铜绿假单胞菌铁反应基因调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对大多数细菌而言,铁是一个必不可少的营养元素。尽管地球上铁含量丰富,但在大多数环境中铁对生物体而言是难以获得的。铁限制是宿主防御病原菌侵害的第一道防线;另一方面过多的铁又会导致氧化伤害。为了避免铁吸收过程中各种过度放任导致的不良后果,微生物进化了复杂而又巧妙的遗传和生化机制以控制铁的吸收、代谢和平衡。群体反应系统是一个细胞密度依赖的全局性基因表达调节系统,它与铁调节系统相互作用编织出复杂的调控网络。
     铜绿假单胞菌是一种重要的机会致病菌,可引起包括囊胞性纤维症病人的慢性肺感染等多种感染性疾病,是主要的医源性感染源。该菌具有庞大的基因组和复杂多样的调节机制,来调控各种毒性因子的表达和生理生化活动以适应环境变化。
     本文分别对该基因组中两个铁反应基因,编码双组分反应调节子的PA2572和编码柠檬酸铁吸收途径sigma因子的PA3899进行功能研究。首先分别构建两基因的铜绿假单胞菌PAO1的敲除突变体,并利用无启动子的luxABCDE发光基因作为报告基因进行启动子活性研究。研究发现PA2572对铁载体的合成基因pchDCBA和pvdF以及未知功能基因PA3849的表达有影响;PA3899对pvdF和oprL基因也有一定的作用,预示着两个基因分别与铁载体吸收系统有一定的调控关系。两基因对其他铁反应基因,QS系统及其调节的毒性因子基因没有明显调节作用;而QS系统对PA2572和PA3899分别具有促进和抑制作用。研究还发现铁对QS系统及其毒性因子基因的表达具有一定促进作用;铁对生物被膜的产生是不利的,高铁条件下突变体PAO1(△2572)和PAO1(△3899)的生物被膜产量也较野生型PAO1的少。
     tol-oprL基因在维持外膜完整性,转膜运输以及革兰氏阴性菌的细胞分裂方面起着重要的作用。在铜绿假单胞菌中,tol-oprL基因簇由独特的三个操纵子组成:orf1-tolQRA,tolB和oprL-orf2,它们均受到铁的调节。TolQRA复合物和铁运输系统的ExbBD-TonB具有相似性,其功能可以部分互相代替。本文研究了orf1-tolQRA操纵子的启动子及其表达图特性,并对Orf1的功能进行了研究。通过放射标记和荧光标记的引物延伸反应,以及以lacZ和luxABCDE为报告子的启动子活性研究,发现tolQRA上游有两个不同的启动子,一个位于Orf1的前面是组成型的,一个位于orf1内部是受铁调控的。在生长稳定期,tol-oprL操纵子均受到QS系统的抑制。与tolQ和tolA突变体不可存活不同,可存活的orf1敲除突变株是可以构建的,该突变体的细胞和克隆形态均有变化。首次证明铜绿假单胞菌中,orf1在Tol-OprL复合物中起着并非必不可少的作用。
Iron is an essential element for most organisms,including bacteria.Despite its abundance on earth,it is biologically unavailable in most environments.Iron limitation is the first line of defense for host against pathogens.On the other hand,reduced form of iron is highly toxic for most microorganisms.To obtain a balance in iron concentration,microbes evolved complex and smart heredity and biochemistry mechanisms to control iron uptake, metabolism and homeostasis.Bacterial quorum sensing is a density dependent global regulatory system.Iron regulation and quorum sensing intertwine in bacteria to form a complex regulation network.
     Pseudomonas aeruginosa is an important opportunistic pathogen that causes various diseases including chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections.It possesses an enormous genome and complex regulation mechanisms which control variety of cellular processes and bacterial behaviors including the production of virulence factors and pathogenicity during bacterial infection.
     This research firstly investigated the functions of two iron regulated genes,PA2572, encoding a probable two-component response regulator and PA3899,encoding probable sigrna-70 factor in the diferric dicitrate uptake pathway.The mutants of both genes were constructed in PAO1,and luxCDABE-based promoter-reporter fusions were also constructed to examine the expression of relevant genes in these mutants.The results indicate that PA2572 affected the expression of siderophore synthesis proteins PchDCBA and PvdF,and as well as the conserved hypothetical protein encoded by PA3849;PA3899 controlled the expression of pvdF and oprL.These observations suggest that both genes are related to siderophore-mediated iron uptake system.In PAO1,both genes did not affect the expressions of the quorum sensing(QS) system or the virulence factors.Instead,both genes were regulated by QS and iron affected both the expression of QS system and virulence factors and the formation of biofilm.In iron-rich culture medium,the biofilm formation of PAO1(△2572) and PAO1(△3899) were reduced compared to PAO1.
     The tol-oprL genes play important roles in maintaining outer membrane integrity, transmembrane transportation,and cell division in Gram-negative bacteria.In P.aeruginosa, the tol-oprL genes are organized uniquely in three operons,orf1-tolQRA,tolB and oprL-orf2, and are regulated by iron availability.TolQRA is similar to ExbBD-TonB complex and can imperfectly replace the function of the latter in iron transport system in P.aeruginosa.In this study,the promoters and expression profiles of the tol-oprL operons were characterized,the function of Orf1 investigated.Primer extensions were carried out by using both isotope-labelled and fluorescence labelled primers and the expression profiles were determined by using both lacZ and luxCDABE based transcriptional fusions.The results revealed two distinct promoters at the upstream region of tolQRA;one located in front of orf1 was constitutive while the other within the orf1 coding region was iron-regulated.Expression profiles indicate the tol-oprL operons were also down-regulated by the quorum-sensing systems during the late stage of growth.Unlike tolQ and tolA,a viable orf1 knockout strain was successfully constructed.The mutant exhibited altered cell and colony morphology, providing first evidence that Orf1 plays a non-essential role in the Tol-OprL complex in P. aeruginosa.
引文
[1] Stover, C.K., X.Q. Pham, A.L. Erwin, et al., Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen(J). Nature, 2000. 406(6799):p.959-64.
    
    [2] Wagner, V.E. and B.H. Iglewski, P. aeruginosa Biofilms in CF Infection(J). Clin Rev Allergy Immunol, 2008. 35(3): p. 124-34.
    [3] Ikeno, T., K. Fukuda, M. Ogawa, et al., Small and rough colony pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients(J).Microbiol Immunol, 2007. 51(10): p. 929-38.
    [4] Van Delden, C. and B.H. Iglewski, Cell-to-cell signaling and Pseudomonas aeruginosa infections(J). Emerg Infect Dis, 1998. 4(4): p. 551-60.
    [5] Masuda, N., E. Sakagawa, and S. Ohya, Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa(J). Antimicrob Agents Chemother,1995. 39(3): p. 645-9.
    [6] Koch, C. and N. Hoiby, Pathogenesis of cystic fibrosis(J). Lancet, 1993. 341(8852): p. 1065-9.
    [7] Lee, D.G., J.M. Urbach, G. Wu, et al., Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial(J). Genome Biol, 2006. 7(10): p. R90.
    [8] Tang, H., M. Kays, and A. Prince, Role of Pseudomonas aeruginosa pili in acute pulmonary infection(J). Infect Immun, 1995. 63(4): p. 1278-85.
    [9] Pedersen, S.S., N. Hoiby, F. Espersen, et al., Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis(J). Thorax, 1992. 47(1): p. 6-13.
    [10] Pier, G.B., Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor,initiator of inflammation and target for effective immunity(J). Int J Med Microbiol,2007. 297(5): p. 277-95.
    [11] Corboy M, D.R., Elevalion of vacuolar of PH inhibits the cytotoxic activity of furin-cleaved exotoxin A(J). Infect Immun, 1997. 65: p. 2240-2242.
    [12] Mody C , B.D., syme R Pseudomonas aeruginosa exoenzymes induces proliferation of human T lymphocytes(J). Infect Immun, 1995. 63: p. 1800-1805.
    [13] Henderson B , P.S., Vilson M. 陈复兴,等,细胞微生物学(J).北京:人民军医出版社,2001: p. 28-37.
    [14] Woods, D.E., S.J. Cryz, R.L. Friedman, et al., Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats(J). Infect Immun, 1982. 36(3): p. 1223-8.
    [15] Preston, M.J., P.C. Seed, D.S. Toder, et al., Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections(J). Infect Immun, 1997.65(8): p. 3086-90.
    [16] Howe, T.R. and B.H. Iglewski, Isolation and characterization of alkaline protease-deficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model(J). Infect Immun, 1984. 43(3): p. 1058-63.
    [17] Vasil, M.L., L.M. Graham, R.M. Ostroff, et al., Phospholipase C: molecular biology and contribution to the pathogenesis of Pseudomonas aeruginosa(J). Antibiot Chemother, 1991. 44: p. 34-47.
    [18] Cox, CD., Effect of pyochelin on the virulence of Pseudomonas aeruginosa(J). Infect Immun, 1982. 36(1): p. 17-23.
    [19] Moreau-Marquis, S., B.A. Stanton, and G.A. O'Toole, Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway(J). Pulm Pharmacol Ther, 2008. 21(4): p. 595-9.
    [20] Bjarnsholt, T., K. Kirketerp-Moller, P.O. Jensen, et al., Why chronic wounds will not heal: a novel hypothesis(J). Wound Repair Regen, 2008.16(1): p. 2-10.
    [21] Rumbaugh, K.P., J.A. Griswold, and A.N. Hamood, The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa(J). Microbes Infect, 2000. 2(14): p.1721-31.
    [22] Williams, P., M. Camara, A. Hardman, et al., Quorum sensing and the population-dependent control of virulence(J). Philos Trans R Soc Lond B Biol Sci, 2000. 355(1397): p. 667-80.
    [23] Cartron, M.L., S. Maddocks, P. Gillingham, et al., Feo--transport of ferrous iron into bacteria(J). Biometals, 2006.19(2): p. 143-57.
    [24] Ochsner, U.A. and M.L. Vasil, Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes(J). Proc. Natl. Acad.Sci. U S A, 1996. 93(9): p. 4409-14.
    [25] Valenti, P., F. Berlutti, M.P. Conte, et al., Lactoferrin functions: current status and perspectives(J). J Clin Gastroenterol, 2004. 38(6 Suppl): p. S127-9.
    [26] Crosa, J.H., Genetics and molecular biology of siderophore-mediated iron transport in bacteria(J). Microbiol Rev, 1989. 53(4): p. 517-30.
    [27] Kim, S.J., R.Y. Park, S.M. Kang, et al., Pseudomonas aeruginosa alkaline protease can facilitate siderophore-mediated iron-uptake via the proteolytic cleavage of transferrins(J). Biol Pharm Bull, 2006. 29(11): p. 2295-300.
    [28] Wilderman, P.J., A.I. Vasil, Z. Johnson, et al., Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa(J). Infect Immun,2001. 69(9): p. 5385-94.
    [29] Llamas, M.A., M. Sparrius, R. Kloet, et al., The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa(J). J Bacteriol, 2006.188(5): p. 1882-91.
    [30] Dean, C.R. and K. Poole, Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa(J). J Bacteriol, 1993. 175(2): p.317-24.
    [31] Ghysels, B., U. Ochsner, U. Mollman, et al., The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues(J).FEMS Microbiol Lett, 2005. 246(2): p. 167-74.
    [32] Cescau, S., H. Cwerman, S. Letoffe, et al., Heme acquisition by hemophores(J). Biometals, 2007. 20(3-4): p. 603-13.
    [33] Wandersman, C. and P. Delepelaire, Bacterial iron sources: from siderophores to hemophores(J). Annu Rev Microbiol, 2004. 58: p. 611-47.
    [34] Letoffe, S., J.M. Ghigo, and C. Wandersman, Secretion of the Serratia marcescens HasA protein by an ABC transporter(J). J Bacteriol, 1994.176(17): p. 5372-7.
    [35] Ochsner, U.A., Z. Johnson, and M.L. Vasil, Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa(J). Microbiology, 2000.146 (Pt1): p. 185-98.
    [36] Stojiljkovic, I. and N. Srinivasan, Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae(J). J. Bacteriol., 1997.179(3): p. 805-12.
    [37] Block, D.R., G.S. Lukat-Rodgers, K.R. Rodgers, et al., Identification of two heme-binding sites in the cytoplasmic heme-trafficking protein PhuS from Pseudomonas aeruginosa and their relevance to function(J). Biochemistry, 2007. 46(50):p. 14391-402.
    [38] Ratliff, M., W. Zhu, R. Deshmukh, et al., Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa(J). J Bacteriol, 2001.183(21): p. 6394-403.
    
    [39] Stintzi, A., K. Evans, J.M. Meyer, et al., Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis(J). FEMS Microbiol Lett, 1998.166(2): p. 341-5.
    [40] Ravel, J. and P. Cornelis, Genomics of pyoverdine-mediated iron uptake in pseudomonads(J). Trends Microbiol, 2003.11(5): p. 195-200.
    [41] Ackerley, D.F., T.T. Caradoc-Davies, and I.L. Lamont, Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa(J). J Bacteriol,2003. 185(9): p. 2848-55.
    [42] Vandenende, C.S., M. Vlasschaert, and S.Y. Seah, Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1(J). J Bacteriol, 2004.186(17): p. 5596-602.
    [43] McMorran, B.J., H.M. Kumara, K. Sullivan, et al., Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa(J). Microbiology, 2001.147(Pt 6):p. 1517-24.
    [44] Reimmann, C., L. Serino, M. Beyeler, et al., Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa(J). Microbiology, 1998. 144 ( Pt 11): p. 3135-48.
    [45] Reimmann, C., H.M. Patel, L. Serino, et al., Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa(J). J Bacteriol, 2001. 183(3): p. 813-20.
    [46]Michel,L.,A.Bachelard,and C.Reimmann,Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa(J).Microbiology,2007.153(Pt 5):p.1508-18.
    [47]Letoffe,S.,P.Delepelaire,and C.Wandersman,Free and hemophore-bound heme acquisitions through the outer membrane receptor HasR have different requirements for the TonB-ExbB-ExbD complex(J).J Bacteriol,2004.186(13):p.4067-74.
    [48]Ghysels,B.,B.T.Dieu,S.A.Beatson,et al.,FpvB,an alternative type Ⅰ ferripyoverdine receptor of Pseudomonas aeruginosa(J).Microbiology,2004.150(Pt 6):p.1671-80.
    [49]Heinrichs,D.E.and K.Poole,PchR,a regulator of ferripyochelin receptor gene(fptA)expression in Pseudomonas aeruginosa,functions both as an activator and as a repressor(J).J Bacteriol,1996.178(9):p.2586-92.
    [50]Braun,V.,K.Gunter,and K.Hantke,Transport of iron across the outer membrane(J).Biol.Met.,1991.4(1):p.14-22.
    [51]Ernst,J.F.,R.L.Bennett,and L.I.Rothfield,Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium(J).J Bacteriol,1978.135(3):p.928-34.
    [52]Pohl,E.,J.C.Haller,A.Mijovilovich,et al.,Architecture of a protein central to iron homeostasis:crystal structure and spectroscopic analysis of the ferric uptake regulator(J).Mol Microbiol,2003.47(4):p.903-15.
    [53]de Lorenzo,V.,S.Wee,M.Herrero,et al.,Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation(fur) repressor(J).J Bacteriol,1987.169(6):p.2624-30.
    [54]Masse,E.and M.Arguin,Ironing out the problem:new mechanisms of iron homeostasis(J).Trends Biochem Sci,2005.30(8):p.462-8.
    [55]Wilderman,P.J.,N.A.Sowa,D.J.FitzGerald,et al.,Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis(J).Proc Natl Acad Sci U S A,2004.101(26):p.9792-7.
    [56]Barrios,H.,B.Valderrama,and E.Morett,Compilation and analysis of sigma(54)-dependent promoter sequences(J).Nucleic Acids Res.,1999.27(22):p.4305-13.
    [57]Bollinger,N.,D.J.Hassett,B.H.Iglewski,et al.,Gene expression in Pseudomonas aeruginosa:evidence of iron override effects on quorum sensing and biofilm-specific gene regulation(J).J Bacteriol,2001.183(6):p.1990-6.
    [58]Visca,P.,F.Imperi,and I.L.Lamont,Pyoverdine siderophores:from biogenesis to biosignificance(J).Trends Microbiol,2007.15(1):p.22-30.
    [59]Lamont,I.L.,P.A.Beare,U.Ochsner,et al.,Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa(J).Proc Natl Acad Sci U S A,2002.99(10):p.7072-7.
    [60]王琰,魏金花,沈立新等,铜绿假单胞菌随机启动子库的构建及受铁调控基因的筛 选和鉴定(J).微生物学报, 2008. 48(7): p. 863-868.
    [61] Juhas, M., L. Eberl, and B. Tummler, Quorum sensing: the power of cooperation in the world of Pseudomonas(J). Environ Microbiol, 2005. 7(4): p. 459-71.
    [62] Withers, H., S. Swift, and P. Williams, Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria(J). Curr Opin Microbiol, 2001.4(2): p. 186-93.
    [63] Arevalo-Ferro, C., M. Hentzer, G. Reil, et al., Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics(J). Environ Microbiol, 2003. 5(12): p. 1350-69.
    [64] Schuster, M., C.P. Lostroh, T. Ogi, et al., Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis(J). J Bacteriol, 2003.185(7): p. 2066-79.
    [65] Wagner, V.E., D. Bushnell, L. Passador, et al., Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment(J). J Bacteriol, 2003.185(7): p. 2080-95.
    [66] Kato, J., T. Nakamura, A. Kuroda, et al., Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa(J). Biosci Biotechnol Biochem, 1999. 63(1): p.155-61.
    [67] von Bodman, S.B., J.M. Willey, and S.P. Diggle, Cell-cell communication in bacteria: united we stand(J). J Bacteriol, 2008.190(13): p. 4377-91.
    [68] Diggle, S.P., K. Winzer, S.R. Chhabra, et al., The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR(J). Mol Microbiol, 2003. 50(1): p. 29-43.
    [69] Fuqua, C., The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity(J). J Bacteriol, 2006.188(9): p. 3169-71.
    [70] Cornelis, P. and S. Aendekerk, A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa(J). Microbiology, 2004.150(Pt 4): p. 752-6.
    [71] Zheng, P., J. Sun, R. Geffers, et al., Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa(J).J Biotechnol, 2007.132(4): p. 342-52.
    [72] Abbas, A., C. Adams, N. Scully, et al., A role for TonB1 in biofilm formation and quorum sensing in Pseudomonas aeruginosa(J). FEMS Microbiol Lett, 2007. 274(2): p.269-78.
    [73] Kim, E.J., W. Wang, W.D. Deckwer, et al., Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density(J). Microbiology, 2005. 151(Pt 4):p. 1127-38.
    [74] Oglesby, A.G., J.M. Farrow, 3rd, J.H. Lee, et al., The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing(J). J Biol Chem, 2008. 283(23): p. 15558-67.
    [75] Cha, J.Y., J.S. Lee, J.I. Oh, et al., Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: Fur controls expression of genes involved in quorum-sensing(J). Biochem Biophys Res Commun, 2008. 366(2): p. 281-7.
    [76] Diggle, S.P., S. Matthijs, V.J. Wright, et al., The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment(J). Chem Biol, 2007.14(1): p. 87-96.
    [77] Bredenbruch, F., R. Geffers, M. Nimtz, et al., The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity(J). Environ Microbiol, 2006. 8(8): p. 1318-29.
    [78] Kaufmann, G.F., R. Sartorio, S.H. Lee, et al., Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones(J).Proc Natl Acad Sci U S A, 2005.102(2): p. 309-14.
    [79] Whitchurch, C.B., T. Tolker-Nielsen, P.C. Ragas, et al., Extracellular DNA required for bacterial biofilm formation(J). Science, 2002. 295(5559): p. 1487.
    [80] Nemoto, K., K. Hirota, K. Murakami, et al., Effect of Varidase (streptodornase) on biofilm formed by Pseudomonas aeruginosa(J). Chemotherapy, 2003.49(3): p. 121-5.
    [81] Costerton, J.W., P.S. Stewart, and E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections(J). Science, 1999. 284(5418): p. 1318-22.
    [82] Nagino, K. and H. Kobayashi, Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa(J). Clin Microbiol Infect, 1997. 3(4): p.432-439.
    [83] Bayer, A.S., D.P. Speert, S. Park, et al., Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa(J). Infect Immun, 1991. 59(1): p. 302-8.
    [84] Galperin, M.Y., Structural classification of bacterial response regulators: diversity of output domains and domain combinations(J). J Bacteriol, 2006.188(12): p. 4169-82.
    
    [85] Llamas, M.A., J.L. Ramos, and J.J. Rodriguez-Herva, Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability(J). J. Bacteriol., 2000.182(17): p. 4764-72.
    [86] Bischoff, D.S., R.B. Bourret, M.L. Kirsch, et al., Purification and characterization of Bacillus subtilis CheY(J). Biochemistry, 1993. 32(35): p. 9256-61.
    [87] Bischoff, D.S. and G.W. Ordal, Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis(J). J Biol Chem, 1991. 266(19): p. 12301-5.
    [88] 郑斐,黄显清,许煜泉等,假单胞菌M18调控基因ppbR的克隆及功能研究 (J).微生物学通报, 2008. 35(2): p. 235-240.
    [89] Galperin, M.Y., A.N. Nikolskaya, and E.V. Koonin, Novel domains of the prokaryotic two-component signal transduction systems(J). FEMS Microbiol Lett, 2001. 203(1): p.11-21.
    [90] Ryan, R.P., Y. Fouhy, J.F. Lucey, et al., Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover(J). Proc Natl Acad Sci USA, 2006.103(17): p. 6712-7.
    [91] Dow, J.M., L. Crossman, K. Findlay, et al., Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants(J). Proc Natl Acad Sci U S A, 2003.100(19): p. 10995-1000.
    [92] Andrade, M.O., M.C. Alegria, C.R. Guzzo, et al., The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri(J).Mol Microbiol, 2006. 62(2): p. 537-51.
    [93] Sturgis, J.N., Organisation and evolution of the tol-pal gene cluster(J). J. Mol. Microbiol. Biotechnol., 2001. 3(1): p. 113-22.
    [94] Sun, T.P. and R.E. Webster, Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli(J). J. Bacteriol., 1987.169(6): p. 2667-74.
    [95] Rodriguez-Herva, J.J., M.I. Ramos-Gonzalez, and J.L. Ramos, The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell cell envelope(J). J. Bacteriol., 1996. 178(6): p.1699-706.
    [96] Dennis, J.J., E.R. Lafontaine, and P.A. Sokol, Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa(J). J. Bacteriol., 1996.178(24): p. 7059-68.
    [97] Vianney, A., M.M. Muller, T. Clavel, et al., Characterization of the tol-pal region of Escherichia coli K-12: translational control of tolR expression by TolQ and identification of a new open reading frame downstream of pal encoding a periplasmic protein(J). J. Bacteriol., 1996.178(14): p. 4031-8.
    [98] Llamas, M.A., J.L. Ramos, and J.J. Rodriguez-Herva, Transcriptional organization of the Pseudomonas putida tol-oprL genes(J). J. Bacteriol., 2003.185(1): p. 184-95.
    [99] Derouiche, R., H. Benedetti, J.C. Lazzaroni, et al., Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins(J).J. Biol. Chem., 1995. 270(19): p. 11078-84.
    [100] Lazzaroni, J.C., A. Vianney, J.L. Popot, et al., Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex(J). J. Mol.Biol., 1995. 246(1): p. 1-7.
    [101] Ray, M.C., P. Germon, A. Vianney, et al., Identification by genetic suppression of Escherichia coli TolB residues important for TolB-Pal interaction(J). J. Bacteriol., 2000.182(3): p. 821-4.
    [102] Cascales, E., A. Bernadac, M. Gavioli, et al., Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity(J). J. Bacteriol., 2002. 184(3): p. 754-9.
    [103] Clavel, T., P. Germon, A. Vianney, et al., TolB protein of Escherichia coli K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal, Lpp and OmpA(J). Mol. Microbiol., 1998. 29(1): p. 359-67.
    [104] Walburger, A., C. Lazdunski, and Y. Corda, The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB(J). Mol. Microbiol., 2002. 44(3): p. 695-708.
    [105] Dubuisson, J.F., A. Vianney, and J.C. Lazzaroni, Mutational analysis of the TolA C-terminal domain of Escherichia coli and genetic evidence for an interaction between TolA and TolB(J). J Bacteriol, 2002.184(16): p. 4620-5.
    [106] Germon, P., M.C. Ray, A. Vianney, et al., Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR(J). J Bacteriol, 2001.183(14): p. 4110-4.
    [107] Cascales, E., R. Lloubes, and J.N. Sturgis, The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB(J). Mol. Microbiol.,2001. 42(3): p. 795-807.
    [108] Goemaere, E.L., E. Cascales, and R. Lloubes, Mutational analyses define helix organization and key residues of a bacterial membrane energy-transducing complex(J).J Mol Biol, 2007. 366(5): p. 1424-36.
    [109] Webster, R.E., The tol gene products and the import of macromolecules into Escherichia coli(J). Mol. Microbiol., 1991. 5(5): p. 1005-11.
    [110] Lazdunski, C.J., E. Bouveret, A. Rigal, et al., Colicin import into Escherichia coli cells(J). J. Bacteriol., 1998.180(19): p. 4993-5002.
    [111] Bernadac, A., M. Gavioli, J.C. Lazzaroni, et al., Escherichia coli tol-pal mutants form outer membrane vesicles(J). J. Bacteriol., 1998.180(18): p. 4872-8.
    [112] Lazzaroni, J.C. and R. Portalier, The excC gene of Escherichia coli K-12 required for cell envelope integrity encodes the peptidoglycan-associated lipoprotein (PAL)(J). Mol.Microbiol., 1992. 6(6): p. 735-42.
    [113] Prouty, A.M., J.C. Van Velkinburgh, and J.S. Gunn, Salmonella enterica serovar typhimurium resistance to bile: identification and characterization of the tolQRA cluster(J). J. Bacteriol., 2002.184(5): p. 1270-6.
    [114] Gerding, M.A., Y. Ogata, N.D. Pecora, et al., The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli(J). Mol Microbiol, 2007. 63(4): p.1008-25.
    [115] Duan, K., E.R. Lafontaine, S. Majumdar, et al., RegA, iron, and growth phase regulate expression of the Pseudomonas aeruginosa tol-oprL gene cluster(J). J. Bacteriol, 2000. 182(8): p. 2077-87.
    [116] Lafontaine, E.R. and P.A. Sokol, Effects of iron and temperature on expression of the Pseudomonas aeruginosa tolQRA genes: role of the ferric uptake regulator(J). J.Bacteriol., 1998.180(11): p. 2836-41.
    [117] Whiteley, M., M.G. Bangera, R.E. Bumgarner, et al., Gene expression in Pseudomonas aeruginosa biofilms(J). Nature, 2001. 413(6858): p. 860-4.
    [118] Angelini, A., L. Cendron, S. Goncalves, et al., Structural and enzymatic characterization of HP0496, a YbgC thioesterase from Helicobacter pylori(J). Proteins,2008. 72(4): p. 1212-21.
    [119] Zhuang, Z., F. Song, B.M. Martin, et al., The YbgC protein encoded by the ybgC gene of the tol-pal gene cluster of Haemophilus influenzae catalyzes acyl-coenzyme A thioesterhydrolysis(J). FEBS Lett, 2002. 516(1-3): p. 161-3.
    [120] Mahren, S., S. Enz, and V. Braun, Functional interaction of region 4 of the extracytoplasmic function sigma factor FecI with the cytoplasmic portion of the FecR transmembrane protein of the Escherichia coli ferric citrate transport system(J). J Bacteriol, 2002.184(13): p. 3704-11.
    [121] Patriquin, G.M., E. Banin, C. Gilmour, et al., Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa(J). J Bacteriol,2008.190(2): p. 662-71.
    [122] Holloway, B.W., U. Romling, and B. Tummler, Genomic mapping of Pseudomonas aeruginosa PAO(J). Microbiology, 1994.140(Pt 11): p. 2907-29.
    [123] Pearson, J.P., E.C. Pesci, and B.H. Iglewski, Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes(J). J Bacteriol, 1997.179(18): p. 5756-67.
    [124] Duan, K., C. Dammel, J. Stein, et al., Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication(J). Mol Microbiol,2003. 50(5): p. 1477-91.
    [125] Jishage, M. and A. Ishihama, Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110(J). J. Bacteriol., 1997. 179(3): p.959-63.
    [126] Liang, H., L. Li, Z. Dong, et al., The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production(J). J Bacteriol, 2008.190(18): p. 6217-27.
    [127] Hoang, T.T., R.R. Karkhoff-Schweizer, A.J. Kutchma, et al., A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants(J). Gene, 1998. 212(1): p. 77-86.
    [128] Duan, K. and M.G. Surette, Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems(J). J Bacteriol, 2007.189(13): p. 4827-36.
    
    [129] DeShazer, D. and D.E. Woods, Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene(J). Biotechniques, 1996. 20(5): p. 762-4.
    [130] Schweizer, H.P., Allelic exchange in Pseudomonas aeruginosa using novel ColEl-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker(J). Mol. Microbiol., 1992. 6(9): p. 1195-204.
    [131] Prentki, P. and H.M. Krisch, In vitro insertional mutagenesis with a selectable DNA fragment(J). Gene, 1984. 29(3): p. 303-13.
    [132] Keen, N.T., S. Tamaki, D. Kobayashi, et al., Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria(J). Gene, 1988. 70(1): p. 191-7.
    [133] Schweizer, H.P., Two plasmids, X1918 and Z1918, for easy recovery of the xylE and lacZ reporter genes(J). Gene, 1993.134(1): p. 89-91.
    [134] Ohman, D.E., J.C. Sadoff, and B.H. Iglewski, Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization(J). Infect. Immun.,1980. 28(3): p. 899-908.
    [135] Sambrook, J., E. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual. 1989, Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory Press.
    [136] Platt, T., B. Muller-Hill, and J.H. Miller, Assays of the lac operon enzymes, in Experiments in molecular genetics, J.H. Miller, Editor. 1972, Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. p. 352-355.
    [137] Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4(J). Nature, 1970. 227(259): p. 680-5.
    [138] Hoshino, T. and M. Kageyama, Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa(J). J. Bacteriol., 1979. 137(1): p.73-81.
    [139] Filiatrault, M.J., V.E. Wagner, D. Bushnell, et al., Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa(J). Infect Immun, 2005. 73(6): p. 3764-72.
    [140] Linares, J.F., Gustafsson, I., Martinez, J. L, Antibiotics as intermicrobial signaling agents instead of weapons(J). Proc Natl Acad Sci USA, 2006.103: p. 19484-19489.
    [141] Rashid, M.H. and A. Kornberg, Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa(J). Proc Natl Acad Sci U S A, 2000. 97(9): p. 4885-90.
    [142] Fraser, G.M., Hughes, C., Swarming motility(J). Curr Opin Microbiol, 1999. 2: p. 630-635.
    [143] Caiazza, N.C., Shanks, R.M. Q., O'Toole, G.A., Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa(J). J Bacteriol, 2005.187: p. 7351-7361.
    [144] Belas, R., Schneider, R., Melch, M., Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior(J).J Bacteriol, 1998.180(23): p. 6126-6139.
    [145] Harshey, R.M., Matsuyama, T., Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells(J).Proc Natl Acad Sci USA, 1994. 91: p. 8631-8635.
    [146] Musk, D.J., D.A. Banko, and P.J. Hergenrother, Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa(J). Chem Biol, 2005. 12(7): p.789-96.
    [147] Ventre, I., F. Ledgham, V. Prima, et al., Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy(J). Mol Microbiol,2003.48(1): p. 187-98.
    [148] Dischert, W., P.M. Vignais, and A. Colbeau, The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two-component HupT/HupR system(J). Mol Microbiol, 1999. 34(5): p. 995-1006.
    [149] McKnight, S.L., B.H. Iglewski, and E.C. Pesci, The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa(J). J Bacteriol, 2000. 182(10):p. 2702-8.
    [150] McLean, B.W., S.L. Wiseman, and A.M. Kropinski, Functional analysis of sigma-70 consensus promoters in Pseudomonas aeruginosa and Escherichia coli(J). Can. J.Microbiol., 1997.43(10): p. 981-5.
    [151] Zhao, Q. and K. Poole, A second tonB gene in Pseudomonas aeruginosa is linked to the exbB and exbD genes(J). FEMS Microbiol. Lett., 2000.184(1): p. 127-32.
    [152] Lazzaroni, J.C., P. Germon, M.C. Ray, et al., The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability(J). FEMS Microbiol. Lett., 1999.177(2): p. 191-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700