超高产夏玉米群体质量与个体生理功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国长期面临“人多地少和粮食单产水平较低”的双重压力,而(超)高产是解决我国粮食问题的根本途径。系统研究超高产夏玉米的物质生产与产量形成规律及群体质量与个体功能特性,将有助于我们对玉米高产潜力的理解,可为夏玉米大面积高产与突破技术途径提供理论依据与技术支撑。
     本研究以采用强化栽培措施连续3年产量超过18000 kg?hm-2夏玉米(其中2005年创造了产量19348 kg?hm-2的夏玉米高产纪录)产量形成为平台,对超高产栽培模式(SYCS)和传统栽培模式(CCS)的夏玉米进行比较分析,较为系统地研究了超高产夏玉米的群体质量与个体光合、营养生理生态机制。本研究在国家玉米工程技术研究中心(山东)和作物生物学国家重点实验室进行,采用田间生理生态研究为主,室内生理生化分析为辅的方法,从群体和个体两个层面,系统研究了超高产夏玉米的群体质量与个体光合、营养生理生态机制。通过研究,明确了超高产夏玉米的群体质量与个体功能特征,建立了夏玉米超高产“群体结构与个体功能协同增益”理论模式与技术体系,构建了超高产玉米量化指标体系。主要研究结果与结论如下:
     1、超高产夏玉米的群体质量特征
     以单位生长积温衡量的SYCS玉米产量显著高于CCS,表现为SYCS玉米比CCS具有更高的光合效率和光合产物转化能力。SYCS玉米干物质生产速率优势明显,生长速率峰值在时间上表现出“早发”的特点;最大相对生长速率、达到最大生长速率的生长量以及起始势均显著高于CCS,尤其是活跃生长时间比CCS多15 d以上。SYCS玉米粒叶比均达0.25 kg?m-2以上,在提高粒叶比前提下增加密度,“扩库强源”使单位叶面积负荷更多籽粒来实现产量突破。SYCS玉米的收获指数高达0.532-0.542,说明其源库关系在较高密度群体内具有较好的协调性,群体质量较高。
     在保证较高密度前提下,提高群体整齐度可较好协调个体产量潜力与群体高产的关系,通过提高群体整齐度改善群体质量是今后超高产栽培的主攻方向之一。2种模式玉米农艺性状中,穗粒数变异最大,其次是茎粗,说明密度增加对个体茎穗发育影响较大,这也是造成高产田和生产田产量差异显著的主要原因。穗粒数的变异来源于穗行数和穗粒数的共同作用,对变异贡献较大的是行粒数。所以,在高密度群体中需要平衡碳氮代谢、减少籽粒败育,可提高行粒数的整齐度增加籽粒密度,进一步提高单位面积产量。
     玉米需要更高肥料投入。SYCS玉米产量是CCS的2.5-3.5倍,而肥料投入为其3倍以上。SYCS形成100 kg子粒N∶P 2O5∶K2O=2.10∶1.79∶3.74,而CCS则为2.00∶1.57∶1.92,表明超SYCS玉米对钾、磷肥的相对需求比例明显变大,氮肥需求则降低。
     2、超高产夏玉米的个体生理功能特征
     以单位生长积温衡量的SYCS玉米个体生物量显著高于CCS。SYCS玉米子粒灌浆表现出启动慢,降低慢,速率相对平缓,活跃灌浆时间长的特点。与CCS相比,SYCS玉米子粒产量形成并不具备灌浆速率上的优势,峰值具有“时滞”效应且下降慢,而活跃生长期长达60 d以上(比CCS高14 d以上),终极生长量高。SYCS玉米子粒灌浆时间长是实现高产的关键,前期高的灌浆速率并不是高产的性状,而可能是植株后期衰老加速的预示。壮株延衰,延长灌浆时间促粒重是实现超高产的关键。
     SYCS玉米群体中个体光合性能改善主要是光合高值持续期长,不在于灌浆前期光合强度高低。在高密度条件下,玉米的光竞争策略不是提高光合速率而是扩大个体叶面积并维持较长时间以截获更多光能。光合速率与气孔导度的显著正相关表明灌浆后期降低因肥水等非生物逆境造成的气孔限制有利于高产。于乳熟期和蜡熟期测定的光合日变化特性表明,SYCS玉米在粒重形成前期的光合与光能利用日变化单元并不高,其优势的凸显是在粒重形成后期,这表明光合强度与持续时间之间存在一种权衡关系,协调这二者乘积达到最佳范围是超高产栽培的重要内容。
     开花后叶片保持较高氮素含量,是延缓衰老,维持较高生理活性是实现超高产的重要原因之一。在高密度条件下,玉米的光竞争策略是在扩大个体叶面积并维持较长时间的同时保持叶片较高的氮素含量以同化更多光能。开花后30 d是SYCS和CCS玉米叶片氮素含量减少的界点,这可作为超高产玉米花后氮肥运筹的依据。
     超高产玉米花粒期叶片具有较强的抗氧化能力。花粒期植株叶片表现出较强的抗氧化能力,以CAT和POD活性氧清除机制为主,SOD途径不存在优势;特别是开花后50 d,超高产玉米的膜质过氧化程度显著低于常规生产处理的玉米。超高产玉米较高的抗氧化酶保护系统活性主要得益于叶片含较高的可溶性蛋,酶本身的比活力并不高,功能性蛋白在花粒期降解缓慢是超高产玉米延缓衰老的主要策略。
     3、超高产夏玉米的“群体结构与个体功能协同增益”理论模式的建立
     建立了夏玉米超高产“群体结构与个体功能协同增益”理论模式。其理论核心是:作物生产群体结构空间尺度上的生物学和生态学“超补偿”机制与个体功能时间尺度上的生物学和生理学“超补偿”机制相协同,即通过株行距科学配置,增加群体密度以补偿个体的功能性减产,通过肥水合理运筹,延长个体的生理功能高值持续期以超补偿群体的结构性增产,二者协同“扩库强源”,实现超高产。在实践中采用“以目标产量定品种,以紧凑株型保障高密度,大小行对角错株种植提高整齐度以优化群体,强化开花后肥水运筹,改善个体光合功能,壮株延衰提高粒重”的技术路线。主要挖潜途径包括2个方面:(1)以增加密度为保障的“群体结构性挖潜”;(2)以提高整齐度和强化开花后肥水运筹为保障的“个体功能性挖潜”。
     4、超高产夏玉米量化指标体系的构建
     构建了产量15 000 kg?hm-2以上夏玉米基本量化指标体系。在3年系统研究基础上,我们认为目前夏玉米实现超高产比较可取的产量结构模式是:有效穗数78000穗?hm-2,每穗600粒,千粒重340 g,穗粒重200 g以上;在倒伏风险小种植强抗倒品种的地区为,有效穗数90000穗?hm-2,每穗540粒,千粒重320 g,穗粒重接近200 g。集成了产量15000 kg?hm-2的技术规程。
China is facing the problems of irreversible decrease in arable land, rapid population growth and stagnant output of crop. Fortunately, the super high-yielding crop breeding and production is put forward to improve the critical situation. However, the mechanisms of synchronous improvements on population quality and individual function of super high-yielding maize were not clearly understood. The goal of the paper is to help us to understand the potential of maize and provide the basal information and techniques for maize yield improvements in future.
     The field experiment was carried out from 2005 to 2007 in loam soil located at the National Maize Engineer and Research Center (Shandong province, China). In this experiment, the maize hybrids DH3719 was used to compare the yield of 21000 kg ha-1 via super-high yielding cultiviation system (SYCS) to the yield of about 9000 kg ha-1 via conventional cultiviation system (CCS). The population quality and individual items, including population uniformity, harvest index, grain/leaf area, photosynthetic parameters, anti-oxygen performances and mass nutrition elements (nitrogen, phophorus and potasium) uptake and utilization were investigated. The main results and significant conclusions were as follows:
     1. Population quality
     The yield per degree-day of DH3719 via SYCS was higher than that via CCS. The maximum crop grown rate (CGR), photosynthetic accumulation before maximum CGR and initiative filling potential of SYCS were significantly higher than CCS, and the peak of CGR in SYCS occurred earlier than CCS, accordingly, the active grown time of SYCS was 15 days longer than CCS. SYCS had higher capability to produce grain than CCS with the ratio of grain and leaf area of over 0.25 kg m-2, which showed it’s possible to improve the source by enhancing sink. The harvest index (HI) of SYCS was higher than that of CCS with 0.532-0.542, revealing the higher population quality, higher photosynthesis efficiency and stronger photosynthate partitioning capabilities under high planting density.
     It is one of the most important targets to improve the population uniformity and population quality in the future maize practices for super high yield. In our experiment, the variance on kernels per ear was the highest in the seven agronomy items (plant height, stem diameter, ear height, rows per ear, grains per row, ear diameter), then came the diameter of stem, so high planting density remarkably affected the ear and stem growth and development. The variance on kernels per ear was contributed by rows per ear and kernels per row, especially kernels per row, therefore, increasing uniformity of rows per ear by regulating the carbon-nitrogen metabolisms and decreasing grain abortion could increase density of kernels, and then increase the yield of maize.
     SYCS needs more fertilizers than CCS. The yield of SYCS was 2.5-3.5 times higher than CCS, while the fertlizers for SYCS should be more 3 times than CCS. When produced 100 kg grain, the absorption of N, P2O5 and K2O were 2.00 kg, 1.579 kg and 1.92 kg in CCS, respectively, but 2.10 kg, 1.79 kg and 3.74 kg in SYCS. Even more, among the 3 fertilizers, SYCS need more K2O and P2O5 than CCS, but less N than CCS.
     2. Individual physiological function
     The individual biomass per degree-day in SYCS was higher than that in CCS. Compared with CCS, SYCS was characterized with late grain filling, gentle change of grain-filling rate, and long active grain-filling period. Not grain-filling rate but long active grain-filling period contributed high yield for SYCS, which could be seen from over 14 days longer of active grain-filling period in SYCS than CCS. Prolonging the grain-filling time was essential to obtain super high yield in maize, while higher grain-filling rate may be the signal of rapid senescences in the anaphase of grain weight formation, not the symbol of high-yielding.
     Improvement in photosynthesis for SYCS was mainly by long high-photosynthesis duration, not by the high photosynthesis rate during grain-filling. For maize, the strategy of capturing more light radiation under high planting density was by enlarging the leaf area, not by increasing the photosynthetic rate. The significantly positive relationship between photosynthetic rate and stomatal conductance revealed it was important for high yield to alleviate the abiotic stress, such as drought, nutrition deficiency, disease and insect pest etc. The diurnal trends of photosynthesis on 25 and 45 days after anthesis indicated the photosynthate accumulation unit in SYCS was not different from CCS in the prophase of kernel development, nevertheless, SYCS was significant higher than CCS in the phase of grain weight formation. So it is necessary to regulate the confliction between photosynthetic rate and photosynthesis duration for super high yield.
     One reason for higher yield of SYCS is the higher nitrogen concentration in leaves after anthesis, which would maintain the higher physiological function and delay the leaves senescence after anthesis. The 30th day after flowering was boundary for the difference of nitrogen concentration in leaves between SYCS and CCS.
     SYCS had high anti-oxygen capability during grain filling, the reactive oxygen cleaning was mainly through CAT and POD system, especially in the 50th day after anthesis. The degree of membrane lipid peroxidation was lower in SYCS than in CCS, especially the 50th day after anthesis. The high total ezyme activities in SYCS were not owed to its specific activity but to the high functional soluble protein amount.
     3. Synchronous improvement of population structure and individual function
     The theory of“Synchronous improvement of population structure and individual function”was established. The core of it was that: the over-compensation effects of biology and ecology occurred in crop population spatial structure, coinstantaneously the over-compensation effects of biology and physiology occurred in crop individual temporal scale.
     This theory integrates the planting density and row distance scheme, irrigation and fertilizer management. On one hand, planting density increment compensated the reduction of individual. On the other hand, individual function with high activity increment over-compensated the increase of population structure. The technological practices included choosing hybrids by intending goal yield, obtaining high density by plant type, ensuring the population uniformity by alternating row and diagonally sowing, and enhancing fertilizers and water inputs after anthesis, therefore, the photosynthesis and grain weight were improved and plant senescence were delayed. Two effective approaches of“structural exploration”and“functional exploration”for exploring crop yield.
     4. Quantitative items of super high-yielding maize
     The quantitative items of super high-yielding maize with yielding potential over 15000 kg ha-1 were explored in our experiment. The ideal system of yield components was: harvested ears≥78000 ear ha-1, kernels per ear≥600, 1000-kernel weight≥340 g, ear weight≥200 g. In the optimum zone planted anti-lodge hybrids and without lodge occurring, the ideal system of yield components was: harvested ears≥90000 ear ha-1, kernels per ear≥540, 1000-kernel weight≥320 g, ear weight≥200 g.
引文
1.陈炳松,张云华,李霞,焦德茂.超级杂交稻两优培九生育后期的光合特性和同化产物的分配.作物学报,2002,28(6):777-782.
    2.陈国平,孙政才.我国玉米最高亩产新纪录.北京农业科技,1992,10:24-25.
    3.陈国平,赵久然,张经武,王玉林,朱士朋,孙宝,卢志云,段成民.春玉米创最高产纪录栽培技术的研究.玉米科学,1995,3:26-30.
    4.陈国平,赵久然.试论超级玉米的育种、栽培模式,玉米栽培研究工作50年.玉米研究文集,北京:中国农业科学技术出版社,2007.
    5.陈国平. 2006年我国超高产玉米高产竞赛工作总结.玉米研究文集,北京:中国农业科学技术出版社,2007.
    6.陈国平.对超级玉米的再认识.玉米研究文集,北京:中国农业科学技术出版社,2007.
    7.程式华,翟虎渠.水稻亚种间超高产杂交组合若干株型因子的比较.作物学报,2000,26(6):713-718.
    8.戴小枫,孟宪学,刘世珍,叶志华,梅方权.养活2030年16亿人口需要新的农业科技革命.中国农学通报,1998,14(2):7-9.
    9.东先旺,刘树堂,殷玉楼,陶世荣,苑振戈.超高产夏玉米耗水特性与灌水指标的研究.莱阳农学院学报,1999,16(3):157-162.
    10.董树亭,高荣岐,胡昌浩,王群瑛,王空军.玉米花粒期群体光合性能与高产潜力研究.作物学报,1997,23(3):318-325.
    11.董树亭,王空军,胡昌浩.玉米品种更替过程中群体光合特性的演变.作物学报,2000,26(2):200-204.
    12.封超年,郭文善,何建华,朱新开,马光辉.高产小麦株型的指标体系.扬州大学学报,1998,1(4):24-30.
    13.顾世梁,朱庆森,杨建昌,彭少兵.不同水稻材料子粒灌浆特性的分析.作物学报,2001,27(1):7-14.
    14.韩燕来,介晓磊,谭金芳,郭天财,朱云集,王晨阳,夏国军,刘征.超高产冬小麦氮磷钾吸收、分配与运转规律的研究.作物学报,1998,24(6):908-914.
    15.纪从亮,俞敬忠,刘友良,吴云康.棉花高产品种的株型特征研究.棉花学报,2000,12(5):234-237.
    16.李潮海,刘奎.不同产量水平玉米杂交种生育后期光合效率比较分析.作物学报,2002,28(3):379-383.
    17.李潮海,苏新宏,谢瑞芝,周苏玫,李登海.超高产栽培条件下夏玉米产量与气候生态条件关系研究.中国农业科学,2001,34(3):311-316.
    18.李登海,毛丽华,姜伟娟,柳京国,李春明.紧凑型杂交玉米高产性能的发现与探索.莱阳农学院学报,2001,18(4):259-262.
    19.李登海.从事紧凑型玉米育种的历史与回顾.莱阳农学院学报,2001,18(1):1-6.
    20.李少昆,赵明.玉米基因型光合效率与物质生产关系的研究.华北农学报,2000,15(论文集):179-182.
    21.李向东,王晓云,余松烈,张高英,万勇善,李军.花生叶片衰老过程中光合性能及细胞微结构变化.中国农业科学,2002,35(4):384-389.
    22.李振声.新农业科技革命和作物超高产育种研究.中国科学基金,2000,1:40-42.
    23.廖江林,袁平荣,李达模,肖国樱.两种栽培模式下水稻品系(组合)间产量和主要农艺性状的比较.江西农业大学学报,2004,26(5):726-730.
    24.凌启鸿,张洪程,蔡建中,苏祖芳,凌励,.水稻高产群体质量及其优化控制探讨.中国农业科学,1993,26(6):1-11.
    25.凌启鸿.作物群体质量.上海:上海科学技术出版社,2000.
    26.刘建丰,袁隆平,邓启云,陈立云,蔡义东.超高产杂交稻的光合特性研究.中国农业科学,2005,38(2):258-264.
    27.刘景辉,王志敏,李立军,张海明.超高产是中国未来粮食安全的基本技术途径.农业现代化研究,2003,24(4):161-165.
    28.刘培利,林琪,隋方功,孙作启.紧凑型玉米根系高产特性研究.玉米科学,1994,2(1):59-63.
    29.刘笑然.中国玉米生产概况及近期走势分析.饲料广角,2001,17:8-13.
    30.刘志全,李万良,路立平,沈海波,周桂林,李才库,王吉春,王厚胜,刘世梅,孟祥武. 2006年美国玉米高产竞赛的启示.玉米科学,2007,15(6):144-145.
    31.刘志全,路立平,沈海波,高明,王志刚.美国玉米高产竞赛简介.玉米科学,2004,12(4):110-113.
    32.卢敏,李小云.论农事生产系统研究范式.农业技术经济,2001,4:54-58.
    33.吕川根,邹江石.两个超级杂交稻与汕优63光合株型的比较分析.中国农业科学,2003,36(6):633-639.
    34.马晓旭.新形势下我国玉米产业发展的策略探讨.陕西农业科学,2004,6:57-59.
    35.欧志英,彭长连,林桂珠.田间条件下超高产水稻培矮64S/E32及其亲本旗叶的光合特性.作物学报,2005,31(2):209-214.
    36.逄焕成,王慎强.群体高产与光能利用.植物生理学通讯,1998,34(2):149-154.
    37.施教耐,吴敏贤,查静娟.植物磷酸烯醇式丙酮酸羧化酶的研究I. PEP羧化酶同工酶的分离和变构特性的比较.植物生理学报,1979,5(2):225-235.
    38.宋碧,吴盛黎,苏銮兵,刘德凤,李晔.不同株型玉米高产群体的质量质量指标.山地农业生物学报,2001,20(1):1-8.
    39.宋日,吴春胜,马艳丽,郭继勋,邢福.松嫩平原不同株型玉米品种根系分布特征比较研究.应用生态学报, 2003,14(11):1911-1913.
    40.苏祖芳,张亚洁,孙成明.水稻高产株型指标的研究.中国稻米,2003,4:5-6.
    41.隋娜,李萌,田纪春,孟庆伟,赵世杰.超高产小麦品种(系)生育后期光合特性的研究.作物学报,2005,31(6):808-814.
    42.孙本喆,郭新平,曾苏明,孔晓民,孙雷明.我国玉米生产现状及发展对策.玉米科学,2003(专刊):32-33.
    43.孙世贤. 2002年美国玉米高产竞赛简况.玉米科学,2003,11(3):102.
    44.陶波,曹明奎,李克让,顾峰雪,季劲钧,黄玫,张雷明. 1981~2000年中国陆地净生态系统生产力空间格局及其变化.中国科学(D辑:地球科学),2006,36(12):1131-1139.
    45.汪仁全,马均,童平,张荣萍,李艳,傅泰露,吴合洲,刘志彬.三角形强化栽培技术对水稻光合生理特性及产量形成的影响.杂交水稻,2006,21(60):60-65.
    46.王纪华.玉米籽粒败育及其调控研究[博士论文].北京农业大学,1995:7-11.
    47.王空军,董树亭,胡昌浩,刘开昌,孙庆泉.我国1950s~1990s推广的玉米品种叶片光合特性演进规律研究.植物生态学报,2001,25(2):247-251.
    48.王空军,董树亭,胡昌浩,刘开昌,张吉旺.我国玉米品种更替过程中根系生理特性的演进Ⅰ.根系活性与ATPase的变化.作物学报,2002,28(2):185-189.
    49.王空军,董树亭,胡昌浩,刘开昌,张吉旺.我国玉米品种更替过程中根系生理特性的演进Ⅱ.根系保护酶活性及膜质过氧化作用的变化.作物学报,2002,28(3):384-388.
    50.王空军,郑洪建,刘开昌,张吉旺,董树亭,胡昌浩.我国玉米品种更替过程中根系时空分布特性的演变.植物生态学报,2001,25(4):472-475.
    51.王立春,边少锋,任军,刘武仁,方向前.吉林省玉米超高产研究进展与产量潜力分析.中国农业科技导报,2004,6(4):33-36.
    52.王璞,鲁来清,王润正,于国建,卢布,王树安.河北吴桥小麦-玉米一年两作超高产探索.中国农业科技导报,2000,2(3):12-15.
    53.王强,温晓刚,卢从明,张其德.超高产杂交稻‘华安3号’冠层不同衰老程度叶片的光合功能.植物生态学报,2004,28(1):39-46.
    54.王强,温晓刚,卢从明,张其德.超高产杂交稻‘华安3号’冠层不同衰老程度叶片的光合功能.植物生态学报,2004,28(1):39-46.
    55.王强,张其德,卢从明,匡廷云,李成荃.超高产杂交稻不同生育期的光合色素含量、净光合速率和水分利用效率.植物生态学报,2002,26(6):647-651.
    56.王庆成,刘开昌,张秀清,王春英.玉米的群体光合作用.玉米科学,2001,9(4):57-61.
    57.王庆成,刘开昌.山东夏玉米高产栽培理论与实践.玉米科学,2004,12(专刊):60-62,65.
    58.王之杰,郭天财,朱云集,王永华,王纪华,赵明.不同穗型超高产小麦旗叶CO2同化能力的比较.作物学报,2004,30(8):739-744.
    59.王志刚,高聚林,任有志,赵明,董志强,李少昆,杨凤山.春玉米超高产群体冠层结构的研究.玉米科学,2007,15:51-56.
    60.王志敏,王树安.发展超高产技术,确保中国未来16亿人口的粮食安全.中国农业科技导报,2000,2(3):8-11.
    61.王忠孝,王庆成,牛玉贞,杜成贵,高学曾,李登海,毛丽华.夏玉米高产规律的研究Ⅰ.高产玉米的顺利指标.山东农业科学,1988,5:8-10.
    62.王忠孝,王庆成,牛玉贞,徐庆章,高学曾,李登海,毛丽华.夏玉米高产规律的研究Ⅱ.氮磷钾养分的积累与分配.山东农业科学,1989,4:10-14.
    63.吴正锋,王空军,董树亭,胡昌浩,刘鹏,张吉旺.高油玉米源、库生理特性研究I.高油玉米产量受叶源的限制.作物学报,2005,31(3):283-288.
    64.武田友四郎,县和一.收量界限与多收理论.日作记,1966,34:275-280.
    65.徐庆章,王庆成,牛玉贞,王忠孝,张军.玉米株型与群体光合作用的关系研究.作物学报,1995,21(4):492-496.
    66.徐世昌,戴俊英,沈秀瑛,王莲芝,崔钦,朱玉伦.水分胁迫对玉米光合性能及产量的影响.作物学报,1995,21(3):356-363.
    67.许凤英,马均,王贺正,刘惠远,黄清龙,马文波,明东风.水稻强化栽培下的稻米品质.作物学报,2005,31(5):577-582.
    68.阳成伟,欧志英,林桂珠,彭长连,陈贻竹.超高产杂交稻剑叶衰老过程中的抗氧化性的变化.热带亚热带植物学报,2003,11(2):148-152.
    69.阳成伟,彭长连,陈贻竹,林桂珠,欧志英.超高产杂交稻剑叶的光抑制及其77K荧光光谱特性.作物学报,2004,30(1):21-25.
    70.杨秀春,徐斌,,严平,刘连友,色布力玛.农牧交错带不同农田耕作模式土壤水分特征对比研究.水土保持学报,2005,19(20:125-129.
    71.殷秀琴,王海霞,周道玮.松嫩草原区不同农业生态系统土壤动物群落特征.生态学报,2003,23(6):1071-1078.
    72.于洪飞,戴俊英,沈秀瑛,张烈.玉米理想株型育种生理形态研究概况.玉米科学,1995,3(1):12-17.
    73.于振文,田奇卓,潘庆民,岳寿松,王东,段藏禄,段玲玲,王志军,牛运生.黄淮麦区冬小麦超高产栽培的理论与实践.作物学报,2002,28(5):577-585.
    74.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6.
    75.曾爱平,敖和军,张玉烛,汤国华.水稻强化栽培光合特性的比较.湖南农业科学,2006,4:44-46.
    76.翟凤林.超级小麦研究进展与展望.北京农业科学,2001,5:2-6.
    77.张浩东,丁飞.遵循统计原理,科学设计试验—谈实验性科学研究中应注意的几个问题.吉林粮食高等专科学校学报,1996,11(2):29-33.
    78.张立桢,曹卫星,张思平,周治国.棉花根系生长和空间分布特征.植物生态学报,2005,29(2):266-273.
    79.张琳,张凤荣,姜广辉,姚慧敏.我国中低产田改造的粮食增产潜力与食物安全保障.农业现代化研究,2005,26(1):22-25.
    80.张强,李自超,傅秀林,吴长明,金京花.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态研究.作物学报,2005,31(9):1198-1206.
    81.张荣铣,程在全.关于小麦叶片光合速率高值持续期的初步研究.南京师范大学学报(自然科学版),1992,15(增刊):76-86.
    82.张银锁,宇振荣,Driessen P. M.环境条件和栽培管理对夏玉米干物质接力、分配及转运的试验研究.作物学报,2002,28(1):104-109.
    83.张泽民,贾长柱.玉米株型对遗传增益的影响.遗传,1997,19(2):31-34.
    84.赵久然,孙世贤.对超级玉米育种目标及技术路线的再思考.玉米科学,2007,15(1):21-23,28.
    85.赵久然.超级玉米指标及选育模式.玉米科学,2005,13(1):3-4,9.
    86.赵明,李建国,张宾,董志强,王美云.论作物高产挖潜的补偿机制.作物学报,2006,32,1566-1573.
    87.赵强基,郑建初,赵剑宏,刘华周,袁从伟.水稻超高产栽培的双层源库关系的研究.中国水稻科学,1995,9(4):205-210.
    88.郑广华.植物栽培生理.济南:山东科学技术出版社,1980.
    89.周允华,项月琴,林忠辉.紧凑型夏玉米群体的辐射截获.应用生态学报,1997,8(1):21-25.
    90.朱广廉.植物生理学实验.北京:北京大学出版社,1990:51-54.
    91.朱庆森,曹显祖,骆亦其.水稻子粒灌浆的生长分析.作物学报,1988,14(3):182-193.
    92.邹江石,姚克敏,吕川根,胡雪琼.水稻两优培九株型特征研究.作物学报,2003,29(5):652-657.
    93. Andersm E. C. Corn root growth and distribution as influenced by tillage and nitrogen fertilizer. Agronomy Journal, 1987, 79: 544-549.
    94. Anozis P. A., Nelemans J. A. and Findenegg G. R. Phosphoenolpyruvate carboxylase activity in plants grown with either NO3- or NH4+ as inorganic nitrogen source. Journal Plant Physiology, 1988, 132: 23-27.
    95. Arnon D. I. Copper in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24: 1-15.
    96. Barber S. A. Effects of tillage practice on corn root distribution and morphology. Agronomy Journal, 1971, 63: 724-726.
    97. Beauchamp E. G., Kannenberg L. W. and Hunter R. B. Nitrogen accumulation and translocation in corn genotypes following silking. Agronomy Journal, 1976, 68: 418-422.
    98. Betania F. Q., Yoo-Sun N. Molecular aspects of leaf senescence. Trends in Plant Science, 2000, 5 (7): 278-282.
    99. Bhagsari A. S., Brown R. H. Leaf photosynthesis and its correlation with leaf area. Crop Science, 1986, 26: 127-132.
    100.Bola?os B. Physiological bases for yield differences in selected maize cultivars from Central America. Field Crops Research 1995, 42: 69-80.
    101.Bond-Lamberty B., Wang C. and Gower S. T. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology, 2004, 10: 473-487.
    102.Borrás L., Maddonni G. A. and Otegui M. E. Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Research, 2003, 82: 13-26.
    103.Bradford M. M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochemistry, 1976, 72: 248-254.
    104.Buchanan-Wollaston V. The molecular biology of leaf senescence. Journal of Experimental Botany, 1997, 48: 181-1991.
    105.Caemmerer S. von, Millgate A., Farquhar G. D. and Furbank R. T. Reduction of ribulose-
    1, 5-bisphosphate carboxylase / oxygenase by antisense RNA in the C4 plant Flaveria bidentis leads to reduced assimilation rates and increased carbon isotope discrimination. Plant Physiology, 1997, 113: 469-477.
    106.Catsky J. and ?esták Z. Photosynthesis during leaf development. In: Pessarkli M. (ed.) Handbook of Photosynthesis. New York– Basel– Hong Kong: Marcel Dekker. 1997, 633-660.
    107.Christensen L. E., Below F. E. and Hageman R. H. The effects of ear removal on senescence and metabolism of maize. Plant Physiology, 1981, 68: 1180-1185.
    108.Colom M. R., Vazzana C. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping loregrass plants. Environmental Experimental Botany, 2003, 49: 135-144.
    109.Conway G. The doubly green revolution: food for all in the twenty-first century. Ithaca, NY: Cornell Universiy Press. 1991.
    110.Crafts-Brandner S. J., Poneleit C. G. Carbon dioxide exchange rates, ribulose bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase activities, and kernel growth characteristics of maize. Plant Physiology, 1987, 84: 255-260.
    111.Crafts-Brandner S. J., Salvucci M. E. and Egli D. B. Changes in ribulosbisphosphate carboxylase/oxygenase and ribulosebisphsphate 5-phosphate kinase abundances and photosynthetic capacity during leaf senescence. Photosynthesis Research, 1990, 23,:223-230.
    112.Craig J. P, Brent C. J. Yield components and nitrogen partitioning of maize in response to nitrogen before and after anthesis. Australia Journal of Agricultural Research, 1987, 38: 1001-1009.
    113.Dagmar Prochazkova, Sairam R. K., Srivastava G. C. and Singh D. V. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 2001, 161: 765-771.
    114.Demming-Adms B., Adms W. W. III., Barker D. H., Logan B. A., Bowling D. R. and Verhoeven A. S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 1996, 98: 253-264.
    115.Dennis N. Crossing rice strains to keep Asia’s rice bowls brimming. Science, 1999, 283:313.
    116.Ding L., Wang K. J., Jiang G. M., Biswas D. K., Xu H., Li L. F. and Li Y. H. Effects of nitrogen on photosynthetic traits of maize hybrids released in different years. Annals of Botany, 2005, 96: 925-930.
    117.Ding L., Wang K. J., Jiang G. M., Liu M. Z., Niu S. L. and Gao L. M. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Research, 2005, 93(1): 108-115.
    118.Dobermann A. A critical assessment of the system of rice intensification (SRI). Agricultural Systems, Volume 79, Issue 3, March 2004, Pages 261-281.
    119.Donald C. M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
    120.Duncan W. G. The relationship between corn population and yield. Agronomy Journal, 1958, 50: 82-84.
    121.Duvick D. N., Cassman K. G. Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Science, 1999, 39: 1622-1630.
    122.Duvick D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 2005, 86, 83-145.
    123.Duvick D. R. What is yield? In: Edmeades G O et al. eds. Developing drought- and low N-tolerant maize. CIMMYT/UNDP, Mexico: DF, 1997: 332-335.
    124.Dwyer L. M., Stewart D. W., Balchin D., Houwing L., Marur C. J. and Hamilton R. I. Photosynthetic rates of six maize cultivars during development. Agronomy Journal, 1989, 81: 597-602.
    125.Dwyer L. M., Tollenaar M. Genetic improvement in photosynthetic of hybrid maize cultivars, 1959 to 1988. Canada Journal of Plant Science, 1989, 69: 81-91.
    126.Earl H. J., Davis R. F. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 2003, 95: 688-696.
    127.Echarte L., Luque S., Andrade F. H., Sadras V. O., Cirilo A., Otegui M. E. and Vega C. R. C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1995. Field Crops Research, 2000, 68: 1-8.
    128.Evans L. T., Fischer R. A. Yield potential: its definition, measurement, and significance. Crop Science, 1999, 39: 1544-1551.
    129.Evans L. T. Crop evolution, adaptation, and yield. Cambridge: Cambridge University Press, 1993.
    130.Foley J. A., DeFries R., Asner G. P., Barford C., Bonan G., Carpenter S. R., Chapin F. S., Coe M. T., Daily G. C., Gibbs H. K., Helkowski J. H., Holloway T., Howard E. A., Kucharik C. J., Monfrda C., Patz J. A., Prentice C., Ramankutty N. and Snyder P. K. Global consequences of land use. Science, 2005, 309: 570-574.
    131.Fracheboud Y., Haldimann P., Leipner J., Stamp P. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). Journal of Experimental Botany, 1999, 50: 1533-1540.
    132.Fraitas P. L., Zobel R. W., Snyder V. A. Corn root growth in soil columns with artificially constructed aggregates. Crop Science, 1999, 39: 725-730.
    133.Frank H., Katrin W., Michaela S. and Diana D. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Annals of Botany, 2004, 93(4): 359-368.
    134.Gardner F. P., Pearce R. B., Mitchell R. L. Photosynthesis. In: Physiology of Crop Plant. Ames: Iowa State University Press, 1985, 3-30.
    135.Geiger D. R., Servarites J. C. Diurnal regulation of photosynthetic carbon metabolism in C3 plant. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45: 235-256.
    136.Gifford F. M., Jenkins C. L. D. Prospects for applying knowledge of photosynthesis toward improving crop production. In: Covindjee eds. Photosynthesis II. Development,Carbon metabolism, and plant productivity. New York, USA: Academic Press, 1982: 419-457.
    137.Ginsburg S., Schellenberg M. and Matile P. Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiology, 1994, 105: 545-554.
    138.Goodman A. M., Pennds A. The effects of soil bulk density on the morphology and anchorage mechanics of the root system of sunflower and maize. Annals of Botany, 1999, 83: 293-302.
    139.Gregory S. M., Wilhelm W. W. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology, 1997, 87: 1291-300.
    140.Gurdev S. K. Green revolution: preparing for the 21st century. Genome, 1999, 42(4): 646-655.
    141.Hidema J., Makino A., Mae T. and Ojima K. Photosynthetic Characteristics of Rice Leaves Aged under Different Irradiances from Full Expansion through Senescence. Plant Physiology, 1991, 97: 1287-1293.
    142.Hirasawa T., Hsiao T. C. Some characteristics of reduced leaf photosynthesis at midday growing in the field. Field Crops Research, 1999, 62: 53-62.
    143.Hirose T., Bazzaz F. A. Trade-off between light- and nitrogen-use efficiency in canopy photosynthesis. Annals of Botany, 1998, 82: 195-202.
    144.Hiroshi H. High-yielding rice cultivars perform best even at reduced nitrogen fertilizer rate. Crop Science, 2003, 43(3): 921-926.
    145.Huang J., Carl P. and Scott R. Enhancing the crops to feed the poor. Nature, 2002, 418: 678-684.
    146.Huang X. Q., Jiao D. M., Li X. Characteristics of Chloropyll fluorescence and membrane lipid peroxidation of various high-yield rice under photooxidation conditions. Acta Boyanica Sinica, 2002, 44(3): 279-286.
    147.Iijima M., Kono Y., Yamauchi A. and Pardales J. R. Effects of soil compaction on the development of rice and maize root system. Environmental and Experimental Botany, 1991, 31(3): 333-342.
    148.Imhoff M. L., Bounoua L., Ricketts T., Loucks C. and Lawrence W. T. Global patterns in human consumption of net primary production. Nature, 2004, 429: 870-873.
    149.Jenkins G. I. and Woolhouse H. W. Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. Journal of Experimental Botany, 1981, 32: 467-478.
    150.Joan C. S., Frederick E. B., Robert J. L. and Richard H. H. Interaction of carbon and nitrogen metabolism in the productivity of maize. Plant Physiology, 1982, 70: 1185-1190.
    151.Jorge B. Physiological bases for yield differences in selected maize cultivars from Central America. Field Crops Research, 1995, 42: 69-80.
    152.Khan M. N. A., Murayama S., Ishimine Y., Tsuzuki E. and Nakamura I. Physio-morphological studies of F1 hybrids in rice (Oryza sativa L.). Plant Production Science, 1998, 1: 231-239.
    153.Khush G. S. Green revolution: preparing for the 21st century. Genome, 1999, 42: 646-655.
    154.Ku M. S. B., Agarie S., Nomura M., Fukayama H., Tsuchida H., Ono K., Hirose S., Toki S., Miyao M. and Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 1999, 17: 76-80.
    155.Lafitte H. R. Photosynthesis and assimilate partitioning in closely related lines of rice exhibiting different sink: Source relationships. Crop Science, 1984, 24 (3): 447-452.
    156.Lagergren F., Eklundh L., Grelle A., Lundblad M., M?lder M., Lankreijer H. and Lindroth A. Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant, Cell & Environment, 2005, 28: 412-423.
    157.Latif M. A., Islam M. R., Ali M. Y., Saleque M. A. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research, 2005, 93: 281-292.
    158.Li X., Jiao D. M., Liu Y. L. and Huang X. Q. Chloropyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety at late stage of development under natural condition. Acta Boyanica Sinica, 2002, 44(4): 413-421.
    159.Lilley R. M., Walker D. A. An improved spectrophotometric assay for ribulose bisphosphate carboxylase. Biochimicaet Biophysica Acta, 1974, 358: 226-229.
    160.Long S. P., Zhu X., Naidu S. L. and Ort D. R. Can improvement in photosynthesis increase crop yield? Plant, Cell and Environment, 2006, 29: 315-330.
    161.Loom is R. S., Williams S. W. A. Maximum crop p roductivity: An estimate. Crop Science, 1963, 3: 67-72.
    162.Lu C., Zhang J. Modifications in photosystem II photochemistry in senescent leaves of maize plants. Journal of Experimental Botany, 1998, 49: 1671-1679.
    163.Lynch J. P., Beebe S. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. Hortscience, 1995, 30: 1165-1171.
    164.Ma B. L., Dwyer L. M. Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant and Soil, 1998, 199: 283-291.
    165.Mann C. C. Crop scientists seek a new revolution. Science, 1999, 283: 310-314.
    166.Maria G. E., Ricardo B. F. and Artur R. T. Protein degradation in C3 and C4 plants with particular reference to ribulose bisphosphate carboxylase and glycolate oxidase. Journal of Experimental Botany, 1998, 49: 807-816.
    167.Matile P. Chloroplast senescence. In: Baker N. and Thomas H. (eds.) Crop Photosynthesis: Spatial and Temporal Determinants. Amsterdam: Elsevier. 1992, 413-440.
    168.Maxwell K., Johnson G. N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 2000. 51: 659-668.
    169.McDonald A. J., Hobbs P. R., Riha S. J. Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Research, 2006, 96: 31-36.
    170.Miflin B. Crop improvement in the 21st century. Journal of Experimental Botany, 2000, 51: 1-8.
    171.Minter S. R., Ohloogge A. J. Leaf angle, leaf aera and corn (Zea mays L.) yield. Agronomy Journal, 1973, 65: 395-397.
    172.Mock J. J., Pearce R. B. An ideotype of maize. Euphytica, 1975, 24: 613-623.
    173.Moll R. H., Kamprath E. J., Jackson W. A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74: 562-564.
    174.Morales A., Ortega-Delgado M. L., Molina-Galán J., Sánchez de Jiménez E. Importance of rubisco activase in maize productivity based on mass selection procedure. Journal of Experimental Botany, 1999, 50: 823-829.
    175.Muraoka H., Uchida M., Mishio M., Nakatsubo T., Kanda H., Koizumi H. Leaf photosynthetic characteristics and net primary production of the polar willow (Salix polaris) in a high arctic polar semi-desert, Ny-Alesund, Svalbard. Canadian Journal of Botany, 2002, 80, 1193-1202.
    176.Oscar R. V., Matthijs T. Vertical profile of leaf senescence during the grain-filling period in older and newer maize hybrids. Crop Science, 2004, 44: 827-834.
    177.Paul W. U., Thomas C. K. Soil compaction and root growth: a review. Agronomy Journal, 1994, 86: 759-766.
    178.Pepper G. E., Pearce R. B., Mock J. J. Leaf oriention and yield of maize. Crop Science, 1977, 17: 880-886.
    179.Pommel B., Gallais A., Coque M., QuilleréI., Hirel B., Prioul J. L., Andrieu B., Floriot M. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. European Journal of Agronomy, 2006, 24: 203-211.
    180.Rasmussen P. E., Goulding K. W. T., Brown J. R., Grace P. R., Janzen H. H. and K?rschens M. Long-term agroecosystem experiments: assessing agricultural sustainability and global changes. Science, 1998, 282: 893-896.
    181.Sangoi L., Gracietti M. A., Rampazzo C. and Bianchetti P. Response of Brazilian maize hybrids from different areas to changes in plant density. Field Crops Research, 2002, 79: 39-51.
    182.Sestak Z. Photosynthetic characteristics during ontogenesis of leaves 2. Photosystems, components of electron transport chain, and photophosphorylation. Photosynthetica, 1977, 11: 449-474.
    183.Sheehy J. Peng E., S., Dobermann A., Mitchell P. L., Ferrer A., Yang Jianchang, Zou Yingbin, Zhong Xuhua and Huang Jianliang. Fantastic yields in the system of rice intensification: fact or fallacy? Field Crops Research, 2004, 88: 1-8.
    184.Sinclair T. R., Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Science, 1989, 29: 90-98.
    185.Sinha S. K., Talati J. Productivity impacts of the system of rice intensification (SRI): A case study in West Bengal, India. Agricultural Water Management, 2007, 87: 55-60.
    186.Stoddart J. L., Thomas H. Leaf senescence. In: Boulter D. and Parthier B. (eds.): Encyclopedia of Plant Physiol. Berlin: Springer Verlag. 1982, 592-636.
    187.Subedi K. D., Ma B. L. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Science, 2005, 45: 740-747.
    188.Ta C. T., Weiland R. T. Nitrogen partitioning in maize during ear development. Crop Science, 1992, 32: 443-451.
    189.Tollenaar M., Ahmadzadeh A. and Lee E. A. Physiological basis of heterosis for grain yield in maize. Crop Science, 2004, 44: 2086-2094.
    190.Tollenaar M., Lee E. A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 75: 161-169.
    191.Tollenaar M., Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 1999, 39: 1579-1604.
    192.Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Science, 1988, 29: 1365-1371.
    193.Uphoff N., Kassam A., Stoop W. A critical assessment of a desk study comparing crop production systems: The example of the‘system of rice intensification’versus‘best management practice’. Field Crops Research, 2008, doi: 10. 1016/j. fcr. 2007. 12. 016.
    194.USDA. World Agricultural Production. Circular Series WAP 11-05. USDA, Foreign Agricultural Service, Washington DC, USA, 2005.
    195.Valentinuz O. R., Tollenaar M. Vertical profile of leaf senescence during the grain-filling period in older and newer maize hybrids. Crop Science, 2004, 44: 827-834.
    196.Victor N. B., Richard W. Z. Differential genotypic and root type penetration of soil layers. Crop Science, 1998, 38: 776-781.
    197.Vos J., Putten P. E. L. van der, Birch C. J. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Research, 2005, 93: 64-73.
    198.Wolfe D. W., Henderson D. W., Hsiao T. C. and Alvino A. Interactive water and nitrogen effects on senescence of maize. II. Photosynthetic decline and longevity of individual leaves. Agronomy Journal, 1988, 80: 865-870.
    199.Xu Z. J., Chen W. F., Zhou H. F., Zhang L. B. and Yang S. R. Physiological and ecological characteristics of rice with erect panicle and prospects of their utilization. Chinese Science Bulletin, 1996, 41(19): 1642-1648.
    200.Ying J., Lee E. A. and Tollenaar M. Response of maize leaf photosynthesis to low temperature during the grain-filling period. Field Crops Research, 2000, 68: 87-96.
    201.Zhao M., Li L. L., Guan D. M., Wang Z. M. and Ding Z. S. Theories of yield formation and ways of high yield in crop. Kyoto: Proc. Int. Symp.“World Food Security”. 1999, 143-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700