(5):334-338.
    [49]郭平仲,张金栋,甘为牛,等.距离分析方法与杂种优势,遗传学报,1989,16(2):97-104.
    [50]Stuber C W.Lincoln S E,Wolff D W,Helentjaris T,Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred using molecular markers[J]. Genetics,1992,132:823-839
    [5l]Godshalk E B, Lee M, Lamkey K R. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize[J]. Theoretical and Applied Genetics,1990,80: 273-280.
    [52]Dudley J W, Saghai-Maroof M A, Rufener G K. Molecular marker and grouping of parents in maize breeding programs[J]. Crop Science,1991,31:718-722.
    [53]Melchinger A E, Lee M. Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbred lines[J]. Crop Sciences,1990,30: 1033-1040.
    [54]Romagnoli S, Maddaloni M, LivinlC, et al. Relationship between gene expression and hybrid vigor in primary root tips of young maize plantleta[J].Theor Appl Genet,1990,80:767-775.
    [55]Tsaftaris A S, Polidoros A N. Studing the expression of genes in maize parental inbreds and their heterotic and nonheterotic hybrids [A] ProcEncolpia Maize and Sorghum Conference [M]. Bergamo, Italy,1993,283-292.
    [56]田曾元,戴景瑞.玉米杂种与亲本穗分化期功能叶基因差异表达与杂种优势[J].遗传学报,2003,30(2):154-162.
    [57]王章奎,倪中福,孟凡荣,等.小麦杂交种及其亲本拔节期根系基因差异表达与杂种优势关系的初步研究[J].中国农业科学,2003,36(5):473-479.
    [58]张世煌.高密度育种不等于耐密植育种[J].北京农业.2010.32:1-3.
    [59]刘培利.紧凑型玉米根系高产特性的研究[J].玉米科学,1994,3(2):36~39.
    [60]何勇,张美年,刘昌明,等.玉米三种株型生理、生态特性及高产栽培技术研究[J].玉米科学,1997,5(1):39~43.
    [61]郭江.密度对不同株型玉米群体结构的调控效应[J].华北农学报.2008,23(1):149-153.
    [62]DUVICK. D. N HeterOsis:Feeding people and protecting natural resource[M]//COORS J G, PANDEY S. The genetics and exploitation of heterosis in crop[J]. Madison, Wisconsin, USA: American Socjety of Agronomy, Inc,1999:19-29.
    [63]王绍平.吉林省耐密玉米品种选育问题与解决途径的探讨[J].中国农业信息.2008,03:23-24.
    [64]张永科,郗洛延,魏军,等。玉米生长竞争研究I.玉米窝播效应测定[J].耕作与栽培,2009,4:8-9,38.
    [65]董树亭,王空军.玉米品种更替过程中群体光合特性的演变[J].作物学报,2000,26(2):200-204.
    [66]佟屏亚.玉米高产是一个永恒的课题[J].作物杂志,2004,1:10~12.
    [67]杨泽勇,张兴华,3种密度玉米自交系选择的配合力分析[J].湖北农业科学,2009,48(3):576-579.
    [68]毛建昌,张世煌,李向拓.选育高产高配合力玉米自交系的途径与方法[J].中国农业科学,2006,39(5):872~878.
    [69]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学技术出版社,2002.304~311.
    [70]丰光,李妍妍,景希强,等.玉米不同种植密度对主要农艺性状和产量的影响[J].玉米科学.2011(1):27-35.
    [71]李宁,翟志席,李建民,等.密度对不同株型的玉米农艺、根系性状及产量的影响[J].玉米科学,2008(5):98~102.
    [72]刘鑫,谢瑞芝,牛兴奎,等.种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响[J].作物杂志,2012(5):126-130.
    [73]谢振江,李明顺,李新海,等.密度压力下玉米杂交种农艺性状与产量相关性研究[J].玉米科学,2007,15(4):100-104.
    [74]管建慧,郭新宇,刘洋,等.不同密度处理下玉米根系干重空间分布动态的研究[J].玉米科学,2007,15(4):105-108.
    [75]勾玲,黄建军,张宾,等.群体密度对玉米茎秆抗倒力学和农艺性状的影响[J].作物学报,2007,33(10):1688~1695.
    [76]秦国胜.浅析郑单958对玉米育种方向的影响[J].中国种业,2006,3-11.
    [77]DUVICK. D.N Heterosis:Feeding people and protecting natural resource[M]//COORS J G, PANDEY S. The genetics and exploitation of heterosis in crop. Madison, Wisconsin, USA:American Socjety of Agronomy, Inc,1999:19-29.
    [78]毛建仓,张世煌,李向拓.选育高产,高配合力玉米自交系的途径与方法[J].中国农业科学,2006,39(5):872~878.
    [79]邢锦丰,赵久然,黄长玲,等.密植育种法在选育玉米自交系中的应用[J].玉米科学,2008,16(2):54~55.
    [80]张铭堂,徐国梁,才卓.玉米自交系选育的理论基础与实践经验[J].玉米科学,2010,18(2):1~4.
    [81]刘来福,毛盛贤,黄远樟.作物数量遗传[M].北京:农业出版社,1984:206-208.
    [82]高景瑞,李泾孝,张仁和等.两种密度系谱法选择玉米自交系的一般配合力分析[J].西北农林科技大学学报,2008,36(6):56-60.
    [83]杨泽勇,张兴华,薛吉全.3种密度玉米自交系选择的一般配合力分析[J].湖北农业科学,2009,48(3):576-579.
    [84]TOLLENAAR M, WU J, Yield improvemont in temperate maize is attributable to greater stress tolerance[J]. Crop Sci,1999,39(6):1597-1604.
    [85]YING J, LEE E A, TOLLENAAR M. Response ofmaize leaf photosynthesis to low temperature during the grin filling period[J]. Field Crop Research,2000,68(10):87-96.
    [86]ECHARTE L, LUQUE S.ANDRAD F H, et al. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993[J]. Field Crops Research.2000,68 (1):1-8.
    [87]杨国虎,李新,王承莲,等.种植密度影响玉米产量及部分产量相关性状的研究[J].西北农业学报,2006,15(5):57~60.
    [88]薛吉全,马国胜,路海东,等.密度对不同类型玉米源库关系及产量的调控[J].西北植物学报,2001,21(6):1162-1168.
    [89]慈晓科,张世煌,张德贵等.不同密度下玉米雌雄穗开花间隔与产量关系研究[J].玉米科学,2010,18(6):69~72.
    [90]侯有良,卢宝红,钟改荣,等.玉米穗部产量性状杂种优势分析[J].玉米科学,2003,11(1): 30~32.
    [91]DUVICK D N. The contribution of breeding to yield advances in maize (Zea mays L.) [M]//SPARKS D N.Adv Agron. San Diego, CA:Academic Press,2005:83-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700