群体机器人系统合作控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着多机器人系统规模的不断增大,系统控制复杂度及机器人之间的通信量成指数倍地增加,难以利用传统的方法解决。而自然界中广泛存在的蚁群、鸟群和鱼群等社会生物群体所涌现出的群体智能(Swarm Intelligence),给多机器人研究提供了很好的启发,于是产生了一个新的研究领域——群体机器人学(Swarm Robotics)。与结构越来越复杂的单个机器人和传统的多机器人系统相比,群体机器人系统的鲁棒性、可扩展性、灵活性和经济性都占有更大优势,具有广泛的应用前景。本论文针对群体机器人系统合作控制中的一些关键理论、技术和典型任务进行了深入的研究,提出了一些新的方法。本文的主要内容有:
     1.合作控制中的一致性理论和方法。合作控制中的一个关键问题就是设计合适的一致性方法和策略,使群体间共享的信息形成一致性。针对这个问题,本文基于代数图论提出了表征群体机器人个体之间信息交互关系和状态的“信息交互图”和“信息交互矩阵”等概念,并利用矩阵论和控制论等理论知识,证明了群体系统形成一致的充要条件。在此基础上,研究了群体机器人一阶系统和二阶系统在固定交互拓扑和动态交互拓扑情况下的一致性策略和方法,并针对存在误差、扰动、延时以及输入受限等情况下的一致性方法做出了相应的分析,同时结合仿真实例对所提一致性方法做出了验证。
     2.群体机器人的编队控制问题。编队控制是群体机器人合作控制问题中的一个典型任务。本文在"boids"模型的基础上利用一致性理论分析了一阶系统“boids”模型的一致性方法;同时,通过构建虚拟势场力以及相应的一致性策略,提出了一种二阶系统的群体机器人编队控制方法,并根据代数图论和LaSalle不变性原理证明了其稳定性。在此基础上,利用行为融合的方法提出了一种有障碍物环境中的群集编队控制方法。
     3.群体机器人的目标搜索问题。目标搜索是在指一群机器人在一个给定的环境中通过合作寻找一个未知的目标点,这也是一个典型的合作控制问题。本文分别从群体机器人的通信拓扑关系,以及实际的搜寻策略与方法两个方面对目标搜索问题进行阐述。介绍了一种基于粒子群优化(PSO)的搜索方法来控制一群机器人在未知环境中搜索目标,和标准PSO算法比较,该方法考虑了机器人的实际运动特性和工作环境约束。同时,针对群体机器人目标搜索中的通信拓扑关系,利用一致性理论进行了阐述,给出了目标搜索任务能够完成的条件。
     4.群体机器人的可控问题。群体机器人系统存在着一个显著的问题:即控制结果往往不可控,很难达到一个期望的状态。本文把这个问题称之为群体机器人系统的“可控问题”:即如何在不改变机器人个体现有一致性规则的情况下,控制群体机器人达到一个期望的状态。针对这个问题,本文分别介绍了两种一阶系统的一致性跟踪方法,以使群体机器人的状态与一个时不变或是时变的参考状态渐进形成一致。在此基础上,结合无线传感器网络和群体机器人系统的特点,介绍了一种基于无线传感器网络的“虚形体”技术。利用在传感器网络节点上构造具有群体系统其他实体特征的虚形体,通过虚形体干预机器人实体的运动状态,使实体机器人群体运动有序可控,实现群体机器人系统的合作控制。
As the scale of multi-robot systems is increasing in recent years, the system control complexity and the communication traffic of multiple robots will exponentially increase, and it is difficult to use traditional algorithms to solve this problem. In nature, there are many social insects---ants, termites, wasps and bees—which can be standed as fascinating examples of how collectively intelligent systems can be generated from a large number of simple individuals. Biologists, computer scientists and roboticists teamed up to transfer their knowledge of social insects behavior to the design of controllers for multi-robot systems. This combined, multidisciplinary effort gave birth to the field of research known as swarm robotics.
     Campared with the complex single robot and the tranditional multi-robot systems, the characteristics of swarm robotics, such as robustness, scalability, flexiblility and low cost, are better than them. So it will be well researched and widely used in the future. In this thesis, we focused on the cooperative control problem of swarm robotics, and presented some new theories, techniques and algorithms, as follows:
     1. For consensus problem, we defined the information interactive graph and the information interactive matrix to represent the information interaction relationship and state between each robot based on algebra graph theroy. Proofed the necessary and/or sufficient conditions for consensus and presented some consensus algorithms under static and dynamic topology with error, disturbance, time delay, and input constrains for the first order and the second order sytem, respectively.
     2. For formation control problem, we analysed the "boids" model using the consensus algorithm for the first order system, and presented two formation control algorithms for the second order system using the virtual force and the flocking theory. Based on the behavior fusion algorithm and the above works, we introduced a flocking formation control algorithm with obstacle avoidance.
     3. For target searching problem, we introduced a new searching algorithm based on the particle swarm optimization in the enviornment with obstacles. And analysed the influence of information topology of a group of robots for searching task.
     4. For swarm controllable problem, we introduced two consensus state tracking algorithms. And invented the "Virtual Entity" technique to sovle the controllable problem for a group of robots based on the wireless sensor network.
引文
[1]Dorigo M. Sahin E. Special Issue:Swarm Robotics[J]. Autonomous Robots.2004.17: 111-113.
    [2]Bayindir L, Sahin E. A Review of Studies in Swarm Robotics[J]. Turkish Journal of Electrical Engineering and Computer Sciences.2007.15(2):115-147.
    [3]Dorigo M, Tuci E. The SWARM-BOTS Project[C]. LNCS 3342:Proceedings of the First International Workshop on Swarm Robotics. Germany. Berlin:Springer-Verlag.2004: 26-40.
    [4]J. S, Heinz W.The I-SWARM project:intelligent small world autonomous robots for micro-manipulation [C]. LNCS 3342:Swarm Robotics. Beilin:Springer.2005:70-83.
    [5]http://www.boeing.com/
    [6]http://www.atair.com/
    [7]http://www.bostondynamics.com/bd_index.html/
    [8]Hauert. S., Zufferey, J.-C. and Floreano. D. Evolved swarming without positioning information:an application in aerial communication relay. Autonomous Robots.26(1) 2009:21-32
    [9]http://lis.epfl.ch/?content=research/projects/microflyers/
    [10]David P. Mike D. Pheromone Robotics[J]. Autonomous Robots.2001.11:319-324.
    [11]F. Sahin. Groundscouts:architecture for a modular micro robotic platform for swarm intelligence and cooperative robotics[C].2004 IEEE International Conference on System, Man and Cybernetics.10-13 Oct.2004:929-934.
    [12]王越超.谈大龙.协作机器人学的研究现状和发展[J].机器人,2002(20):69-75.
    [13]陈卫东.席裕庚.顾冬雷等.一个面向复杂任务的多机器人分布式协调控制系统[J].控制理论与应用.2002,19(4):505-510.
    [14]孟伟,洪炳镕,韩学东.一种多机器人协作控制方法[J].机器人.2004,26(1):58-62.
    [15]王硕.谭民.基于协商和意愿强度的多自主移动机器人避碰协作[J].高技术通讯,2001,11(10):70-73.
    [16]周明,孙茂相,尹朝万等.多移动机器人分布式智能避碰规划系统[J].机器人,1999,21(2):139-143.
    [17]朱枫,谈大龙.基于初等运动的多机器人避碰及死锁预防[J].计算机学报.2001.24(12):1250-1255.
    [18]李实.陈江.清华机器人足球队的结构设计与实现[J].清华大学学报(自然科学版),2001,41(7):94-97.
    [19]于滢颍,何衍.蒋静坪.基于蚁群算法的多机器人协作策略[J].机器人,2003.25(5):414-418.
    [20]谭民,范永,徐国华.机器人群体协作与控制的研究[J].机器人.2001.23(2):178-182.
    [21]杨永明.田彦涛等.群体机器人合作觅食任务数学模型的建立与分析[J].机器人.2007.29(6):546-551.
    [22]Jing Han. Ming Li. Lei Guo. Sof t control on collective behavior of a group of automamous agent s by a shill agent [J]. Jounal of Systems Science and Complexity.2006. 19(1):54-62.
    [23]潘福臣.陈雪波,李琳.群集系统的软控制[J].控制与决策.2008.23(8):953-956.
    [24]程磊,俞辉等.融合路径跟踪模式的多移动机器人有序化群集运动控制[J].机器人.200628(2):97-102.
    [25]卢骏,关治洪,王华.基于流函数的多移动机器人swarming控制模型[J].机器人,2006.28(3):264-268.
    [26]Wang Long et al. Flocking control of Groups of Mobile Autonomous Agents via Local Feedback [C]. Proc. of IEEE International Symposium on Intelligent Control. Limassol. Cyprus. June 27-292005:441-446.
    [27]Bin Lei. Wenfeng Li. Fan Zhang. Stable Flocking Algorithm for Multi-Robot Systems Formation Control [C]. Proc. of IEEE Congress on Evolutionary Computation. HongKong. China. Piscataway.2008:1544-1549
    [28]Bin Lei. Wenfeng Li. Fan Zhang. Flocking Algorithm for Multi-Robots Formation Control with a Target Steering Agent [C]. Proc. of IEEE Inter. Conf. on Systems. Man. and Cybernetics. Singapore. Piscataway.2008:3536-3541
    [29]Reynolds. Flocks, birds, and schools:a distributed behavioral model. Computer Graphics[J]. 1987 vol.21:25-34.
    [30]T. Vicsek et al. Novel type of phase transitions in a system of self-driven particles[J]. Physical Review Letters.1995 vol.75:1226-1229.
    [31]A. Jadbabaie. J. Lin. and A.S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Trans. Auto. Control.2003. vol.48:988-1001.
    [32]Tanner H G, Jadbabaie A, Pappas GJ. Stable flocking of mobile agents. Part I:Fixed Topology[C]. Proc. of 42nd IEEE Conference on Decision and Control,2003:2010-2015.
    [33]Tanner H G, Jadbabaie A, Pappas GJ. Stable flocking of mobile agents, Part II:dynamic topology[C]. Proc. of 42nd IEEE Conference on Decision and Control,2003:2016-2021
    [34]R. Olfati-Saber. Flocking for multi-agent dynamic systems:algorithms and theory [J]. IEEE Trans. Automatic Control,2006 vol.51:401-420
    [35]Arkin R C. Behavior-Based Robotics[M]. Cambridge, MA.USA:MIT Press.1998.
    [36]Brooks R A. A robust layered control system for a mobile robot[J]. IEEE Journal of Robotics and Automation,1986,2 (1):14-23.
    [37]Maes P. How to do the right thing [J]. Connection Science.1989,1 (3):291-323.
    [38]Jung D. Zelinsky A. An architecture for distributed cooperative planning in a behaviour-based multi-robot system [J]. Robotics and Autonomous Systems,1999.26 (2): 149-174.
    [39]Arkin R C. Motor schema-based mobile robot navigation [J]. The International Journal of Robotics Research.1989.8 (4):92-112.
    [40]Payton D W. Rosenblatt J K. Keirsey D M. Plan guided reaction[J]. IEEE Transactions on Systems. Man and Cybernetics.1990.20 (6):1370-1382.
    [41]N.A.Lynch, Distributed Algorithms[M].San Francisco.California:Morgan Kaufmann Publishers. Inc.,1996.
    [42]W. Ren. R. W. Beard, and T. W. McLain. Coordination variables and consensus building in multiple vehicle systems[J]. Cooperative Control. Ser. Lecture Notes in Control and Information Sciences. Springer-Verlag.2004. Vol.309:171-188.
    [43]W.Ren and R.W.Beard. Consensus of information under dynamically changingi nteraction topologies[C]. Proceedings of the American Control Conference. Boston, MA. June 2004:4939-4944.
    [44]J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle formations[J]. IEEE Transactions on Automatic Control. Vol.49(9).2004:1465-1476.
    [45]W. Ren and R. W. Beard. Consensus seeking in multi-agent systems under dynamically changing interaction topologies[J], IEEE Trans, on Automatic Control,2005.50:655-661.
    [46]R. Olfati-Saber and R. M. Murray. Consensus protocols for networks of dynamic agents[C], Proceedings of the American Control Conference.Denver.CO. June 2003:951-956.
    [47]R. Olfati-Saber and R. M. Murray. Agreement problems in networks with directed Graphs and switching topology[C].Proceedings of the IEEE Conferenceon Decision And Control. Maui. Hawaii. December 2003:4126-4132.
    [48]L. Moreau. Leaderless coordination via bidirectional and unidirectional timedependent communication[C]. Proceedings of the IEEE Conference on Decision and Control. Maui. Hawaii. December 2003:3070-3075.
    [49]R.W.Beard and V.Stepanyan,'"Synchronization of information in distributed multiple vehicle coordinated control[C]. Proceedings of the IEEE Conference on Decision And Control, Maui. Hawaii. December 2003:2029-2034.
    [50]L. Xiao and S. Boyd. Fast linear iterations for distributed averaging[C]. Proceedings of the IEEE Conference on Decision and Control. Maui, Hawaii, December 2003:4997-5002.
    [51]Z. Lin. M. Broucke, and B. Francis. Local control strategies for groups of mobile autonomous agents[J]. IEEE Transactions on Automatic Control,2004,vol.49, (4):622-629.
    [52]D. Swaroop and J. K. Hedrick. String stability of interconnected systems[J]. IEEE Transactions on Automatic Control, vol.41, no.3,1996:349-357.
    [53]S.S.Stankovic. M.J.Stanojevic.and D.D.Siljak. Decentralized overlapping control of a platoon of vehicles[J]. IEEE Transactions on Control Systems Technology, vol.8. no.5. 2000:816-832.
    [54]J. T. Feddema. C. Lewis, and D. A. Schoenwald. Decentralized control of cooperative robotic vehicles:Theory and application[J]. IEEE Transactions on Robotics and Automation. vol.18.no.5.2002:852-864.
    [55]J. M. Fowler and R. D" Andrea. Distributed control of close formation flight[C]. Proceedings of the IEEE Conference on Decision and Control, Las Vegas. NV. December 2002: 2972-2977.
    [56]L. Moreau. Leaderless coordination via bidirectional and unidirectional timedependent communication[C]. Proceedings of the IEEE Conference on Decision and Control. Maui. Hawaii. December 2003:3070-3075.
    [57]L. Xiao and S. Boyd. Fast linear iterations for distributed averaging[C]. Proceedings of the IEEE Conference on Decision and Control. Maui, Hawaii. December 2003:4997-5002.
    [58]W. Lohmiller and J.-J. E. Slotine. Contraction analysis for nonlinear systems[J]. Automatica.vol.34. no.6,1998:683-696.
    [59]D. Bauso. L. Giarre and R. Pesenti. Non-linear protocols for optimal distributed consensus in networks of dynamic agents[J]. Systems & Control Letters.Vol.55. (11). November 2006: 918-928.
    [60]H. G. Tanner, A. Jadbabaie. and G. J. Pappas. Flocking in fixed and switching net\works[J]. IEEE Transactions on Automatic Control.Vol.52(5).May 2007:863-868.
    [61]A. Muhammad and M. Egerstedt. Decentralized coordination with local interactions:Some new directions[J]. Cooperative Control. Ser. Lecture Notes in Control and Information Sciences. Springer-Verlag.2005:153-170.
    [62]R. Sepulchre. D. Paley. and N. Leonard. Collective motion and oscillator synchronization[J]. Cooperative Control. Ser. Lecture Notes in Control and Information Sciences. Springer-Verlag.2005:189-205.
    [63]Nolfi S, Floreano D. Evolutionary Robotics:The Biology. Intelligence, and Technology of Self-organising Machines [M]. Cambridge, MA, USA:MIT Press,2000.
    [64]MataricM J. Cliff D. Challenges in evolving controllers for physical robots [J]. Robotics and Autonomous Systems.1996.19(1):67-83.
    [65]Watson R A, Ficici S G, Pollack J B. Embodied evolution:Distributing an evolutionary algorithm in a population of robots [J]. Robotics and Autonomous Systems,2002,39 (1): 1-18.
    [66]MataricM. Reinforcement learning in the multi-robot domain [J]. Autonomous Robots.1997. 4(1):73-83.
    [67]GreeneM J. Gordon D M. Social insects-Cuticular hydrocarbons inform task decisions [J]. Nature.2003.423(6935):32.
    [68]Birk A. Belpaeme T. A multi-agent system based on heterogeneous robots [C]. Proceedings of the Collective Robotics Workshop. Lecture Notes in Artificial Intelligence, vol.1456 Berlin.Germany:Springer-Verlag.1998:13-24.
    [69]ParkerL E. ALL IANCE:An architecture for fault tolerant, cooperative control of heterogeneous mobile robots [C]. Proceedings of the 1994 IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Piscataway, NJ. USA:IEEE.1994:776-783.
    [70]Jung D. Zelinsky A. Grounded symbolic communication between heterogeneous cooperating robots [J]. Autonomous Robots.2000,8 (3):269-292.
    [71]Murphy R R, et al. Emotion-based control of cooperating heterogeneousmobile robots [J]. IEEE Transactions on Robotics and Automation.2002.18 (5):744-757.
    [72]KriegerM J. Billeter J B. The call of duty:Self-organised task allocation in a population of up to twelvemobile robots [J]. Robotics and Autonomous Systems.2000.30 (1-2):65-84
    [73]Kube C R. Bonabeau E. Cooperative transport by ants and robots [J]. Robotics and Autonomous Systems.2000.30 (1-2):85-101
    [74]Lee. Geunho. Decentralized formation control for small-scale robot teams with anonymity[J], Mechatronics. v19, n 1. February 2009:85-105.
    [75]Hsu. Harry Chia-Hung. Applying a taxonomy of formation control in developing a robotic system[J]. International Journal on Artificial Intelligence Tools, v 16. n 4. August 2007: 565-582.
    [76]Hsu. Harry Chia-Hung. Multiagent-based multi-team formation control for mobile robots[J]. Journal of Intelligent and Robotic Systems:Theory and Applications, v 42. n 4. April 2005: 337-360.
    [77]Xue Songdong. Zeng Jianchao. Du Jing.Target search using swarm robots with kinematic constraints[C]. Chian Control and Decision Conference,2009. CCDC'09.17-19 June 2009:3109-3114.
    [78]雷斌,李文锋.基于粒子群优化的多机器人合作目标搜索算法[J].武汉理工大学学报.2009.15:73-76
    [79]Doctor S, Venayagamoorthy G, Gudise V. Optimal PSO for Collective Robotic Search Applications[C]. IEEE Congress on Evolutionary Computation, Portland, Piscataway, NJ: IEEE Press.2004:1390-1395.
    [80]Pugh J. Martinoli A. Distributed Adaptation in Multi-Robot Search Using Particle Swarm Optimization[[C]. Proc.of the 10th International Conference on Simulation of Adaptive Behavior:From Animals to Animats. Osaka, Japan, Piscataway, NJ:IEEE Press,2008: 393-402.
    [81]Pugh J. Martinoli A. Zhang Y. Particle Swarm Optimization for Unsupervised Robotic Learning[C].Proc.of the 2005 IEEE Swarm Intelligence Symposium. Pasadena CA. Piscatawav. NJ:IEEE Press.2005:92-99.
    [82]James M. Hereford. A Distributed Particle Swarm Optimization Algorithm for Swarm Robotic Applications[C]. IEEE Congress on Evolutionary Computation S. Vancouver. BC. Canada. Piscatawav. NJ:IEEE Press.2006:1678-1685.
    [83]Jatmiko W. Sekiyama K. Fukuda T. A PSO-based Mobile Sensor Network for Odor Source Localization in Dynamic Environment:Theory.Simulation and Measurement[C]. IEEE Congress on Evolutionary Computation. Vancouver. BC. Canada. Piscataway. NJ:IEEE Press.2006:1036-1043.
    [84]Lerman. Kristina. Mathematical model of foraging in a group of robots:Effect of interference[J]. Autonomous Robots, v 13. n 2. September 2002:127-141.
    [85]Balch. Tucker. Impact of diversity on performance in multi-robot foraging[C]. Proceedings of the Interantional Conference on Autonomous Agents.1999:92-99.
    [86]Cao Y U. Fukunaga A S. Kahng A B. Cooperative mobile robotics:antecedents and directions [C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscatawav. NJ. USA:IEEE.1995:226-234.
    [87]Holland O. Melhuish C. Stigmergy. self-organization, and sorting in collective robotics [J]. Artificial Life.1999.5 (2):173-202.
    [88]Sugawara K. Watanabe T. A study on foraging behavior of simple multi-robot system [A]. Proceedings of the 200228th Annual Conference of the IEEE Industrial Electronics Society[C]. Piscataway. NJ. USA:IEEE.2002.3085-3090.
    [89]梅吴.田彦涛,祖丽楠.群体机器人觅食任务Eulerian建模与分析[J].吉林大学学报(工学版).2006.s2:113-118.
    [90]Yamauchi B. Decentralized coordination for multirobot exploration[J]. Robotics and Autonomous Systems.1999.29 (2-3):111-118.
    [91]Gerecke U. Sharkey N E. Sharkey A J C. Reliable robot localization with an ensemble [C]. Proceedings of the 2nd International Symposium on Robotics and Automation. Monterrey. Mexico:2000:515-520.
    [92]Grabowski R, Navarro-Serment L E, Panedis C J J, et al. Heterogeneous teams of modular robots for mapping and exploration [A]. Robot Teams:From Diversity to Polymorphism[M]. Natick, MA, USA:A. K. Peters.2002:293-314.
    [93]李珺,潘启树,洪炳镕.一种多机器人协作追捕-逃跑问题策略研究[J].小型微型计算机系统.2009(06):1180-1183.
    [94]V idal R, Shakernia O, Kim H J. Probabilistic pursuit-evasion games:theory. implementation, and experimental evaluation [J]. IEEE Transactions on Robotics and Automation.2002.18(5):662-669.
    [95]Ijspeert A J. Martinoli A. Billard A. et al. Collaboration through the exploitation of local interactions in autonomous collective robotics:The stick pulling experiment [J]. Autonomous Robots.2001.11 (2):149-171.
    [96]I. F. Akyildiz. W. Su. Y. Sankarasubramaniam. E. Cayirci. A Survey on Sensor NetworksfJ]. IEEE Communications Magazine. August 2002:102-114
    [97]任丰源,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291.
    [98]M. A. Batalin and G. S. Sukhatme. Coverage. Exploration and Deployment by a Mobile Robot and Communication Network[C]. The 2nd International Workshop on Information Processing in Sensor Network. April 22-23,2003:376-391.
    [99]V. Kumar. D. Rus, S. Singh. Robot and Sensor Networks for First RespondersfJ]. Pervasive Computing, October.2004:24-33.
    [100]B. Sinopoli. L. Schenato. S. Schaffert and S. S. Sastry. Distributed Control Application within Sensor Networks[J]. Proceedings of the IEEE. Vol.91. No.8. Aug.2003:1235-1246.
    [101]樊玮虹.刘云辉等.基于移动通讯网络和机器人群的分布式主动传感系统实验平台[J].机器人,2005,11.Vol.27.No.6:486-490.
    [102]l. F. Akyildiz and I. H. Kasimoglu. Wireless Sensor and Actor Networks:Research Challenges[J]. Elsevier Ad Hoc Network Journal. Oct.2004. vol.2:351-367.
    [103]B. P. Gerkey. Self-Organization of Sensor-Actuator Networks by Market Methods[D]. Ph.D. Dissertation Proposal at University of Southern California. Dec.2001.
    [104]G. Royle and C. Godsil. Algebraic Graph Theory[M]. New York:Springer Graduate Texts in Mathematics.2001.
    [105]胡寿松.自动控制原理(第5版)[M].北京:科学出版社,2007.
    [106]程云鹏.矩阵论(第2版)[M].西安:西北工业大学出版社,2003.
    [107]R. A. Horn and C. R. Johnson, Matrix Analysis[M]. Cambridge University Press,1985.
    [108]R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control.49(9). 2004:1520-1533.
    [109]J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices[J]. Proceedings of the American Mathematical Society, vol.15.1963:733-736.
    [110]A. S. Morse. Supervisory control of families of linear set-point controllers-part 1:Exact matching[J]. IEEE Transactions on Automatic Control, vol.41, no.10,1996:1413-1431
    [111]Wei Ren and Randal W. Beard. Consensus of Information Under Dynamically Changing Interaction Topologies[C]. American Control Conference, Boston, MA,2004, pp. 4939-4944.
    [112]Wei Ren and Randal W. Beard. Distributed Consensus in Multi-vehicle Cooperative Control[M]. Communications and Control Engineering Series. Springer-Verlag Press, London,2008.
    [113]Brian P. Gerkey. Richard T. Vaughan. Most Valuable Player:A Robot Device Server for Distributed Control[C]. Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and System.2001: 1226-1231.
    [114]Richard T. Vaughan. Stage:a multiple robot simulator. Institute for Robotics and Intelligent Systems Technical Report (IRIS-00-393). University of Southern California.2000.
    [115]Bin Lei. Wenfeng Li. A Fuzzy Behaviours Fusion Algorithm for Mobile Robot Real-time Path Planning in Unknown Environment[C]. IEEE International Conference on Integration Technology. Shenzhen. China. March20-24.2007:173-178.
    [116]Eberhart R. Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Japan. Piscataway. NJ:IEEE Press.1995:39-43.
    [117]Shi Y, Eberhart R. C. A Modified Particle Swarm Optimizer[[C]. Proc. of the IEEE International Conference on Evolutionary Computation. Anchorage. AK. Piscataway, NJ: IEEE Press.1998:69-73.
    [118]http://www.swarm-bots.org/
    [119]http://www.e-puck.org/
    [120]http://www.k-team.com/
    [121]http://www.swarmrobot.org/
    [122]徐勇军等.无线传感器网络实验教程[M].北京:北京理工大学出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700