荧光假单胞菌2P24抗生素合成基因转录及转录后调控因子的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生防假单胞菌2P24(Pseudomonas fluorescens2P24)分离自山东小麦全蚀病自然衰退土壤,对多种病原菌引起的土传病害都具有良好的生防效果,产生抗生素2,4-二乙酰基间苯三酚(2,4-diacetylphloroglucinol,2,4-DAPG)是其主要的防病机制。2,4-DAPG由phlACBD基因簇合成,该基因簇的表达受多种调控因子在不同水平的直接或间接调控,其中阻遏蛋白RsmA/E是重要的转录后调控因子。本研究从phlA基因的启动子分析入手,构建了phlA基因启动子转录报告质粒体系,并通过筛选影响RsmA/E的上游调控因子,进一步分析抗生素2,4-DAPG合成调控因子的调控机制。
     首先,对2,4-DAPG合成基因簇的第一个基因phlA的启动子进行分析,根据分析结果,将该启动子序列截断为11个含有不同长度phlA启动子的片段,并与p970km转录报告质粒连接,构建成11个phlA基因启动子转录报告质粒,分别检测各个启动子在2P24菌株胞内的活性,发现phlA基因启动子中存在多个转录调控元件。再将这些启动子转录报告质粒分别电击进入实验室前期研究的转录调控因子突变菌株中,以探究这些转录调控因子在phlA基因启动子上的转录调控作用位点。实验结果显示上述不同转录调控因子的作用位点基本都与PhlF蛋白的作用位点相同,均作用于含有pho位点的序列481-530中。故进一步选取GacA因子为代表,探究其调控phlA基因转录的机制,结果表明GacA是通过影响了PhlF蛋白的转录调控作用从而表现出与之作用位点相同。故推测PhlF是影响phlA基因转录最主要的直接调控因子,而其他转录调控因子很可能是通过影响PhlF因子从而调控phlA基因转录。
     其次,本文将分别含有rsmA基因和rsmE基因转录报告质粒的菌株2P24作为出发菌株进行转座子Tn5随机突变,在大约3万个突变体中,筛选到了86个对调控蛋白基因转录影响较大的突变菌株,其中,18个突变菌株中报告质粒的活性升高,即突变体中被破坏的基因对rsmA/rsmE基因表达有负调控作用;68个突变菌株中报告质粒的活性降低,即突变体中被破坏的基因对rsmA/rsmE基因表达有正调控作用。被破坏的基因中,sacB基因编码一种核糖核酸酶R蛋白,能够负调控rsmA基因的转录。进一步测定vacB基因在菌株2P24中的功能发现其影响菌株2P24抗生素的产生、群体感应信号的生成及游动性等多种生理性状,表明其可能是调控菌株2P24生防能力的一个重要调控因子。
     另外,本研究对实验室前期筛选得到的一个负调控抗生素产生的周质蛋白DsbA的调控机制进行进一步研究发现,DsbA是在转录后水平负调控phl4基因的表达,这种调控是通过同时在转录水平和转录后水平正调控小蛋白RsmA的表达来实现的,从而最终影响了2,4-DAPG的产量。
Pseudomonas fluorescens2P24is a biocontrol agent that isolated from suppressive soil of wheat take-all disease in Shandong Province. It has remarkable biocontrol activity against plant diseases caused by soilborne pathogens. The polyketide metabolite2,4-diacetylphloroglucinol (2,4-DAPG) plays a major role in the biological control of diseases by this strain. Biosynthesis proteins of2,4-DAPG in strain2P24were encoded by a genetic locus phlACBD, whose expression was under the control of a number of transcriptional and post-transcriptional regulators. Among these regulators, RsmA and RsmE are important post-transcriptional repressors. In this study, we first analysed the promoter of phlA gene and constract the transcriptional report plasmid system of phlA gene promoter. Then, we screened the regulatory factors of rsmA/rsmE genes to further study the regulatory mechanism of the factors affecting the production of2,4-DAPG.
     In the first part, the promoter of the first gene phlAinphlA CBD operon was analysed and cut to11different length fragment. Then these fragments containing different length promoters of phlA gene were linked to plasmid p970Km to form11transcriptional report plasmids of phlA gene. These report plasmids were imported into the mutants of six regulator genes and the wild-type2P24by electroporation to explore the possible binding sites on phlA promoter by these regulators. The results indicated that the pho site which is bound by PhlF repressor was the major acting site of all the six regulators. Then, the regulatory mechanism of GacA was selected for further study. The results suggested that low production of2,4-DAPG could not relieve the repression by PhlF on pho site in gacA gene mutant. Therefore we speculated that PhlF was the major transcriptional regulator ofphlA gene and the other transcriptional regulators seemed to regulate the phlA transcription through affecting the function of PhlF.
     In the second part of this work, the strains with rsmA or rsmE transcriptional reporter were subjected to the random transposon mutagenesis. About86mutants were selected from-30000insertion colonies. Among these86mutants, the rsmA/E transcriptions in18mutants were increased while the other68mutants were decreased. A mutant defective in the vacB gene, which encoded the Ribonuclease R, drastically increased the rsmA gene expression. The effect of VacB on other biocontrol characters implied that VacB was a globe regulator in strain2P24.
     In the last part of this work, we studied the regulatory mechanism of DsbA on the production of2,4-DAPG. DsbA is a major periplasmic disulfide-bond-forming protein. The dsbA mutant produced more2,4-DAPG compared with the wild strain. Genetic evidences showed that DsbA did not affect transcription of the phlA gene but observably increased the phlA gene translation. Further study showed that the DsbA probably affected the2,4-DAPG production by promoting the expression of repression protein RsmA at both transcriptional level and translation level while this transcriptional regulation seemed to be indirect.
引文
Abbas, A., Morrissey, J. P., Marquez, P. C., Sheehan, M. M., Delany, I. R.& O'Gara, F. (2002). Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol,184:3008-3016.
    Abbas, A., McGuire, J. E., Crowley, D., Baysse, C., Dow, M.& O'Gara, F. (2004). The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. Microbiology,150:2443-2450.
    Achkar, J., Xian, M., Zhao, H.& Frost, J. W. (2005). Biosynthesis of phloroglucinol. J Am Chem Soc,127:5332-5333.
    Audenaert, K., Pattery, T., Cornells, P.& Hofte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2:role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe In,15:1147-1156.
    Babitzke, P.& Romeo, T. (2007). CsrB sRNA family:sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol,10:156-163.
    Bader, M., Muse, W., Ballou, D. P., Gassner, C.& Bardwell, J. C. (1999). Oxidative protein folding is driven by the electron transport system. Cell,98:217-227.
    Baehler, E., de Werra, P., Wick, L. Y., Pechy-Tarr, M., Mathys, S., Maurhofer, M.& Keel, C. (2006). Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0. Mol Plant Microbe In,19:313-329.
    Bahme, J. B.& Schroth, M. N. (1987). Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology (USA),11:1093-1100.
    Baker, C. S., Morozov, I., Suzuki, K., Romeo, T.& Babitzke, P. (2002). CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol,44:1599-1610.
    Bangera, M. G.& Thomashow, L. S. (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol,181:3155-3163.
    Bardwell, J., Lee, J., Jander, G., Martin, N., Belin, D.& Beckwith, J. (1993). A pathway for disulfide bond formation in vivo. P Natl Acad Sci Usa,90:1038-1042.
    Bardwell, J. C. A., McGovern, K.& Beckwith, J. (1991). Identification of a protein required for disulfide bond formation in vivo. Cell,67:581-589.
    Blaha, D., Prigent Combaret, C., Mirza, M. S.& Moenne Loccoz, Y. (2006). Phylogeny of the 1 aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. Ferns Microbiol Ecol,56:455-470.
    Blumer, C., Heeb, S., Pessi, G.& Haas, D. (1999). Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. P Natl Acad Sci Usa,96:14073-14078.
    Blumer, C.& Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol,173:170-177.
    Bossis, E., Lemanceau, P., Latour, X.& Gardan, L. (2000). The taxonomy of Pseudomonas fluorescens and Pseudomonas putida:current status and need for revision. Agronomic 20:51-63.
    Bottiglieri, M.& Keel, C. (2006). Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microb,72:418-427.
    Braun, M.& Silhavy, T. J. (2002). Imp/OstA is required for cell envelope biogenesis in Escherichia coli.Mol Microbiol,45:1289-1302.
    Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L.& Lory, S. (2009). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol, 73:434-445.
    Britigan, B. E., Roeder, T. L., Rasmussen, G. T., Shasby, D. M., McCormick, M. L.& Cox, C. D. (1992). Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J Clin Invest,90:2187-2196.
    Buysens, S., Heungens, K., Poppe, J.& Hofte, M. (1996). Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microb,62:865-871.
    Cardenal-Munoz, E. & Ramos-Morales, F. (2013). DsbA and MgrB regulate steA expression through the two-component system PhoQ/PhoP in Salmonella enterica. JBacteriol,195:2368-2378.
    Cartieaux, F., Thibaud, M. C.& Zimmerli, L.& other authors (2003). Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. The plant journal,36:177-188.
    Cha, C., Gao, P., Chen, Y. C., Shaw, P. D.& Farrand, S. K. (1998). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant-Microbe Interact, 11:1119-1129.
    Chatterjee, A., Cui, Y., Liu, Y., Dumenyo, C. K.& Chatterjee, A. K. (1995). Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microb,61:1959-1967.
    Chilton, M. D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P.& Nester, E. W. (1974). Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. P Natl Acad Sci Usa,71:3672-3676.
    Coulthurst, S. J., Lilley, K. S., Hedley, P. E., Liu, H., Toth, I. K.& Salmond, G. P. C. (2008). DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. JBiol Chem,283:23739-23753.
    Dame, R. T., Luijsterburg, M. S., Krin, E., Bertin, P. N., Wagner, R.& Wuite, G. J. L. (2005). DNA bridging:a property shared among H-NS-like proteins. J Bacteriol,187:1845-1848.
    Daniels, R., Vanderleyden, J.& Michiels, J. (2004). Quorum sensing and swarming migration in bacteria. Ferns Microbiol Rev,28:261-289.
    De La Fuente, L., Landa, B. B.& Weller, D. M. (2006). Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology,96:751-762.
    De Souza, J. T., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi-Pearson, V.& Raaijmakers, J. M. (2003). Effect of 2,4-diacetylphloroglucinol on Pythium:cellular responses and variation in sensitivity among propagules and species. Phytopathology,93:966-975.
    Delany, I., Sheehan, M. M., Fenton, A., Bardin, S., Aarons, S.& O Gara, F. (2000). Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology,146:537-546.
    Denoncin, K., Vertommen, D., Paek, E.& Collet, J. (2010). The Protein-disulfide Isomerase DsbC Cooperates with SurA and DsbA in the Assembly of the Essential β-Barrel Protein LptD. J Biol Chem, 285:29425-29433.
    Denoncin, K., Nicolaes, V., Cho, S., Leverrier, P.& Collet, J. (2013). Protein Disulfide Bond Formation in the Periplasm:Determination of the In Vivo Redox State of Cysteine Residues. Bacterial Cell Surfaces,96:325-336.
    Diby, P., Saju, K. A., Jisha, P. J., Sarma, Y. R., Kumar, A.& Anandaraj, M. (2005). Mycolytic enzymes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the foot rot pathogen of black pepper (Piper nigrum L.). Ann Microbiol,55:129-133.
    Dickschat, J. S. (2010). Quorum sensing and bacterial biofilms. Nat. Prod. Rep,27:343-369.
    Dubey, A. K., Baker, C. S., Romeo, T.& Babitzke, P. (2005). RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. Rna,11:1579-1587.
    Dubey, A. K., Baker, C. S., Suzuki, K., Jones, A. D., Pandit, P., Romeo, T.& Babitzke, P. (2003). CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol,185:4450-4460.
    Dutton, R. J., Boyd, D., Berkmen, M.& Beckwith, J. (2008). Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. P Natl Acad Sci Usa,105: 11933-11938.
    Erova, T. E., Kosykh, V. G., Fadl, A. A., Sha, J., Horneman, A. J.& Chopra, A. K. (2008). Cold shock exoribonuclease R (VacB) is involved in Aeromonas hydrophila pathogenesis. J Bacteriol,190: 3467-3474.
    Gao, G., Yin, D., Chen, S., Xia, F., Yang, J., Li, Q.& Wang, W. (2012). Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PloS one,7:e31806.
    Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. Fems Microbiol Lett,251:1-7.
    Gottesman, S.& Storz, G. (2011). Bacterial small RNA regulators:versatile roles and rapidly evolving variations. Cold Spring Harbor perspectives in biology,3:a3798.
    Haas, D., Blumer, C.& Keel, C. (2000). Biocontrol ability of fluorescent pseudomonads genetically dissected:importance of positive feedback regulation. Curr Opin Biotech,11:290-297.
    Haas, D.& Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol,41:117-153.
    Haas, D.& Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology,3:307-319.
    Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol,166: 557-580.
    Hassan, K. A., Johnson, A.& Shaffer, B. T.& other authors (2010). Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol,12:899-915.
    Heeb, S., Blumer, C.& Haas, D. (2002). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHAO. J Bacteriol,184: 1046-1056.
    Hernandez, M. E., Kappler, A.& Newman, D. K. (2004). Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microb,70:921-928.
    Herrero, M., De Lorenzo, V.& Timmis, K. N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol,172:6557-6567.
    Humair, B., Gonzalez, N., Mossialos, D., Reimmann, C.& Haas, D. (2009). Temperature-responsive sensing regulates biocontrol factor expression in Pseudomonas fluorescens CHAO. ISME Journal,3: 955-965.
    Humair, B., Wackwitz, B.& Haas, D. (2010). GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Appl Environ Microb,76:1497-1506.
    Iavicoli, A., Boutet, E., Buchala, A.& Metraux, J. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHAO. Mol Plant Microbe In,16:851-858.
    Irie, Y., Starkey, M., Edwards, A. N., Wozniak, D. J., Romeo, T.& Parsek, M. R. (2010). Pseudomonas aeruginosa biofilm matrix polysacchande Psl is regulated transcriptionally by RpoS and post-transcnptionally by RsmA. Mol Microbiol,78:158-172.
    Kadokura, H., Beckwith, J. (2010). Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Sign,13:1231-1246.
    Kadokura, H., Katzen, F.& Beckwith, J. (2003). Protein disulfide bond formation in prokaryotes. Annu Rev Biochem,72:111-135.
    Karimova, G., Ullmann, A.& Ladant, D. (2001). Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microb Biotech,3:73-82.
    Kay, E., Dubuis, C.& Haas, D. (2005). Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonasfluorescens CHAO. P Natl Acad Sci Usa,102:17136-17141.
    Kidarsa, T. A., Goebel, N. C., Zabriskie, T. M.& Loper, J. E. (2011). Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol,81:395-414.
    King, E. O., Ward, M. K.& Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescein. J. lab. din. Med,44:301-307.
    Kloek, A. P., Brooks, D. M.& Kunkel, B. N. (2001). A dsbA mutant of Pseudomonas syringae exhibits reduced virulence and partial impairment of type Ⅲ secretion. Molecular Plant Pathology,1: 139-150.
    Kong, W., Chen, L., Zhao, J., Shen, T., Surette, M. G., Shen, L.& Duan, K. (2013). Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol Microbiol,88:784-797.
    Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M.2nd & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1 MCS, carrying different antibiotic-resistance cassettes. Gene,166:175-176.
    La Teana, A., Brandi, A., Falconi, M., Spurio, R., Pon, C. L.& Gualerzi, C. O. (1991). Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. P Natl Acad Sci Usa,88:10907-10911.
    Landa, B. B., Mavrodi, D. M., Thomashow, L. S.& Weller, D. M. (2003). Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology,93:982-994.
    Lapouge, K., Schubert, M., Allain, F. H. T.& Haas, D. (2008). Gac/Rsm signal transduction pathway of γ-proteobacteria:from RNA recognition to regulation of social behaviour. Mol Microbiol,67: 241-253.
    Lapouge, K., Sineva, E., Lindell, M., Starke, K., Baker, C. S., Babitzke, P.& Haas, D. (2007). Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol,66:341-356.
    Laville, J., Voisard, C., Keel, C., Maurhofer, M., Defago, G.& Haas, D. (1992). Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. P Natl Acad Sci Usa,89:1562-1566.
    Lawal, A., Jejelowo, O., Chopra, A. K.& Rosenzweig, J. A. (2011). Ribonucleases and bacterial virulence. Microbial biotechnology,4:558-571.
    Leverrier, P., Declercq, J.& Denoncin, K.& other authors (2011). Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem,286:16734-16742.
    Li, C., Wally, H., Miller, S. J.& Lu, C. D. (2009). The multifaceted proteins MvaT and MvaU, members of the H-NS family, control arginine metabolism, pyocyanin synthesis, and prophage activation in Pseudomonas aeruginosa PAO1. J Bacteriol,191:6211-6218.
    Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H. J.& Pee, K. H. V. (2000). Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci,56:688-695.
    Lippa, A. M.& Goulian, M. (2012). Perturbation of the oxidizing environment of the periplasm stimulates the PhoQ/PhoP system in Escherichia coli. J Bacteriol,194:1457-1463.
    Liu, M. Y.& Romeo, T. (1997). The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol,179:4639-4642.
    Martinez, L. C., Yakhnin, H., Camacho, M. I., Georgellis, D., Babitzke, P., Puente, J. L.& Bustamante, V. H. (2011). Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD.Mol Microbiol,80:1637-1656.
    Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S., Haas, D.& Defago, G. (1998). Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology,88:678-684.
    Mavrodi, O. V., Mavrodi, D. V., Park, A. A., Weller, D. M.& Thomashow, L. S. (2006). The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8rl-96. Microbiology, 152:863-872.
    Mercante, J., Edwards, A. N., Dubey, A. K., Babitzke, P.& Romeo, T. (2009). Molecular Geometry of CsrA (RsmA) Binding to RNA and Its Implications for Regulated Expression. J Mol Biol,392: 511-528.
    Messens, J., Collet, J., Van Belle, K., Brosens, E., Loris, R.& Wyns, L. (2007). The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem,282:31302-31307.
    Moynihan, J. A., Morrissey, J. P., Coppoolse, E. R., Stiekema, W. J., O'Gara, F.& Boyd, E. F. (2009). Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens. Appl Environ Microb,75:2122-2131.
    Mukherjee, A., Cui, Y., Liu, Y., Dumenyo, C. K.& Chatterjee, A. K. (1996). Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA:repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology,142:427-434.
    Notz, R., Maurhofer, M., Schnider-Keel, U., Duffy, B., Haas, D.& Defago, G. (2001). Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology,91:873-881.
    Ongena, M., Duby, F., Rossignol, F., Fauconnier, M., Dommes, J.& Thonart, P. (2004). Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol Plant Microbe In,17:1009-1018.
    Pannuri, A., Yakhnin, H., Vakulskas, C. A., Edwards, A. N., Babitzke, P.& Romeo, T. (2012). Translational repression of NhaR, a novel pathway for multi-tier regulation of biofilm circuitry by CsrA. J Bacteriol,194:79-89.
    Papavizas, G. C. (1985). Trichoderma and Gliocladium:biology, ecology, and potential for biocontrol. Annu Rev Phytopathol,23:23-54.
    Pleshe, E., Truesdell, J.& Batey, R. T. (2005). Structure of a class II TrmH tRNA-modifying enzyme from Aquifex aeolicus. Acta Crystallographica Section F:Structural Biology and Crystallization Communications,61:722-728.
    Qoronfleh, M. W., Debouck, C.& Keller, J. (1992). Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. JBacteriol,174:7902-7909.
    Raaij makers, J. M., Vlami, M.& De Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek,81:537-547.
    Raaijmakers, J. M., Weller, D. M.& Thomashow, L. S. (1997). Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microb,63:881-887.
    Rahme, L. G., Tan, M., Le, L., Wong, S. M., Tompkins, R. G., Calderwood, S. B.& Ausubel, F. M. (1997). Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. P Natl Acad SciUsa,94:13245-13250.
    Ran, H., Hassett, D. J.& Lau, G. W. (2003). Human targets of Pseudomonas aeruginosa pyocyanin. P Natl Acad Sci Usa,100:14315-14320.
    Reimmann, C., Valverde, C., Kay, E.& Haas, D. (2005). Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol,187,276-285.
    Rezzonico, F., Binder, C., Defago, G.& Moenne-Loccoz, Y. (2005). The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection. Mol Plant Microbe In,18:991-1001.
    Ruiz, N., Chng, S., Hiniker, A., Kahne, D.& Silhavy, T. J. (2010). Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. P Natl Acad Sci Usa,107:12245-12250.
    Sahara, T., Suzuki, M., Tsuruha, J., Takada, Y.& Fukunaga, N. (1999). c/s-Acting elements responsible for low-temperature-inducible expression of the gene coding for the thermolabile isocitrate dehydrogenase isozyme of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol,181: 2602-2611.
    Sambrook, J., Fritsch, E. F.& Maniatis, T. (1989). Molecular cloning:Cold spring harbor laboratory press New York.
    Sambrook, J.& Russell, D. W. (2001). Molecular Cloning:A Laboratory Manual. The 3rd ed., Cold Spring Horbor laboratory:Cold Spring Harbor, NY.
    Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M.& Loper, J. E. (1995). The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. P Natl Acad Sci Usa,92:12255-12259.
    Schnider, U., Keel, C., Blumer, C., Troxler, J., Defago, G.& Haas, D. (1995). Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHAO enhances antibiotic production and improves biocontrol abilities. J Bacteriol,111:5387-5392.
    Schnider-Keel, U., Seematter, A.& Maurhofer, M.& other authors (2000). Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHAO and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol,182:1215-1225.
    Schnider-Keel, U., Lejballe, K. B., Baehler, E., Haas, D.& Keel, C. (2001). The sigma factor AlgU (AlgT) controls exopolysacchande production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHAO. Appl Environ Microb,67:5683-5693.
    Seto, E., Shi, Y., Shenk, T., Chang, L. S., Shenk, T., Courey, A. J.& Tiian, R. (1993). Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature,365.
    Shevchik, V. E., Bortoli Gernnan, I., Robert Baudouy, J., Robinet, S., Barras, F.& Condemine, G. (1995). Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi. Mol Microbiol,16:745-753.
    Shevchik, V. E., Condemine, G.& Robert-Baudouy, J. (1994). Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. The EMBOjournal,13:2007-12.
    Shoeman, R., Redfield, B., Coleman, T., Greene, R. C., Smith, A. A., Brot, N.& Weissbach, H. (1985). Regulation of methionine synthesis in Escherichia coli:Effect of metJ gene product and S-adenosylmethionine on the expression of the metF gene. P Natl Acad Sci Usa,82:3601-3605.
    Siddiqui, I. A., Haas, D.& Heeb, S. (2005). Extracellular protease of Pseudomonas fluorescens CHAO, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microb,71:5646-5649.
    Sone, M., Akiyama, Y.& Ito, K. (1997). Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds. JBiol Chem,272:10349-10352.
    Sonnleitner, E.& Haas, D. (2011). Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biot,91:63-79.
    Serensen, J.& Nybroe, O. (2004). Pseudomonas in the soil environment. Pseudomonas,369-401.
    Sulthana, S., Rajyaguru, P. I., Mittal, P.& Ray, M. K. (2011). rnr Gene from the Antarctic Bacterium Pseudomonas syringae Lz4W, Encoding a Psychrophilic RNase R. Appl Environ Microb,11: 7896-7904.
    Tang, W., Pasternak, J. J.& Glick, B. R. (1995). Persistence in soil of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 and genetically manipulated derived strains. Can J Microbiol,41:445-451.
    Tendeng, C., Soutourina, O. A., Danchin, A.& Bertin, P. N. (2003). MvaT proteins in Pseudomonas spp.:a novel class of H-NS-like proteins. Microbiology,149:3047-3050.
    Tian, T., Wu, X. G., Duan, H. M.& Zhang, L. Q. (2010). The resistance-nodulation-division efflux pump EmhABC influences the production of 2,4-diacetylphloroglucinol in Pseudomonas fluorescens 2P24. Microbiology,156:39-48.
    Tobe, T., Sasakawa, C., Okada, N., Honma, Y.& Yoshikawa, M. (1992). vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. JBacteriol,174:6359-6367.
    Ton, J., De Vos, M., Robben, C., Buchala, A., Metraux, J. P., Van Loon, L. C.& Pieterse, C. M. (2002). Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. The Plant Journal,29:11-21.
    Tripathi, R. K.& Gottlieb, D. (1969). Mechanism of action of the antifungal antibiotic pyrrolnitrin. J Bacteriol,100:310-318.
    Valverde, C., Heeb, S., Keel, C.& Haas, D. (2003). RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol,50:1361-1379.
    Verhagen, B. W., Glazebrook, J., Zhu, T., Chang, H., Van Loon, L. C.& Pieterse, C. M. (2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe In, 17:895-908.
    Vertommen, D., Depuydt, M., Pan, J., Leverrier, P., Knoops, L., Szikora, J. P., Messens, J., Bardwell, J. C.& Collet, J. F. (2008). The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol Microbiol,67:336-349.
    Wang, C., Knill, E., Glick, B. R.& Defago, G. (2000). Effect of transferring 1-aminocyclopropane-l-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol,46:898-907.
    Wang, G., Huang, X., Li, S., Huang, J., Wei, X., Li, Y.& Xu, Y. (2012). The RNA chaperone Hfq regulates antibiotic biosynthesis in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol,194: 2443-2457.
    Wei, B. L., Brun Zinkernagel, A. M., Simecka, J. W., Pru, B. M., Babitzke, P.& Romeo, T. (2001). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol,40:245-256.
    Weilbacher, T., Suzuki, K.& Dubey, A. K.& other authors (2003). A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol,48:657-670.
    Weller, D. M. (1983). Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology,73:1548-1553.
    Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens:looking back over 30 years. Phytopathology,97:250-256.
    Workentine, M. L., Chang, L., Ceri, H.& Turner, R. J. (2009). The GacS GacA two-component regulatory system of Pseudomonas fluorescens:a bacterial two-hybrid analysis. Ferns Microbiol Lett, 292:50-56.
    Wu, X., Liu, J., Zhang, W.& Zhang, L. (2012). Multiple-Level Regulation of 2, 4-Diacetylphloroglucinol Production by the Sigma Regulator PsrA in Pseudomonas fluorescens 2P24. PloSone,7:e50149.
    Xiao Gang, W., Hui Mei, D., Tao, T., Nan, Y., Hong You, Z.& Li Qun, Z. (2010). Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24. Ferns Microbiol Lett,309:16-24.
    Yakhnin, H., Baker, C. S., Berezin, I., Evangelista, M. A., Rassin, A., Romeo, T.& Babitzke, P. (2011). CsrA represses translation of sdiA, which encodes the N-acylhomoserine-L-lactone receptor of Escherichia coli, by binding exclusively within the coding region of sdiA mRNA. J Bacteriol,193: 6162-6170.
    Yakhnin, A. V., Baker, C. S., Vakulskas, C. A., Yakhnin, H., Berezin, I., Romeo, T.& Babitzke, P. (2013). CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol,87:851-866.
    Yakhnin, H., Yakhnin, A. V., Baker, C. S., Sineva, E., Berezin, I., Romeo, T.& Babitzke, P. (2011). Complex regulation of the global regulatory gene csrA:CsrA-mediated translational repression, transcription from five promoters by Eo70 and Eas, and indirect transcriptional activation by CsrA. Mol Microbiol,81:689-704
    Yan, Q., Gao, W., Wu, X.& Zhang, L. (2009). Regulation of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by the PhoP/PhoQ two-component system. Microbiology,155, 124-133.
    Yan, X. X., Zhang, L. Q., Yang, W. Z.& Tang, W. H. (2004). The role of regulatory gene gacA in the suppression of soil-borne diseases by Pseudomonas fluorescens 2P24. Acta Phytopathologica Sinica, 34:272-279.
    Yu, G. Y., Sinclair, J. B., Hartman, G. L.& Bertagnolli, B. L. (2002). Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry,34:955-963.
    Zha, W., Rubin-Pitel, S. B.& Zhao, H. (2006). Characterization of the substrate specificity of PhlD, a type III polyketide synthase from Pseudomonas fluorescens. J Biol Chem,281:32036-32047.
    Zhang, W., Zhao Z., Zhang, B., Wu, X. G, Ren, Z. G & Zhang, L. Q. (2014). Post-transcriptional regulation of 2,4-diacetylphloroglucinol production by GidA and TrmE in Pseudomonas fluorescens 2P24. Appl Environ Microb, in press.
    Zuber, S., Carruthers, F.& Keel, C.& other authors (2003). GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant Microbe In,16:634-644.
    姜维芳,吴小刚,闫庆,张力群(2008).荧光假单胞菌2P24中gacA、dsbA基因对小\phoP/phlQRNA因子的转录调控.微生物学报,48:1588-1594.RsmZ刘九成,张伟,吴小刚,张力群(2013).荧光假单胞菌2P24中
    对抗生素2,4-二乙酰基间苯三retS酚合成的影响.微生物学报,53:118-126.魏海雷,王烨,张力群,唐文华(2004).生防菌株2P24与
    的鉴定及其生防相关性状的初CPF-10步分析.植物病理学报,34:80-85.魏海雷,张力群(2005).荧光假单胞杆菌2P24中生防相关调控基因
    内克隆和功能分析.gacS 微生物学报,45:368-372.
    魏亚蕊,吴小刚,伊卫东,周洪友(2012).RNA聚合酶ω亚基的研究进展.中国植保导刊,32:11-15.
    吴小刚,魏亚蕊,刘九成,张力群(2012).生防假单胞菌2P24中mvaT和mvaV基因对PcoI/PcoR群体感应系统的调控作用.微生物学报,52:710-717.
    闫小雪,张力群,杨之为,唐文华(2004).调控基因gacA在荧光假单胞菌2P24防治土传病害中的作用.植物病理学报,34:272279
    张清霞,吴小刚,张力群,唐文华(2008).荧光假单胞菌2P24调控基因突变体定殖能力和生防效果分析.中国生物防治,24:4045.
    周宇平,吴小刚,周洪友,何月秋,张力群(2010).荧光假单胞菌2P24中phlF基因对抗生素2,4-二乙酰基间苯三酚产生的影响.植物病理学报,40:144-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700