基于物联网的教育机器人关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期现身于军事应用和工业应用的机器人,如今已走入寻常百姓家。机器人不仅改变了人类的工作方式,必将彻底改变人类的生活方式。只有开展机器人教育,研究教育机器人,才能顺应时代发展的潮流。机器人学已成为一个多学科交叉的新兴学科,其核心是智能技术,外延则涵盖了机械、电子、通讯、控制、生物等多个学科和技术领域,具有高度的渗透性、创新性和实践性,蕴含着丰富的教育元素。机器人在教育领域的应用表现出了无可比拟的教育价值和发展前景,其多学科交叉融合的特性为培养宽口径、高素质、复合型的工程人才提供了一个良好的平台。物联网的出现和快速发展为机器人教育和教育机器人研究提供了强有力的技术支持和环境支持,物联网教育机器人在这样的背景下应运而生。在教育机器人中引入物联网元素,不仅扩展了机器人的功能性、智能性和趣味性,更拓展了学生的创新思维空间,提高了创新积极性。这也正好吻合了高等教育学的理论要求,符合大学生的心理和智力特征。另外,基于网络的现代远程教育也迫切需要提升远程实验的可操作性以及远程设备的共享性。
     鉴于机器人技术人才的社会需求,机器人技术平台的教育价值,以及设备资源远程共享的发展要求,本文开展了物联网环境下的教育机器人关键技术研究,旨在构建一个以物联网技术为依托,以机器人为对象的可远程的实践教学系统,对其中的一些关键问题进行了研究和讨论。论文的主要内容有:
     1.论文在分析远程控制一般模式的基础上,研究了教育机器人的Web服务体系结构,构建了物联网环境下的教育机器人远程控制架构,给出了服务架构和运行流程。在此基础上,对物联网环境下的教育机器人远程控制策略进行了讨论和分析,确定了直接控制方式和监督控制方式相结合的远程控制模式。
     2.定位与导航是移动机器人的关键技术之一。论文就移动教育机器人在物联网智慧实验室环境下,基于WSN的信号接收强度的定位方法进行了理论分析,给出了加权的Euclidean定位算法,通过实验加以论证,并确定了传感器节点在实验室布放的合理距离。在定位的基础上,提出了基于物联网关键技术(WSN和RFID)的多传感器融合的机器人导航策略和实现方法。最后对教育机器人的“任意”路径跟踪展开了详细研究,综合采用PID控制和模糊控制相结合的控制策略,设计了相应的模糊PID控制器,进行了实验,实现了机器人任意路径的有效跟踪。
     3.群体机器人是机器人研究的一个重要领域。本文研究了群体机器人之间以及群体机器人与物联网环境之间的感知和交互,根据机器人的状态信息和相互作用的影响程度,提出一种表征群体模型的新手段——动态赋权图来控制无线传感网络产生“虚形体”,诱导群体行为,使其向期望的状态或目标演化。给出了“虚形体”产生的机制和诱导模型,通过典型的群机器人动态演化实例,仿真了群机器人的连通控制和合作控制。
     4.论文基于高等教育学理论和方法,以及高校学生的心理和智力特点,开发设计了符合高校学生特点的物联网教育机器人和实验平台。另外从物联网的“感知层、传输层、处理层和应用层”对教育机器人实验环境——物联网智慧实验室进行了详细设计,实验环境远程可监可控。特别在传输层设计中,提出了根据不同对象采用不同传输方式的理念和思想,并给出了传输模型。
Robots which were applied in the domain of military and industry, have already entered into the daily lifes of the common familes. In addition to the changes of our working mode, the way we are living is also undergoing a complete change. Through encouraging related education of robots and carrying on relevant research on educational robots, we are able to conform to the irreversible trend. Robotics has become a newly emerging discipline with combining knowledge from multi-disciplines, of which technological core is smart technology. Its related research fields cover mechanics, electronics, telecommunication, intelligent control and biology, thus requiring extraordinary penetrability, innovativeness and practical property. Due to its profound resource in education and related areas, the performance of robots in education area has presented incomparable advantages in educational values and development future. The emergence and rapid development of IoTs has provided powerful technical and environmental support for robotics education and research of educational robots. The educational robot based on IoTs arises under the corresponding background. Through introducing the factors of IoTs into educational robots, the functions, entertainment and intelligence of robots are significantly extended, and creativity of college students can be also evoked, which perfectly accords with the concerns of higher education. Moreover, the modern distance education based on Internet also presented strong desire to raise availability of remote experiment and sharing of distance equipment.
     In view of the great demand of technical talents in robots technology, the educational value of robots platform and strong requirement of remote sharing in equipment and resources, this dissertation focuses on the research of key technologies of educational robots based on IoTs in order to build a remote practical platform for robot education and some key issues are also deeply researched and discussed. The major contents of the thesis are shown as below:
     1. In the thesis, a web service architecture of educational robots is researched based on the general model of remote controlling. A remote controlling architecture under the environment of IoTs is deeply researched and related details of service architecture and operational procedures are stated either. Based on the above research effort, the remote controlling strategy of educational robots under the environment of IoTs are discussed and analyzed, determining a mixed remote controlling model of which combine direct controlling method with indirect controlling method together.
     2. Positioning and navigation are always conceived as the key technologies in the research domain of mobile robots. In the thesis, the positioning method based on the strength of receiving signal is analyzed theoretically, proposing a weighting Euclidean positioning algorithm. Corresponding experimental tests are designed and carried on. The reasonable distance of deployment of sensor nodes is determined in the lab. On the basis of research of positioning technology, a navigation strategy and implementing methods of robots equipped with multi-sensors based on IoTs (e.g. WSN and FRID) is proposed. Finally, the researches on path tracking of mobile robots are deeply researched by combining with PID control and fuzzy control strategies. Through design of fuzzy PID controller, the random path tracking of mobile robots is effectively achieved and related experiments are designed and the effectiveness of proposed strategies is testified.
     3. Swarm robots are one of the most important research areas of robots. In the thesis, the interaction between swarm robots and swarm robots versus IoT environment are carried on. According to the influential extent of status information and interaction, a new method to describe swarm model-dynamic weighted graph is proposed. By applying dynamic weighted graph, WSN are guided to create "virtual entities" to induce generation of swarm behavior and thus contribute to the swarm behavior achieving to a certain goal. The production mechanism of and inducing model of "Virtual entities" are stated in the thesis. Through actual demonstration of dynamic evolution of swarm robots, the connected controlling and cooperated control of swarm robots are simulated.
     4. An IoT-based experimental platform is developed with concerning of the theory of higher education and physiological and intelligent characteristics of college students. Robots are always featured as high-tech, fresh creativity and free interaction. Besides that, the actual experimental environment-Smart lab of IoTs is designed and related details are also illustrated in the thesis. Through constructed environment, remote controlling and monitoring are achieved. Especially in the design of transportation layer, varieties of delivering method are adopted in terms of the service objects and relevant transportation models are presented.
引文
[1]孟臻.建构主义的理性思考[J].基础教育外语教学研究,2006(4):16-18.
    [2]张海俐.践行建构主义理论转变传统教学观念[J].青海师范大学学报:哲学社会科学版,2012(5):141-142.
    [3]刘振环,白非.大学教学模式的重构——基于合作性学习的理念[J].教育教学论坛,2012(16):100-102.
    [4]葛秋芬,黄丽,李今朝,等.合作学习研究的综述[J].社会心理科学,2011(4):9-11,58.
    [5]钱贵晴,刘文利.创新教育概论[M].北京:北京师范大学出版社,2009.
    [6]李华荣,李海涛,汤晓兰.论大学生创新教育与创新思维的培养[J].南华大学学报:社会科学版,2010(3):68-70.
    [7]刘小英.论斯滕伯格的成功智力理论及教育启示[J].太原大学教育学院学报,2012(1):8-10.
    [8]斯腾伯格.成功智力[M].吴国宏、钱文译.上海:华东师大出版社出版,1999.
    [9]教育部关于印发《关于进一步加强高等学校本科教学工作的若干意见》的通知http://jwc.hbue.edu.cn/structure/gzzd/gjzcfg/zw_5295_l.htm
    [10]Liu, E. Z, Kou C. H, Lin C. H, et al. Developing multimedia instructional material for robotics education[C]. WSEAS Transactions on Communications,2008:1102-1111.
    [11]王成军,沈豫浙.开展机器人教育培养创新能力[J].中国地质教育,2010(1):109-111.
    [12]杨刚,沈沛意,郑春红.物联网理论与技术[M].北京:科学出版社,2010.
    [13]李德毅.云计算技术发展报告.北京:科学出版社,2011.
    [14]刘闯,邬万江,韩明辉.工科实践教学的现状与问题浅析[J].中国科技信息,2010(22):206-209.
    [15]马鹏举,王亮,胡殿明.工程实践教学的现状分析与对策研究[J].高等工程教育研究,2011(1):143-147。
    [16]李培根,许晓东,陈国松.我国本科工程教育实践教学问题与原因探析[J].高等工程教育研究,2012(3):1-6.
    [17]牛庆玮,胡伟,刘臻,等.学生创新能力培养的实践教学体系研究与实践[J].中国大学教学,2011(10):70-73.
    [18]刘克宽.应用型本科教育必须重视构建实践教学体系[J].中国高等教育,2011(17):40-41.
    [19]张勇.现代远程教育对我国继续教育发展的影响[J].继续教育,2011(8):19-21.
    [20]屈鸿翔,李民.现代远程教育实验教学平台的构建[J].北京广播电视大学学报,2010(1):21-23.
    [21]叶小英.虚拟实验教学系统在远程教育中的应用与评价研究[D].北京:北京邮电大学,2011.
    [22]杨彩霖.远程教育中网络虚拟实验系统的设计[J].郑州轻工业学院学报:自然科学版,2011(12):P52-54.
    [23]麻省理工学院开放课程网站.http://ocw.mit.edu/index.htm.2013-01-15.
    [24]卡内基梅隆国家机器人工程中心.http://www.nrec.ri.cmu.edu.2012-12-18.
    [25]Nan Li, Tung Phan, Dave S. Touretzky, William W. Cohen, Kenneth R. Koedinger, "Creating an educational robot by embedding a learning agent in the physical world" USA SIGCSE'13 Proceeding of the 44th ACM technical symposium on Computer science education.2013: 759-760.
    [26]McLurkin, Rykowski, John, Kaseman, Lynch, A. Using Multi-Robot Systems for Engineering Education:Teaching and Outreach With Large Numbers of an Advanced, Low-Cost Robot. Education.2013124-33.
    [27]R. Mitchell, K. Warwick, W. Browne, M. Gasson, and J. Wyatt, "Engaging robots: Innovative outreach for attracting cybernetics students," IEEE Trans. Educ.2010:105-113.
    [28]M. Kulich, J. Chudoba, K.Kosnar, T. Krajnik, J. Faigl, and L. Preucil, "SyRoTek—Distance teaching of mobile robotics," IEEE Trans. Educ.,2013.
    [29]Barbara Caci, Antonella D'Amico, Giuseppe Chiazzese, "Robotics and Virtual Worlds:An Experiential Learning Lab", Advances in Intelligent Systems and Computing.2013(196): 83-87.
    [30]C. A. Jara, F. A. Candelas, S. T. Puente, and F. Torres, "Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory," Comput. Educ., vol.57, no.4,2011:2451-2461.
    [31]Eiji Nunohiro, Kotaro Matsushita, Kenneth J. Mackin, Masanori Ohshiro, "Development of game-based learning features in programming learning support system", Artificial Life and Robotics, Volume 17, Issue 3-4,2013:373-377.
    [32]Fumihide Tanaka, Shizuko Matsuzoe, "Learning Verbs by Teaching a Care-Receiving Robot by Children:An Experimental Report", Human-Robot Interaction (HRI),2012 7th ACM/IEEE International Conference on,2012:253-254.
    [33]Fumihide Tanaka, Shizuko Matsuzoe, "A tricycle-style teleoperational interface that remotely controls a robot for classroom children", Human-Robot Interaction (HRI),2012 7th ACM/IEEE International Conference on,2012:253-254.
    [34]Hsin-Hsiung Huang*, Juing-Huei Su, and Chyi-Shyong Lee, "A Contest-Oriented Project for Learning Intelligent Mobile Robots," IEEE Transactions on Education, Feb.2013.
    [35]Juing-Huei Su, Chyi-Shyong Lee, Hsin-Hsiung Huang*, and Cheng-Yu Huang, "A Micromouse Kit for Teaching Autonomous Mobile Robots," accepted for publication in the International Journal of Electrical Engineering Education,2011:188-201.
    [36]NAO,Feb.2013 [Online]. Available: http://www.aldebaran-robotics.com/en/Solutions/For-Education/introduction.html
    [37]Yanhong Ge, Wenfeng Li. Reform Ideas of Introducing Robot Technology into Undergraduate Teaching. The International Symposium on Information Technologies and Applications In Education.2007:411-416.
    [38]张春红,裘晓峰等.物联网技术与应用[M].北京:人民邮电出版社,2011.
    [39]韩腾.物联网体系架构http://wenku.baidu.com/view/ef4f77d4clc708a1284a4429.html. 2012-10-08.
    [40]Nilsson N. Shakey the robot [M].AI Center, SRI International,1984.
    [41]Ferrer, M.; Briot, M.; Talou, J.C. STUDY OF A VIDEO IMAGE TREATMENT SYSTEM FOR THE MOBILE ROBOT HILARE. Proceedings of the 1st International Conference on Robot Vision and Sensory Controls.1981:59-71.
    [42]Hague, Tonyl; Brady, Mikel; Cameron, Stephen1,Using moments to plan paths for the Oxford AGV, Proceedings of the 1990 IEEE International Conference on Robotics and Automation,1990:210-215.
    [43]NASA (National Aeronautics and Space Administration). Mars exploration rover landings press kit [EB/OL]. (2004-01). http://marsrovers.jpl.nasa.gov/newsroom/merlandings.pdf.
    [44]三星扫地机器人:http://cn.engadget.com/2010/03/10/samsung-navibot-sr8845-sr8855-vacuum-cleaner-han ds-on/.2011-11-23.
    [45]王天然,朱枫,彭慧,等.一个开放式移动机器人体系结构[J].机器人.1995(4):193-199.
    [46]王磊.动态对抗性环境下多机器人系统合作研究[D].北京:清华大学,2005.
    [47]李磊,陈细军,候增广,等.自主轮式移动机器人CASIA2I的整体设计[J].高技术通讯,2003(11):51-55.
    [48]李瑞峰,孙笛生,阎国荣,等.移动式作业型智能服务机器人的研制[J].机器人技术与应用,2003(1):27-29.
    [49]蔡自兴.周翔,李枚毅,等.基于功能/行为集成的自主式移动机器人进化控制体系结构[J].机器人,2000,22(3):169-175.
    [50]阮锋.移动机器人控制系统研究[D].杭州:浙江大学,2004.
    [51]杨旦.基于多智能体的微小型机器人体系结构研究与实现[D].南京:南京理工大学,2005.
    [52]Leonard J,Durran-Whyte H F. Mobile robot localization by tracking geometric beacons-IEEE Transactions on Robotics and Automation.1991,7(3):376-382.
    [53]Durran-Whyte H F.Where am I? Industrial Robot.1994,21(2):11-15.
    [54]密歇根大学机器人实验室http://mrl.engin.umich.edu/.2012-06-18.
    [55]Barshan B, Durrant-Whyte H F. An inertial navigation system for a mobile robot, in: Proceedings of the 1st IAV. Southampton, England. April 1993:54-59
    [56]田世君.高灵敏度GPS定位及组合导航技术研究[D].成都:电子科技大学,2009.
    [57]许仕龙,李斌,李哲,等.高灵敏度GPS导航算法分析[J].测控遥感与导航定位,2011(10):37-39.
    [58]Xu Zezhong, Liu Jilin and Xiang Zhiyu. Scan Matching Based on CLSRelationships[C]. Proceedings of IEEE International Conference on Robotics,Intelligent Systems and Signal Processing, Changsha, China,2003:99-104.
    [59]王志文,郭戈.移动机器人导航技术现状与展望[J].机器人.2003,25(5):470-474.
    [60]Smith R, Self M, Cheesema P.EstimatingUneertainSPatialRelationshiPsinRobotics.Au-tonomousRobotVehieles,1990:167-193.
    [61]Montemerlo M, Thrun S. Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM. Proeeedings of the IEEE International Conference on Robotics and Automation,2003:1985-1991.
    [62]Fox D, Burgard W, Kruppa H.A Probabilistic Approach to Collaborative Multi- robot Local-ization. AutonomousRobots,2000,8(3):325-344.
    [63]Becker C. Reliable navigation using landmarks.Proceed- ings of the IEEE International Conference on Robotics and Automation. Nagoya,Japan,1995,1.
    [64]侯杰贤,徐方,张令涛.用于移动机器人自定位的视觉路标设计[J].机器人技术.2009,25(2):205-207.
    [65]Peng C, Meng M. Q. H, Liang H. An Experimental System of Mobile Robots's Self-Localization Based on WSN[C]. Shenyang, China:2009:1029-1034.
    [66]Zhang Y, Wang L. A particle filtering method for odorsource localization in Wireless Sensor Network with mobile robot[C]. Control Conference (CCC).2010:4821-4825.
    [67]Kapse A., Dongbing G, Zhen H. Using cricket sensor nodes for Pioneer robot localization[C]. Mechatronics and Automation,2009. ICMA 2009. International Conference on,2009:2008-2013.
    [68]Xinkai K., Kehu Y, Siyao F., et al. Simultaneous localization and mapping (SLAM) for indoor autonomous mobile robot navigation in wireless sensor networks[C]. Networking, Sensing and Control (ICNSC),2010 International Conference on,2010:128-132.
    [69]Sun D, Kleiner A, Wendt T. M. Multi-Robot Range-Only SLAM by Active Sensor Nodes for Urban Search and Rescue[C].
    [70]Wong R, Hu S, Cabrera-Mora F, et al. A Distributed Algorithm for Mobile Robot Localization and Mapping in Wireless Sensor Networks[C]. Zhangjiajie, China:2008: 560-566.
    [71]李阳铭,孟庆虎,梁华为,等.基于粒子滤波的无线传感器网络辅助同步定位与地图创建方法研究[J].机器人.2008,30(5):421-427.
    [72]Menegatti E, Zanella A, Zilli S, et al. Range-only SLAM with a Mobile Robot and a Wireless Sensor Networks[C]. Kobe, Japan:2009:8-14.
    [73]Ram A, Santamaria J C.Continuous case-based reasoning[J].Artificial Intelligence, 1997,90(1-2):25-27
    [74]Marefat M,Britanik J.Case-based process planning using an object-oriented model representation].Robotics and Computer-Integrated Manufacturing,1997,13(3):229-251.
    [75]Kruuusmaa M,Willemson J.Covering the path space:a case-base analysis for mobile robot path planning[J].Knowledge-Based Systems,2003,16(526):235-242
    [76]Brooks R. A Robust Layered Control System for a Mobile Robot [J]. IEEE Transaction Robotics and Automation.1986,2(1):14-23.
    [77]从兰美.基于小波神经网络的移动机器人路径跟踪控制[J].煤矿机械.2008(2):47-49.
    [78]杨君,马戎,刘婷等.基于模糊神经网络的智能车辆路径跟踪[J].计算机仿真.2012(7):368-371.
    [79]徐玉华,张崇巍,鲍伟,等.基于动态滑模控制的移动机器人路径跟踪[J].合肥工业大学学报:自然科学版.2009(1):25-31.
    [80]陈红亮.室内无线传感器网络环境下移动机器人路径跟踪的研究[D].武汉:武汉理工大学,2008.
    [81]张峥炜.基于生物启发的群机器人系统群体搭建机制研究[D].济南:山东大学,2012.
    [82]Wang Long et al. Flocking control of Groups of Mobile Autonomous Agents via Local Feedback [C]. Proc. of IEEE International Symposium on Intelligent Control, Limassol, Cyprus, June 27-29 2005:441-446.
    [83]Bin Lei, Wenfeng Li, Fan Zhang. Stable Flocking Algorithm for Multi-Robot Systems Formation Control [C]. Proc. of IEEE Congress on Evolutionary Computation, HongKong, China, Piscataway,2008:1544-1549
    [84]Bin Lei, Wenfeng Li, Fan Zhang. Flocking Algorithm for Multi-Robots Formation Control with a Target Steering Agent [C]. Proc. of IEEE Inter. Conf. on Systems, Man, and Cybernetics, Singapore, Piscataway,2008:3536-3541
    [85]程磊,俞辉等.融合路径跟踪模式的多移动机器人有序化群集运动控制[J].机器人,2006,28(2):97-102.
    [86]B. Sinopoli, L. Schenato, S. Schaffert and S. S. Sastry. Distributed Control Application within Sensor Networks. Proceedings of the IEEE, Vol.9.1, No.8, Aug.2003:1235-1246.
    [87]Multiple Autonomous Robots. http://www.cis.upenn.edu/mars/site/projects/nearfire.htm
    [88]易军,石为人,唐云建,等.无线传感器/执行器网络任务动态调度策略[J].电子学报,2010,38(6):1239-1244.
    [89]P. Kulakowski, et al., Sensors-actuators cooperation in WSANs for fire-fighting applications[C].2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),2010:726-732.
    [90]樊玮虹,刘云辉,周东翔,等.基于机器人群的主动传感器网络自组织的运动规划[J].自动化学报.2010,36(10):1409-1416.
    [91]Goldberg K, Mascha M, Gentner S, et al, Desktop tele-operation via the World Wide Web, Proc. IEEE Int. Conference on Robotics and Automation,1995:654-659.
    [92]Ken Goldberg:Artwork. http://www.ieor.berkeley.edu/~goldberg/art/index.html.
    [93]K.Goldberg, J.Santarromana, GBekey, et.al, The Telegarden, Proceedings of ACM SIGGRAPH,1995.
    [94]Ken Taylor, James Trevelyan, A. Telerobot on the World Wide Web, National Conference of the Australian Robot Association,1995:5-7.
    [95]Buhmann J,Burgard W,Cremers A B.et al. The mobile robot Rhino[J].AI Magazine,1995,16(1).
    [96]Thrun S, Bennewitz M, Burgard W,et al. MINERVA:A second generation museum tour-guide robot[C],IEEE International Conference on Robotics and Automation.1999:1999-2005.
    [97]Koenig S, Simmons R GXavier:A robot navigation architecture based on partially observable Markov Decision Process Models[M].In Artificial Intelligence and Mobile Robots:Case Studies of Successful Robot Systems, D. Kortenkamp, R. Bonasso and R.Murphy (editor),The AAAI Press/MIT Press,1998:91-122.
    [98]Kosaka A,Kak A C.Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties[J].CVGIP-Image Understanding,1992,56(3):271-329.
    [99]赵明国,赵杰,崔泽,蔡鹤皋.一种基于Internet的遥操作机器人系统——Telerobot.哈尔滨工业大学学报.2001(1):8-12.
    [100]Hongbo Wang, Guohong Ma. The Research on Information Transmission of Welding Robot Based on Network. RWIA'2010/CCRW',2010.
    [101]刘丰艺.机器人云操作平台的研究与实现[D].北京:北京理工大学,2011.
    [102]李文锋.无线传感器网络与移动机器人控制[M].北京:科学出版社,2009.
    [103]孙启湲.基于互联网的移动机器人网络控制系统研究[D].天津:天津大学,2004.
    [104]马力波.网络远程机器人控制系统及关键技术研究[D].重庆:重庆大学,2003.
    [105]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报.2005,16(5):857-869.
    [106]孙利民.无线传感器网络[M].北京:清华大学出版社,2005.
    [107]LoeHo, Melody Moh & Zachary Walker, Takeo Hamada & Ching-Fong Su. A Prototype on RFID and Sensor Networks for Elder Healthcare:Progress Report. Sigcornrn'05 Workshops, August22-26,2005, Philadelphia, PA, USA.
    [108]Theodore S Rappaport, Wireless Communications [M]:Principles and Practice. Prentice Hall PTR,1996.
    [109]杨秀萍,刘篙岩.基于无线传感器网络的移动机器人定位导航系统[J].电子器件.2007,30(6):2265-2268
    [110]Doherty L, Pister KSJ, Ghaoui LE. Convex position estimation in wireless sensor networks[C], In:Proc. of the IEEE INFOCOM 2001. Vol.3, Anchorage:IEEE Computer and Communications Societies,2001:1655-1663.
    [111]陈维克.无线传感器网络路由和节点定位技术研究[D].武汉:武汉理工大学,2009.
    [112]李勇,张辉,渠瀛,周华平.改进粒子滤波在WSN辅助机器人定位中的应用[J].计算机仿真.2010(5):166-169,193.
    [113]陈红亮,李文锋,胡伟华,等.基于室内WSN的移动机器人路径跟踪[J].华中科技大学学报:自然科学版.2008(10):152-155.
    [114]赵杰,刘刚峰,朱磊,臧希喆.基于WSN的矿井事故搜索探测多机器人系统[J].煤炭学报.2009(7):997-1002.
    [115]雷斌.群体机器人系统合作控制问题研究[D].武汉:武汉理工大学,2009.
    [116]郭建明,周华,刘清.基于EKF的移动机器人RFID定位系统研究[J].武汉理工大学学报:信息与管理工程版.2009(6):917-921.
    [117]王姮,解兴哲,刘冉.结合RFID和视觉的巡逻机器人导航与定位[J]. Proceedings of the 29th Chinese Control Conference July 29-31,2010:3649-3653.
    [118]王殿君,兰云峰,任福君,等.基于有源RFID的室内移动机器人定位系统[J].清华大学学报:自然科学版.2010(5):673-676.
    [119]潘峥嵘,杨维满,朱翔,等。RFID和WSNs技术在机器人协同定位中的应用研究[J].传感器与微系统,2012(10):41-44.
    [120]葛艳红,李文锋,董文涛.物联网环境下群体机器人协同演化机制研究.武汉理工大学学报.2012.9.
    [121]Li Wenfeng. Dual-Swarm Features and Its Challenges for System of Sensor Networks and Mobile Multi-Robots[C]. Proceedings of 2009 the IEEE International Conference on System, Man and Cybernetics,2009:3138-3143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700