谷胱甘肽与铜绿假单胞菌致病性及抗生素抗性的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜绿假单胞菌(Pseudomonas aeruginosa)是病人在医院发生感染的第三大条件致病菌,对宿主细胞引起的氧化伤害,是其导致病人感染死亡的原因之一。谷胱甘肽(glutathione,GSH)是细胞内最重要的抗氧化剂之一,其含量变化与疾病的发生有着密切的关系。资料显示许多肺部疾病如囊肿性纤维化(cysticfibrosis,CF)病人的呼吸道上皮分泌液(epithelial lining fluid,ELF)中,GSH的水平异常低下。由铜绿假单胞菌感染引起的氧化伤害也是导致CF病人症候出现的主要原因之一。因此,在临床实验中已有用吸入GSH的方法来提高CF病人ELF中的GSH水平。另据资料显示,GSH一方面可以减轻抗生素作用细菌时对宿主细胞造成的氧化损害,一方面又消除了一些抗生素所引起的细菌细胞内氧化压力,保护细菌抵御抗生素的抑杀,降低细菌对一些抗生素的敏感性。为了了解GSH在细胞中这种功能上的矛盾以及和铜绿假单胞菌之间的关系,我们深入研究了GSH和铜绿假单胞菌致病性的关系以及对不同抗生素敏感性的影响。
     为了研究GSH与铜绿假单胞菌致病性的关系,以荧光素酶基因操纵子luxCDABE发光报道基因构建的致病性因子启动子库为平台,外加不同浓度GSH或化学试剂耗竭细胞内GSH,对启动子库进行筛选比较,依据luxCDABE报道子发光值的变化情况,寻找与GSH有关的致病性因子;构建铜绿假单胞菌谷胱甘肽合成酶基因突变体PAO1(△gshB)和谷胱甘肽还原酶突变体PAO1(△gor),在分子水平进一步确认GSH和这些致病性因子的关系,分析GSH对铜绿假单胞菌致病性的影响。结果发现,GSH对启动子库中exoS、exoY、phzA1和gacA等致病性因子的表达有促进作用,对其余测试过的致病性因子则没有明显影响;铜绿假单胞菌分泌的重要致病因子绿脓菌素(pyocyanin,PCN)的含量,在PAO1(△gshB)中远低于PAO1(P<0.01);加入GSH后,PCN平均含量在PAO1(△gshB)中从0.47μg/mL提高到1.73μg/mL,差异十分显著(P<0.01),在PAO1中从1.3μg/mL提高到1.9μg/mL,差异显著(P<0.05),表明GSH对铜绿假单胞菌生产PCN有促进作用。由于exoS、exoY、phzA1、gacA和PCN与群体感应系统(Quorum-sensing,QS)有着密切的关系,我们对GSH和QS系统的关系进行了相关研究,结果发现,QS系统中rhl系统对gshB和gor基因有负调节作用。除了对以上致病性因子产生影响外,发现铜绿假单胞菌外排泵MexXY-OprM的表达在PAO1(△gshB)中显著降低,并通过互补实验证实是由gshB基因的突变引起的,说明GSH对MexXY-OprM的表达有促进作用。
     为了研究GSH对抗生素抗菌活性的影响,利用琼脂扩散方法和最低抑菌浓度(MIC)方法,研究了GSH的存在引起的铜绿假单胞菌对不同抗生素敏感性的变化。结果发现,在LB液体中添加3μg/μL的GSH,铜绿假单胞菌对卡那霉素、红霉素、头孢噻肟钠、环丙沙星、羧苄青霉素和硫酸链霉素的敏感性降低,而对四环素的敏感性增加。铜绿假单胞菌对卡那霉素的MIC由240μg/mL增加为1600μg/mL,对四环素的MIC由25μg/mL降为1.25μg/mL,但是对氯霉素和氨苄青霉素并没有明显地影响。GSSG和GSH具有相同的功能,也可以改变PAO1对抗生素的敏感性。在PAO1(△gor)和PAO1(△gshB)两个突变株中,GSSG和GSH同时可以影响抗生素的敏感性,其程度与野生型相同。上述结果显示,GSH影响铜绿假单胞菌对不同抗生素的敏感性与抗生素的种类密切相关,而与氧化型还是还原型谷光甘肽没有关系,因此其作用可能不是通过改变细胞内的氧化还原状态而起作用的。
     总之,GSH一方面对exoS、exoY、phzA1和gacA等致病性基因的表达和PCN的产生起到促进作用,一方面可以改变铜绿假单胞菌对不同抗生素的敏感性。本研究的结果对于GSH生物功能的重新认识、GSH在铜绿假单胞菌感染过程中所扮演的角色,以及铜绿假单胞菌的致病性机理研究等方面具有较大的理论价值和实际意义。
Pseudomonas aeruginosa is the third leading opportunistic pathogen in humans;it can cause serious nosocomial infections.Glutathione(GSH) is one of the most important intra-and extracellular antioxidants,abnormal levels of GSH play an important role in disease pathologies.Evidence shows many pulmonary diseases such as cystic fibrosis(CF) are associated with the lower levels of GSH in the epithelial lining fluid(ELF).GSH is present at high concentrations in normal respiratory ELF, but deficient in CF ELF.Oxidative injury inflicted by the major pathogen, Pseudomonas aeruginosa,in CF lungs is one of the causes in the disease manifestation.Therefore,inhaled GSH therapy has been used in clinical trials to increase the GSH levels in the ELF of CF patients.Studies revealed that the ameliorative effect of GSH against antibiotics-induced damage due to its antioxidant properties;however,GSH has been shown to protect bacterial pathogens against antibiotic treatments,reducing bacterial sensitivity to a number of antibiotics.To understand the conflicting effects of GSH and the relation with P.aeruginosa,we investigated the effect of GSH on the pathogenicity of P.aeruginosa and its sensitivity to different antibiotics.
     To study the relationship between GSH and the pathogenicity of P.aeruginosa,a promoters library of the virulence factor genes in P.aeruginosa based on the luxCDABE-reporter system was used.The levels of gene expression were monitored by measuring the light production of the luxCDABE reporters.Strains containing the reporters were treated with GSH or buthionine sulfoximine(BSO) and diethylmaleate (DEM) to examine the effect of GSH levels on the expression of virulence factor genes.Glutathione synthetase gene(gshB) mutant PAO1(△gshB) and glutathione reductase gene(gor) mutant PAO1(△gor) were also constructed to confirm the effect of GSH on virulence factor genes.The results indicate that the presence of GSH increased the expression of exoY、exoS、phzA1 and gacA,while no difference was observed with others virulence factor genes tested.PAO1(AgshB) produced markedly less pyocyanin(PCN) than the wild type strain PAOI(P<0.01);Treating with GSH, the PCN production of PAOI(△gshB) was increased from 0.47μg/mL to 1.73μg/mL (P<0.01),the PCN production of PAO1 increased from 1.3μg/mL to 1.9μg/mL(P<0.05),this result indicates that GSH upregulates PCN production. Because exoY、exoS、phzA1 and gacA are related to quorum sensing systems,we investigated the relationship between GSH and QS,and the results indicated that the expression of the gshB and gor gene was downregulated by rhl system.Besides the virulence factor genes,the expression of MexXY-OprM was also decreased in PAOI(AgshB).It was restored to wild type levels when gshB was complemented, confirming the role of gshB.
     To test the effect of GSH on antibiotic sensitivity of P.aeruginosa,both disk fusion and MIC measurement were used.The results revealed that the presence of 3μg/μL of GSH decreased the sensitivity of P.aeruginosa against kanamycin, erythromycin,cefotaxime sodium,ciprofloxacin,carbenicillin,streptomycin,but interestingly,increased against tetracycline.The MICs against kanamycin was increased from 240μg/mL to 1600μg/mL,the MICs against tetracycline were decreased from 25μg/mL to 1.25μg/mL.The sensitivity to ampicillin and chloramphenicol remained unchanged.The effect of GSH or GSSG on antibiotic activity in PAO1(△gor) mutant was the same as in PAO1.These results indicated that effect of GSH on the sensitivity of P.aeruginosa to different antibiotics differs depending on the types of antibiotics.GSH altered antibiotic sensitivity seems to be unrelated to oxidative stress relief.
     In summary,this study demonstrates that GSH could increase the expression of exoY、exoS、phzA1、gacA and the production of PCN,and GSH could alter antibiotic sensitivity of P.aeruginosa to different antibiotics.Such effects have to be taken into consideration when GSH treatment is used in pulmonary disearse such as CF where P. aeruginosa infection is involved.These findings highlight the complexity of GSH effects on the host and as well as the pathogens,and uncover new relationship between GSH and the pathogenesis of P.aeruginosa.
引文
[1] Biswas SK, Rahman I. Environmental toxicity, redox signaling and lung inflammation: The role of glutathione[J]. Mol Aspects Med, 2009,30(l):60-67
    [2] Albesa I, Becerra MC, Battan PC, et al. Oxidative stress involved in the antibacterial action of different antibiotics[J]. Biochem Biophys Res Commun, 2004, 317(2):605-609
    [3] Narayana K. An aminoglycoside antibiotic gentamycin induces oxidative stress, reduces antioxidant reserve and impairs spermatogenesis in rats[J]. J Toxicol Sci, 2008,33(l):85-96
    [4] Sadi G, Guray T. Gene expressions of Mn-SOD and GPx-1 in streptozotocin-induced diabetes: effect of antioxidants[J]. Mol Cell Biochem, 2009, 327(1):127-134
    [5] Lee C. Therapeutic challenges in the era of antibiotic resistance[J]. Int J Antimicrob Agents, 2008, 32 Suppl 4:S197-199
    [6] He Z, Li B, Yu L, et al. Suppression of oxidant-induced glutathione synthesis by erythromycin in human bronchial epithelial cells[J]. Respiration, 2008, 75(2):202-209
    [7] Han YW, Kim SZ, Kim SH, et al. The changes of intracellular H_2O_2 are an important factor maintaining mitochondria membrane potential of antimycin A-treated As4.1 juxtaglomerular cells[J]. Biochem Pharmacol, 2007, 73(6):863-872 [8] Song JH. What's new on the antimicrobial horizon?[J]. Int J Antimicrob Agents, 2008, 32 Suppl 4:S207-213
    [9] Farkas MH, Berry JO, Aga DS. Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure[J]. Environ Sci Technol, 2007, 41(4):1450-1456
    [10] Forman HJ, Dickinson DA. Oxidative signaling and glutathione synthesis[J]. Biofactors, 2003, 17(1-4):1-12
    
    [11] Nitha B, Janardhanan KK. Aqueous-ethanolic extract of morel mushroom mycelium Morchella esculenta, protects cisplatin and gentamicin induced nephrotoxicity in mice[J]. Food Chem Toxicol, 2008, 46(9):3193-3199
    [12] Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA. Protective effect of quercetin against gentamicin-induced nephrotoxicity in rats[J]. Biol Pharm Bull, 2009, 32(l):61-67
    [13] Farombi EO, Ugwuezunmba MC, Ezenwadu TT, et al. Tetracycline-induced reproductive toxicity in male rats: effects of vitamin C and N-acetylcysteine[J]. Exp Toxicol Pathol, 2008, 60(l):77-85
    [14] Han YH, Kim SH, Kim SZ, et al. Intracellular GSH levels rather than ROS levels are tightly related to AMA-induced HeLa cell death[J]. Chem Biol Interact, 2008,171(l):67-78
    [15] Schuster M LC, Ogi T , et al. Identification , Timing , and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis.[J]. J Bacteriol, 2003, 185:2066-2079
    [16] Ochsner UA KA, Fiechter A , et al. Isolation and characterization of a regultory gene affecting rhamnolipid biosurfactant synthesis in psendomonas aeruginosa[J]. J bacteriol, 1994, 176:2044-2054
    [17] Willcox MD, Zhu H, Conibear TC, et al. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis[J]. Microbiology, 2008, 154(Pt 8):2184-2194
    [18] Steidle A A-HM, Riedel K, et al. Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF[J]. Appl Environ Microbiol, 2002, 68:6371-6382
    [19] Luciano P JM, Michael J ,et al. Expression of Pseudomonas aeruginosa virulence gene requires cell-to-cell communication[J]. Science, 1993, 260:1127-1130
    
    [20] 冯星火,赵广福,崔连东,等. 铜绿假单胞菌生物被膜对抗菌药物用影响的实验研究[J].微生物学报,2000, 40:210-213
    [21] Wade DS, Calfee MW, Rocha ER, et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa[J]. J Bacteriol, 2005,187(13):4372-4380
    
    [22] Diggle SP, Crusz SA, Camara M. Quorum sensing[J]. Curr Biol, 2007,17(21):R907-910
    [23] Hentzer M, Wu H, Andersen JB, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors[J]. Embo J, 2003, 22(15):3803-3815
    [24] Winstanley C, Fothergill JL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections[J]. FEMS Microbiol Lett, 2009, 290(1):1-9
    [25] O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development[J]. Mol Microbiol, 1998, 30(2):295-304
    [26] Kipnis E, Sawa T, Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis[J]. Med Mal Infect, 2006, 36(2):78-91
    [27] Hassett DJ, Woodruff WA, Wozniak DJ, et al. Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese- and iron-cofactored superoxide dismutase: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria[J]. J Bacteriol, 1993,175(23):7658-7665
    [28] Girard G, van Rij ET, Lugtenberg BJ, et al. Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391[J]. Microbiology, 2006,152(Pt 1):43-58
    [29] Reimer A, Edvaller B, Johansson B. Concentrations of the Pseudomonas aeruginosa toxin pyocyanin in human ear secretions[J]. Acta Otolaryngol Suppl, 2000, 543:86-88
    [30] Schwarzer C, Fischer H, Kim EJ, et al. Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells[J]. Free Radic Biol Med, 2008, 45(12): 1653-1662
    [31 ] Gardner PR. Superoxide production by the mycobacterial and pseudomonad quinoid pigments phthiocol and pyocyanine in human lung cells[J]. Arch Biochem Biophys, 1996, 333(l):267-274
    [32] Hassan HM, Fridovich I. Mechanism of the antibiotic action pyocyanine[J]. J Bacteriol, 1980, 141(1):156-163
    [33] Britigan BE, Roeder TL, Rasmussen GT, et al. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury[J]. J Clin Invest, 1992,90(6):2187-2196
    [34] O'Malley YQ, Reszka KJ, Rasmussen GT, et al. The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 285(5):L1077-1086
    [35] Muller M. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin[J]. Free Radic Biol Med, 2006, 41(11):1670-1677
    [36] Cheluvappa R, Shimmon R, Dawson M, et al. Reactions of Pseudomonas aeruginosa pyocyanin with reduced glutathione[J]. Acta Biochim Pol, 2008, 55(3):571-580
    [37] O'Malley YQ, Reszka KJ, Spitz DR, et al. Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 287(1):L94-103
    [38]Leidal KG,Munson KL,Denning GM.Small molecular weight secretory factors from Pseudomonas aeruginosa have opposite effects on IL-8 and RANTES expression by human airway epithelial cells[J].Am J Respir Cell Mol Biol,2001,25(2):186-195
    [39]Costerton JW,Stewart PS,Greenberg EP.Bacterial biofilms:a common cause of persistent infections[J].Science,1999,284(5418):1318-1322
    [40]Denning GM,Wollenweber LA,Railsback MA,et al.Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells[J].Infect Immun,1998,66(12):5777-5784
    [41]Workentine ML,Chang L,Ceri H,et al.The GacS-GacA two-component regulatory system of Pseudomonas fluorescens:a bacterial two-hybrid analysis[J].FEMS Microbiol Lett,2009,292(1):50-56
    [42]高瑾,姜卫红,焦瑞身.原核生物中的信号传导与次生代谢[J].国外医药抗生素分册,2001,22(6):269-273
    [43]Cornelis GR.Type Ⅲ secretion:a bacterial device for close combat with cells of their eukaryotic host[J].Philos Trans R Soc Lond B B iol Sci,2000,355(1397):681-693
    [44]Ma Q,Zhai Y,Schneider JC,et al.Protein secretion systems of Pseudomonas aeruginosa and P fluorescens[J].Biochim Biophys Acta,2003,1611(1-2):223-233
    [45]Gintsburg AL,Zigangirova NA,Zorina VV.[Type III bacterial secretion system,a promising target for the development of a new generation of antibiotic dmgs][J].Vestn Ross Akad Med Nauk,2008(10):34-39
    [46]Collmer A,Badel JL,Charkowski AO,et al.Pseudomonas syringae Hrp type Ⅲ secretion system and effector proteins[J].Proc Natl Acad Sci U S A,2000,97(16):8770-8777
    [47]Hartl D,Starosta V,Maier K,et al.Inhaled glutathione decreases PGE2 and increases lymphocytes in cystic fibrosis lungs[J].Free Radic Biol Med,2005,39(4):463-472
    [48]Drew R,Miners JO.The effects of buthionine sulphoximine(BSO) on glutathione depletion and xenobiotic biotransformation[J].Biochem Pharmacol,1984,33(19):2989-2994
    [49]罗勤,金守光.铜绿假单胞菌Ⅲ型分泌系统的分子调控机制[J].微生物学报,2008,48(10):1413-1417
    [50]Wolfgang MC,Lee VT,Gilmore ME,et al.Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway[J].Dev Cell,2003,4(2):253-263
    [51]Bonfiglio G;Laksai Y,Franchino L,et al.Mechanisms of beta-lactam resistance amongst Pseudomonas aeruginosa isolated in an Italian survey[J].J Antimicrob Chemother,1998,42(6):697-702
    [52]Mouneimne H,Robert J,Jarlier V,et al.Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa[J].Antimicrob Agents Chemother,1999,43(1):62-66
    [53]Nagino K,Kobayashi H.Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa[J].Clin Microbiol Infect,1997,3(4):432-439
    [54]Bayer AS,Speert DP,Park S,et al.Functional role of mucoid exopolysaccharide(alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa[J].Infect Immun,1991,59(1):302-308
    [55]Marshall N J,Piddock LJ.Antibacterial efflux systems[J].Microbiologia,1997,13(3):285-300
    [56]Nikaido H.Antibiotic resistance caused by gram-negative multidrug efflux pumps[J].Clin Infect Dis,1998,27 Suppl 1:S32-41
    [57] Levy SB. Active efflux mechanisms for antimicrobial resistance[J]. Antimicrob Agents Chemother, 1992,36(4):695-703
    [58] Evans K PL, Scrikumar R Znfluence of the MexAB-OprM multidrug efflux sgstem on quorum sensing in Psenolomonas aeruginosa[J]. J Bacteriol, 1998,180:5443-5447
    [59] Maseda H, Sawada I, Saito K, et al. Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2004, 48(4):1320-1328
    [60] Llanes C, Hocquet D, Vogne C, et al. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously[J]. Antimicrob Agents Chemother, 2004, 48(5):1797-1802
    [61] Hocquet D, Vogne C, El Garch F, et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides[J]. Antimicrob Agents Chemother, 2003,47(4): 1371-1375
    [62] Cantin AM, Hubbard RC, Crystal RG Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis[J], Am Rev Respir Dis, 1989, 139(2):370-372
    [63] Tirouvanziam R, Conrad CK, Bottiglieri T, et al. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis[J]. Proc Natl Acad Sci USA, 2006, 103(12):4628-4633
    [64] Wood LG, Fitzgerald DA, Lee AK, et al. Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function[J]. Am J Clin Nutr, 2003, 77(1): 150-159
    [65] Visca A, Bishop CT, Hilton SC, et al. Improvement in clinical markers in CF patients using a reduced glutathione regimen: an uncontrolled, observational study[J]. J Cyst Fibros, 2008, 7(5):433-436
    [66] Griese M, Ramakers J, Krasselt A, et al. Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis[J]. Am J Respir Crit Care Med, 2004,169(7):822-828
    [67] van Klaveren RJ, Dinsdale D, Pype JL, et al. N-acetylcysteine does not protect against type Ⅱ cell injury after prolonged exposure to hyperoxia in rats[J]. Am J Physiol, 1997, 273(3 Pt 1):L548-555
    [68] Buhl R, Vogelmeier C, Critenden M, et al. Augmentation of glutathione in the fluid lining the epithelium of the lower respiratory tract by directly administering glutathione aerosol[J]. Proc Natl Acad Sci USA, 1990, 87(11):4063-4067
    [69] Goswami M, Jawali N. Glutathione-mediated augmentation of beta-lactam antibacterial activity against Escherichia coli[J]. J Antimicrob Chemother, 2007, 60(1):184-185
    [70] Kwon DH, Lu CD. Polyamines increase antibiotic susceptibility in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2006, 50(5):1623-1627
    [71] Goswami M, Mangoli SH, Jawali N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli[J]. Antimicrob Agents Chemother, 2006, 50(3):949-954
    [72] Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. Int Microbiol, 2000, 3(1):3-8
    [73] Duan K, Dammel C, Stein J, et al. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication[J]. Mol Microbiol, 2003, 50(5):1477-1491
    
    [74] Simon R, Priefer U, Pühler A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering:Transposon Mutagenesis in Gram Negative Bacteria[J].Bio/Technology 1983,1:784-791
    [75]Hoang TT,Karkhoff-Schweizer RR,Kutchma AJ,et al.A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences:application for isolation of unmarked Pseudomonas aeruginosa mutants[J].Gene,1998,212(1):77-86
    [76]Schweizer HE Two plasmids,X1918 and Z1918,for easy recovery of the xylE and lacZ reporter genes[J].Gene,1993,134(1):89-91
    [77]Ditta G,Stanfield S,Corbin D,et al.Broad host range DNA cloning system for gram-negative bacteria:construction of a gene bank of Rhizobium meliloti[J].Proc Natl Acad Sci U S A,1980,77(12):7347-7351
    [78]宗自卫,段康民.铜绿假单胞菌中RND外排泵基因调节及功能研究[D].中国优秀硕士学位论文全文数据库,2007
    [79]萨姆布鲁克J,拉塞尔DW.分子克隆实验指南[M].北京:科学出版社,2002
    [80]Kohler T,Curry LK,Barja F,et al.Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili[J].J Bacteriol,2000,182(21):5990-5996
    [81]Costa LG,Murphy SD.Effect of diethylmaleate and other glutathione depletors on protein synthesis[J].Biochem Pharmacol,1986,35(19):3383-3388
    [82]Yahr TL,Vallis AJ,Hancock MK,et al.ExoY,an adenylate cyclase secreted by the Pseudomonas aeruginosa type Ⅲ system[J].Proc Natl Acad Sci U S A,1998,95(23):13899-13904
    [83]Lau GW,Hassett D J,Ran H,et al.The role ofpyocyanin in Pseudornonas aeruginosa infection[J].Trends Mol Med,2004,10(12):599-606
    [84]Denning GM,Iyer SS,Reszka K J,et al.Phenazine-l-carboxylic acid,a secondary metabolite of Pseudomonas aeruginosa,alters expression of immnnomodulatory proteins by human airway epithelial cells[J].Am J Physiol Lung Cell Mol Physiol,2003,285(3):L584-592
    [85]Schuster M,Lostroh CP,Ogi T,et al.Identification,timing,and signal specificity of Pseudomonas aeruginosa quorum-controlled genes:a transcriptome analysis[J].J Bacteriol,2003,185(7):2066-2079
    [86]Diggle SP,Lumjiaktase P,Dipilato F,et al.Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudornallei and related bacteria[J].Chem Biol,2006,13(7):701-710
    [87]Diggle SP,Winzer K,Chhabra SR,et al.The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy,regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR[J].Mol Microbiol,2003,50(1):29-43
    [88]Hogardt M,Roeder M,Schreff AM,et al.Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS[J].Microbiology,2004,150(Pt 4):843-851
    [89]Pessi G,Williams F,Hindle Z,et al.The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa[J].J Bacteriol,2001,183(22):6676-6683
    [90]Reimmann C,Beyeler M,Latifi A,et al.The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin,cyanide,and lipase[J].Mol Microbiol,1997,24(2):309-319
    [91]Rahme LG,Ausubel FM,Cao H,et al.Plants and animals share functionally common bacterial virulence factors[J].Proc Natl Acad Sci U S A,2000,97(16):8815-8821
    [92]葛宜和,黄显清,张雪洪,等.假单胞菌M18调控因子GacA与RsmA的相关性及对抗生物质合成代谢调控机制的分析[J].微生物学报,2006,46(4):531-536
    [93]Becerra MC,Albesa I.Oxidative stress induced by ciprofloxacin in Staphylococcus aureus[J].Biochem Biophys Res Commun,2002,297(4):1003-1007
    [94]Lucena MI,Andrade RJ,Martinez C,et al.Glutathione S-transferase ml and tl null genotypes increase susceptibility to idiosyncratic drug-induced liver injury[J].Hepatology,2008,48(2):588-596
    [95]Grant SG,Jessee J,Bloom FR,et al.Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants[J].Proc Natl Acad Sci U S A,1990,87(12):4645-4649
    [96]Novick R.Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus[J].Virology,1967,33(1):155-166
    [97]汪保卫,施庆珊,欧阳友生,等.细菌抗氧化系统-oxyR调节子研究进展[J].微生物学报,2008:48(11):1556-1561
    [98]Dickinson DA,Forman HJ.Cellular glutathione and thiols metabolism[J].Biochem Pharmacol,2002,64(5-6):1019-1026

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700