中国汉族人类风湿关节炎外周血基因表达谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿关节炎(rheumatoid arthritis, RA)是以持续性滑膜炎、全身性炎症及自身抗体的出现为特征的一组疾病,这类自身抗体以类风湿因子(rheumatoid factor, RF)和抗环瓜氨酸多肽(CCP)抗体(anti-cyclic citrullinated peptide antibody, anti-CCPantibody)为代表。RA是最常见的风湿性疾病之一,在我国,RA患病率为0.2-0.4%。该病病程迁延,致残率高,严重影响患者的生活质量,同时高额的医疗费用给患者和国家造成沉重的经济负担。因此,提高RA发病机制的研究水平,从而推进临床诊断和治疗水平是降低RA致残率,改善患者生活质量和保护社会劳动力的重要方法,是国家亟待解决的重大问题。
     虽然RA发病的发病机制迄今未明,但是公认为RA的发病是由遗传和环境因素(如:吸烟)共同发挥作用而致病。RA是在环境因素,如吸烟和感染的影响下发生免疫紊乱导致活化的CD4+T细胞和MHC-Ⅱ型抗原递呈细胞浸润滑膜,并在细胞因子的参与下发病。遗传学因素可以解释RA大约50%的易感性。迄今为止,通过基因组学的研究,特别是全基因组关联分析研究(GWAS)的引入后,已发现40余个RA易感基因,为疾病的发病机制研究和风险预测提供了依据。同时,对这些发现的基因进行进一步挖掘,从群体遗传学中易感位点过渡到实际运用于诊疗的临床分子标记,完成真正的从实验室成果向临床诊疗手段的转化成了当今RA研究的当务之急。作为基因水平和蛋白水平的桥梁,转录水平的研究显得非常重要。
     目前国际上在转录组水平研究RA的文章数量不菲,但是有以下局限性:一,目前尚无中国汉族人转录组水平的研究。绝大多数研究是基于欧裔人群的数据,而既往的遗传学研究证实类风湿关节炎是具有种族特异性的疾病。二,大多数研究使用的方法为芯片杂交技术。基因芯片技术需要根据已知基因来设计探针,只限用于已知序列,因为无法检测新的mRNA。基因芯片技术的灵敏度也非常有限,难以检测低丰度的目标和重复序列,这就需要更多的样本来进行研究。同时,它也很难检测出异常转录产物。RNA测序(RNA sequencing, RNA-Seq)技术为解决第二个问题提供了良好的平台。相对于芯片杂交技术,RNA测序技术能够提供更精确的数字化信号,更高的检测通量以及更广泛的检测范围。
     本研究将运用RNA测序技术,在mRNA水平探索RA免疫遗传学发病机制:对已发现的易感基因进行进一步挖掘,力图从群体遗传学中易感位点过渡到实际运用于诊疗的临床分子标记,完成真正的从实验室成果向临床诊疗手段的转化。
     第一部分基于RNA-Seq技术类风湿关节炎外周血基因表达谱
     目的:基于RNA-seq技术检测中国汉族人类风湿、关节炎患者与正常对照外周血差异表达的基因,探讨汉族人RA的发病机制。
     方法:提取5例处于活动期的抗CCP抗体阳性女性类风湿关节炎患者与性别匹配5例正常对照(Normal Control, NC)的外周血单个核细胞mRNA,使用Truseq RNAsample preparation kit(Illumina)构建测序文库,应用HiSeq2000系统进行测序分析,使用Cufflinks软件进行RNA表达量的计算,Cuffdiff软件默认参数进行显著性差异表达分析(P值<0.05并且表达差异2倍以上)。表达差异显著的基因进行聚类分析、GO分析和KEGG Pathway分析。通过测序结果与既往类风湿关节炎转录组报道文献比对、与既往报道的全基因关联分析研究(GWAS)基因比对确定下一步进行验证的候选基因。
     结果:32106个转录本在RA组或NC组中至少有一个样本表达,P值<0.05且表达差异2倍以上的转录本274个(138个转录本表达上调;136个转录本表达下调)。聚类分析显示显著差异表达的转录本能够将测序样本明确分为2类;274个差异表达的转录本进行GO分析,富集通路为:神经系统相关通路:轴突、神经元的发育,突触的装配、结构和激活;免疫系统相关通路:多肽、多聚糖抗原的MHC-II分子处理和递呈,T细胞的分化、激活和增殖,单核细胞的增殖,细胞对细菌成分(如内毒素)的反应;蛋白泛素化等等。根据比对既往文献及GO分析的结果选取43个基因作为验证试验的候选基因。
     结论:测序实验差异基因的GO分析提示固有免疫和适应性免疫共同参与类风湿关节炎的发病发展;环境因素细菌感染特别是内毒素在类风湿关节炎发病发展中的作用;蛋白泛素化在发病机制中的研究值得深入探讨。
     第二部分大样本验证类风湿关节炎相关基因
     目的:在大样本人群中验证测序结果和既往报道类风湿关节炎相关基因,寻找可应用于临床诊治的分子标记。
     方法:收集类风湿关节炎患者外周血101例,正常对照55例,并登记相关临床资料。通过Trizol法提取总RNA,逆转录为cDNA。使用实时荧光定量PCR技术首先在小样本(15例RA患者和15例健康对照)中进行验证中检测43个基因表达情况;最终筛选9个基因在大样本(86例RA和40例NC)中进行基因表达情况的检测。根据临床资料对患者进行分层及关联分析,统计基因表达的差异。
     结果:小样本验证实验中证实以下基因在病例组和正常对照组中差异表达显著:GPRIN3(р<0.01)、CXCR2(р<0.01)、FCGBP(р<0.05)、CD14(р<0.05)、RCAN1(р<0.05)、IKZF3(р<0.05)、BIRC3(р<0.05)、AFF3(р<0.05)、TSC1(р<0.05)、TYK2(р<0.05)、PADI4(р<0.05)。选取其中感兴趣的9个基因在大样本实验中进行验证:TSC1(р<0.01)、CD14(р<0.01)、AFF3(р<0.01)、BIRC3(р<0.01)、GPRIN3(р<0.05)、FCGBP(р<0.05)、RCAN1(р<0.05)差异表达显著,IKZF3、CXCR2表达无差异。其中,抗环瓜氨酸抗体阴性患者TSC1表达下降较抗环瓜氨酸抗体阳性患者明显(р<0.05)。中晚期患者CD14表达下降较早期患者下降明显(р<0.05)。
     结论:TSC1和BIRC3是首次报道的与汉族人RA相关的基因;除CD14、AFF3基因介导的免疫相关性通路,BIRC3、TSC1基因参与的蛋白异寡聚化及BIRC3介导的凋亡与抗凋亡在类风湿关节炎病理过程中可能具有重要作用。
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised bypersistent synovitis, systemic inflammation, and autoantibodies (rheumatoid factor andanti-cyclic citrullinated peptide antibody) with progressive disability. The cause of theinitiation and progression of RA remain unknown, though advances in understanding thepathogenesis of the disease have been made.
     The genome-wide assay of gene expression and genetic variation to identify geneswhich are expressed differently in affected individuals is a powerful tool to discover thethe underlying changes of the diseases. Gene expression profiling has been used to studyRA, including to predict responsiveness to therapy, to identify biomarkers for diagnosis,therapy and prognosis. Both peripheral blood mononuclear cells (PBMCs) and synovialtissues of affected joints are used in such studies. Those microarray-based studies arelimited by hybridization noise, less sensitivity and depending on the exisitng knowledgeabout genome sequence. Recently RNA-Seq is developed to be a revolutionary approch fortranscriptomics which does not rely on probe design and use tag-based sequencingtechnologies. Previous studies have documented marked differences in the prevalence ratesof rheumatoid arthritis and specific SNPs by race and ethnicity, suggesting the geneexpression profile might vary among different races. Therefore, We undertook RNA-Sequsing Illumina HiSeq2000system on PBMCs from5Han Chinese patients with active RAand5age-matched and gender-matched controls. This study identified a number ofcandidate genes which were validated by quantitative real-time PCR (qRT-PCR) in adifferent sample population later. The immunological nature of some candidate geneshighlights likely immune processes altered in the development of RA. Further,identification of gene expression patterns corresponding to disease status can be used todevelop predictive.
     Part I: Research on the immunogenetic mechanism of rheumatoid arthritis based onRNA-Seq technology
     Objective: To identify differentially expressed genes in PBMCs from Han Chinesepatients with rheumatoid arthritis compared with healthy individuals, providing advancedclues for the pathogenesis of RA in Han Chinese patients.
     Methods: RNA was extracted from PBMCs collected from5patients with activedisease and5gender-matched and age-matched controls. Expression profiles of these cellswere determined using RNA-Seq technology. Cuffdiff Two Origins of Blastemal Progenitors program in cufflinks was used to obtain differential expressed genes withsignificant expression. Cluster analysis, KEGG Pathway and Gene Ontology (GO) analysiswere taken respectively for the candidate genes with differential expression over2-foldchange. In comparison with genes which have been reported, candidate genes were chosenfor next validation experiment.
     Results: RNA-Seq analysis identified32106transcripts in at least one sample and274transcripts were significantly differentially expressed between RA patients andcontrols with a p value <0.05and a significant fold-change>2. Of these,138transcriptswere overexpressed and136were underexpressed. Cluster analysis showed gooddelineation between patients with RA and healthy controls to confirm the validity of thisRNA-Seq experiment. GO analysis of the significant274transcripts revealed that theenrichment in immune system: antigen processing and presentation of peptide orpolysaccharide antigen via MHC class II, T cell activation, differentiation and proliferation,cellular response to molecule of bacterial origin, cellular response to lipopolysaccharide,ect; nervous system: synapse assembly, synapse structure and activity, synapseorganization, regulation of axonogenesis, central nervous system neuron development;reflex, ect; regulation of protein ubiquitination involved in ubiquitin-dependent protein.Combining GO analysis data and the genes reported,43candidate genes were identified.
     Conclusion: Data from GO analysis implies both innate and adaptive immunity playan important role in the pathogenesis of RA; Bacteria infection, one of the environmentfactors, may lead to a breakdown of immune tolerance; protein ubiquitination is worth tofurther study in the pathophysiology of RA.
     Part II: Validation on candidate genes by quantitative reverse transcription-PCR(qRT-PCR)
     Objective: To validate the candidate genes by quantitative reverse transcription-PCR(qRT-PCR) and find biological remarker.
     Methods: Peripheral blood samples were collected into EDTA tubes between6:00and8:00, Characteristics of the all study subjects were collected at the same time. Store per250ul blood sample in750ul Trizol() at-80°C. TRIzol() extraction followed by cDNAsynthesis. Candidate genes identified from the RNA-Seq study were validated byqRT-PCR in a smaller sample cohort (15cases versus15controls), then validated in alarger sample cohort (86cases versus40controls). Analyse gene expression leveldifference according to clinical characteristics in RA group. Evaluate the association between the differential gene expression profiling of RA patients with their autoimmuneresponse [anti-cyclic citrullinatedpeptide (CCP) antibodies, rheumatoid factor(RF)],disease activity [C reative protein(CRP), erythrocyte sedimentation rate (ESR), DiseaseActivity Score using28joint counts (DAS-28)], disease duration, and treatment(glucocorticoid) features.
     Results:11genes were downregulated significantly in patients with RA compared tohealthy controls in the smaller sample cohort:GPRIN3(р<0.01)、CXCR2(р<0.01)、FCGBP(р<0.05)、CD14(р<0.05)、RCAN1(р<0.05)、IKZF3(р<0.05)、BIRC3(р<0.05)、AFF3(р<0.05)、TSC1(р<0.05)、TYK2(р<0.05)、PADI4(р<0.05).7genes werevalidated to downregulate in patients with RA compared to healthy controls in the largersample cohort: TSC1(р<0.01)、CD14(р<0.01)、AFF3(р<0.01)、BIRC3(р<0.01)、GPRIN3(р<0.05)、FCGBP(р<0.05)、RCAN1(р<0.05). But there was no difference offollowing genes expression level between patients and healthy controls: IKZF3、CXCR2.In the context of RA, TSC1expression level was downregulated more significantly inACPA positive cases than ACPA negative cases (р<0.05) and. CD14expression levelwas downregulated more significantly in non-early RA patients than early RA patientspatients(р<0.05) and significantly associated with the stage of disease.
     Conclusion: TSC1and BIRC3are the first reported genes related to Han Chinesepatients with RA. Signaling pathways for validated genes may play roles in thepathogenesis of RA: CD14cooperates with Toll receptor to mediate the innate immuneresponse to bacterial lipopolysaccharide; AFF3activates transcription that may function inlymphoid development; BIRC3and TSC1mediate protein heterooligomerization; BIRC3regulates of apoptosis and anti-apoptosis.
引文
[1] Scott DL, Wolfe F,Huizinga TW. Rheumatoid arthritis. Lancet,2010,376(9746):1094-1108.
    [2] Dai SM, Han XH, Zhao DB, et al. Prevalence of rheumatic symptoms, rheumatoid arthritis, ankylosingspondylitis, and gout in Shanghai, China: a COPCORD study. J Rheumatol,2003,30(10):2245-2251.
    [3] Stolt P, Bengtsson C, Nordmark B, et al. Quantification of the influence of cigarette smoking onrheumatoid arthritis: results from a population based case-control study, using incident cases. AnnRheum Dis,2003,62(9):835-841.
    [4] Lundstrom E, Kallberg H, Alfredsson L, et al. Gene-environment interaction between the DRB1sharedepitope and smoking in the risk of anti-citrullinated protein antibody-positive rheumatoid arthritis: allalleles are important. Arthritis Rheum,2009,60(6):1597-1603.
    [5] Maciejewska Rodrigues H, Jungel A, Gay RE, et al. Innate immunity, epigenetics and autoimmunity inrheumatoid arthritis. Mol Immunol,2009,47(1):12-18.
    [6] Stastny P. Association of the B-cell alloantigen DRw4with rheumatoid arthritis. New England Journal ofMedicine,1978,298(16):869-871.
    [7] Gregersen P, Silver J,Winchester R. The shared epitope hypothesis. An approach to understanding themolecular genetics of susceptibility to rheumatoid arthritis. Arthritis&Rheumatism,1987,30(11):1205-1213.
    [8] Genome-wide association study of14,000cases of seven common diseases and3,000shared controls.Nature,2007,447(7145):661-678.
    [9] Kruglyak L. The road to genome-wide association studies. Nat Rev Genet,2008,9(4):314-318.
    [10] Lynn AH, Kwoh CK, Venglish CM, et al. Genetic epidemiology of rheumatoid arthritis. Am J HumGenet,1995,57(1):150-159.
    [11] Lawrence JS. Heberden Oration,1969. Rheumatoid arthritis--nature or nurture? Ann Rheum Dis,1970,29(4):357-379.
    [12] Seldin MF, Amos CI, Ward R, et al. The genetics revolution and the assault on rheumatoid arthritis.Arthritis Rheum,1999,42(6):1071-1079.
    [13] MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution torheumatoid arthritis using data from twins. Arthritis Rheum,2000,43(1):30-37.
    [14] van der Woude D, Houwing-Duistermaat JJ, Toes RE, et al. Quantitative heritability of anti-citrullinatedprotein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. ArthritisRheum,2009,60(4):916-923.
    [15] Raychaudhuri S, Remmers EF, Lee AT, et al. Common variants at CD40and other loci confer risk ofrheumatoid arthritis. Nat Genet,2008,40(10):1216-1223.
    [16] Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study meta-analysis identifiesseven new rheumatoid arthritis risk loci. Nat Genet,2010,42(6):508-514.
    [17] Okada Y, Terao C, Ikari K, et al. Meta-analysis identifies nine new loci associated with rheumatoidarthritis in the Japanese population. Nat Genet,2012,44(5):511-516.
    [18] Ikari K, Momohara S, Inoue E, et al. Haplotype analysis revealed no association between the PTPN22gene and RA in a Japanese population. Rheumatology (Oxford),2006,45(11):1345-1348.
    [19] Takata Y, Inoue H, Sato A, et al. Replication of reported genetic associations of PADI4, FCRL3,SLC22A4and RUNX1genes with rheumatoid arthritis: results of an independent Japanese populationand evidence from meta-analysis of East Asian studies. J Hum Genet,2008,53(2):163-173.
    [20] Raychaudhuri S, Plenge RM, Rossin EJ, et al. Identifying relationships among genomic disease regions:predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet,2009,5(6):e1000534.
    [21] Raychaudhuri S. Recent advances in the genetics of rheumatoid arthritis. Curr Opin Rheumatol,2010,22(2):109-118.
    [22] McInnes IB,Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med,2011,365(23):2205-2219.
    [23] Wilhelm BT, Marguerat S, Watt S, et al. Dynamic repertoire of a eukaryotic transcriptome surveyed atsingle-nucleotide resolution. Nature,2008,453(7199):1239-1243.
    [24] Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes.Nature,2008,456(7221):470-476.
    [25] Sanger F. Sequences, sequences, and sequences. Annu Rev Biochem,1988,57(1-28.
    [26] Smith LM, Fung S, Hunkapiller MW, et al. The synthesis of oligonucleotides containing an aliphaticamino group at the5' terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis.Nucleic Acids Res,1985,13(7):2399-2412.
    [27] Aksyonov SA, Bittner M, Bloom LB, et al. Multiplexed DNA sequencing-by-synthesis. Anal Biochem,2006,348(1):127-138.
    [28] Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-densitypicolitre reactors. Nature,2005,437(7057):376-380.
    [29] Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing usingreversible terminator chemistry. Nature,2008,456(7218):53-59.
    [30] Smith DR, Quinlan AR, Peckham HE, et al. Rapid whole-genome mutational profiling usingnext-generation sequencing technologies. Genome Res,2008,18(10):1638-1642.
    [31] Harris TD, Buzby PR, Babcock H, et al. Single-molecule DNA sequencing of a viral genome. Science,2008,320(5872):106-109.
    [32] Watanabe N, Ando K, Yoshida S, et al. Gene expression profile analysis of rheumatoid synovialfibroblast cultures revealing the overexpression of genes responsible for tumor-like growth ofrheumatoid synovium. Biochem Biophys Res Commun,2002,294(5):1121-1129.
    [33] Gallagher J, Howlin J, McCarthy C, et al. Identification of Naf1/ABIN-1among TNF-alpha-inducedexpressed genes in human synoviocytes using oligonucleotide microarrays. FEBS Lett,2003,551(1-3):8-12.
    [34] van der Pouw Kraan TC, van Gaalen FA, Huizinga TW, et al. Discovery of distinctive gene expressionprofiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence ofmultiple pathways of tissue destruction and repair. Genes Immun,2003,4(3):187-196.
    [35] van der Pouw Kraan TC, van Gaalen FA, Kasperkovitz PV, et al. Rheumatoid arthritis is aheterogeneous disease: evidence for differences in the activation of the STAT-1pathway betweenrheumatoid tissues. Arthritis Rheum,2003,48(8):2132-2145.
    [36] Bovin LF, Rieneck K, Workman C, et al. Blood cell gene expression profiling in rheumatoid arthritis.Discriminative genes and effect of rheumatoid factor. Immunol Lett,2004,93(2-3):217-226.
    [37] Devauchelle V, Marion S, Cagnard N, et al. DNA microarray allows molecular profiling of rheumatoidarthritis and identification of pathophysiological targets. Genes Immun,2004,5(8):597-608.
    [38] Olsen N, Sokka T, Seehorn CL, et al. A gene expression signature for recent onset rheumatoid arthritisin peripheral blood mononuclear cells. Ann Rheum Dis,2004,63(11):1387-1392.
    [39] Pierer M, Rethage J, Seibl R, et al. Chemokine secretion of rheumatoid arthritis synovial fibroblastsstimulated by Toll-like receptor2ligands. J Immunol,2004,172(2):1256-1265.
    [40] Batliwalla FM, Baechler EC, Xiao X, et al. Peripheral blood gene expression profiling in rheumatoidarthritis. Genes Immun,2005,6(5):388-397.
    [41] Kasperkovitz PV, Timmer TC, Smeets TJ, et al. Fibroblast-like synoviocytes derived from patients withrheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of a link between anincreased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum,2005,52(2):430-441.
    [42] Taberner M, Scott KF, Weininger L, et al. Overlapping gene expression profiles in rheumatoidfibroblast-like synoviocytes induced by the proinflammatory cytokines interleukin-1beta and tumornecrosis factor. Inflamm Res,2005,54(1):10-16.
    [43] Haas CS, Creighton CJ, Pi X, et al. Identification of genes modulated in rheumatoid arthritis usingcomplementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordantmonozygotic twins. Arthritis Rheum,2006,54(7):2047-2060.
    [44] Nakamura N, Shimaoka Y, Tougan T, et al. Isolation and expression profiling of genes upregulated inbone marrow-derived mononuclear cells of rheumatoid arthritis patients. DNA Res,2006,13(4):169-183.
    [45] Lequerre T, Gauthier-Jauneau AC, Bansard C, et al. Gene profiling in white blood cells predictsinfliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther,2006,8(4):R105.
    [46] Szodoray P, Alex P, Frank MB, et al. A genome-scale assessment of peripheral blood B-cell molecularhomeostasis in patients with rheumatoid arthritis. Rheumatology (Oxford),2006,45(12):1466-1476.
    [47] Auer J, Blass M, Schulze-Koops H, et al. Expression and regulation of CCL18in synovial fluidneutrophils of patients with rheumatoid arthritis. Arthritis Res Ther,2007,9(5):R94.
    [48] Edwards CJ, Feldman JL, Beech J, et al. Molecular profile of peripheral blood mononuclear cells frompatients with rheumatoid arthritis. Mol Med,2007,13(1-2):40-58.
    [49] Galligan CL, Baig E, Bykerk V, et al. Distinctive gene expression signatures in rheumatoid arthritissynovial tissue fibroblast cells: correlates with disease activity. Genes Immun,2007,8(6):480-491.
    [50] Pohlers D, Beyer A, Koczan D, et al. Constitutive upregulation of the transforming growth factor-betapathway in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther,2007,9(3):R59.
    [51] van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, et al. Rheumatoid arthritis subtypesidentified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in asubpopulation of patients. Ann Rheum Dis,2007,66(8):1008-1014.
    [52] Timmer TC, Baltus B, Vondenhoff M, et al. Inflammation and ectopic lymphoid structures inrheumatoid arthritis synovial tissues dissected by genomics technology: identification of theinterleukin-7signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum,2007,56(8):2492-2502.
    [53] Huber R, Hummert C, Gausmann U, et al. Identification of intra-group, inter-individual, andgene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane.Arthritis Res Ther,2008,10(4):R98.
    [54] Toonen EJ, Barrera P, Radstake TR, et al. Gene expression profiling in rheumatoid arthritis: currentconcepts and future directions. Ann Rheum Dis,2008,67(12):1663-1669.
    [55] van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, et al. Responsiveness to anti-tumour necrosisfactor alpha therapy is related to pre-treatment tissue inflammation levels in rheumatoid arthritis patients.Ann Rheum Dis,2008,67(4):563-566.
    [56] Junta CM, Sandrin-Garcia P, Fachin-Saltoratto AL, et al. Differential gene expression of peripheralblood mononuclear cells from rheumatoid arthritis patients may discriminate immunogenetic,pathogenic and treatment features. Immunology,2009,127(3):365-372.
    [57] Teixeira VH, Olaso R, Martin-Magniette ML, et al. Transcriptome analysis describing new immunityand defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLoS One,2009,4(8):e6803.
    [58] van Baarsen LG, Bos WH, Rustenburg F, et al. Gene expression profiling in autoantibody-positivepatients with arthralgia predicts development of arthritis. Arthritis Rheum,2010,62(3):694-704.
    [59] Bansard C, Lequerre T, Derambure C, et al. Gene profiling predicts rheumatoid arthritis responsivenessto IL-1Ra (anakinra). Rheumatology (Oxford),2011,50(2):283-292.
    [60] Meugnier E, Coury F, Tebib J, et al. Gene expression profiling in peripheral blood cells of patients withrheumatoid arthritis in response to anti-TNF-alpha treatments. Physiol Genomics,2011,43(7):365-371.
    [61] Pratt AG, Swan DC, Richardson S, et al. A CD4T cell gene signature for early rheumatoid arthritisimplicates interleukin6-mediated STAT3signalling, particularly in anti-citrullinated peptideantibody-negative disease. Ann Rheum Dis,2012,71(8):1374-1381.
    [62] Toonen EJ, Gilissen C, Franke B, et al. Validation study of existing gene expression signatures foranti-TNF treatment in patients with rheumatoid arthritis. PLoS One,2012,7(3):e33199.
    [63] Kochi Y, Okada Y, Suzuki A, et al. A regulatory variant in CCR6is associated with rheumatoid arthritissusceptibility. Nat Genet,2010,42(6):515-519.
    [64] Han TU, Bang SY, Kang C, et al. TRAF1polymorphisms associated with rheumatoid arthritissusceptibility in Asians and in Caucasians. Arthritis Rheum,2009,60(9):2577-2584.
    [65] Chen R, Wei Y, Cai Q, et al. The PADI4gene does not contribute to genetic susceptibility torheumatoid arthritis in Chinese Han population. Rheumatol Int,2011,31(12):1631-1634.
    [66] Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1and-2gene products functiontogether to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc NatlAcad Sci U S A,2002,99(21):13571-13576.
    [67] Li Y, Inoki K,Guan KL. Biochemical and functional characterizations of small GTPase Rheb and TSC2GAP activity. Mol Cell Biol,2004,24(18):7965-7975.
    [68] Sato T, Seyama K, Kumasaka T, et al. A patient with TSC1germline mutation whose clinical phenotypewas limited to lymphangioleiomyomatosis. J Intern Med,2004,256(2):166-173.
    [69] Habib SL, Danial E, Nath S, et al. Genetic polymorphisms in OGG1and their association withangiomyolipoma, a benign kidney tumor in patients with tuberous sclerosis. Cancer Biol Ther,2008,7(1):23-27.
    [70] Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood.Blood,2010,116(16):e74-80.
    [71] Mikuls TR, LeVan TD, Sayles H, et al. Soluble CD14and CD14polymorphisms in rheumatoid arthritis.J Rheumatol,2011,38(12):2509-2516.
    [72] Baeten D, Boots AM, Steenbakkers PG, et al. Human cartilage gp-39+,CD16+monocytes in peripheralblood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis Rheum,2000,43(6):1233-1243.
    [73] Coulthard LR, Geiler J, Mathews RJ, et al. Differential effects of infliximab on absolute circulatingblood leucocyte counts of innate immune cells in early and late rheumatoid arthritis patients. Clin ExpImmunol,2012,170(1):36-46.
    [74] Rossol M, Kraus S, Pierer M, et al. The CD14(bright) CD16+monocyte subset is expanded inrheumatoid arthritis and promotes Th17expansion. Arthritis Rheum,2011,
    [75] Wijngaarden S, van Roon JA, Bijlsma JW, et al. Fcgamma receptor expression levels on monocytes areelevated in rheumatoid arthritis patients with high erythrocyte sedimentation rate who do not useanti-rheumatic drugs. Rheumatology (Oxford),2003,42(5):681-688.
    [76] Hepburn AL, Mason JC,Davies KA. Expression of Fcgamma and complement receptors on peripheralblood monocytes in systemic lupus erythematosus and rheumatoid arthritis. Rheumatology (Oxford),2004,43(5):547-554.
    [77] Kawanaka N, Yamamura M, Aita T, et al. CD14+,CD16+blood monocytes and joint inflammation inrheumatoid arthritis. Arthritis Rheum,2002,46(10):2578-2586.
    [78] Barton A, Eyre S, Ke X, et al. Identification of AF4/FMR2family, member3(AFF3) as a novelrheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibilitygenes. Hum Mol Genet,2009,18(13):2518-2522.
    [79] Hinks A, Eyre S, Ke X, et al. Association of the AFF3gene and IL2/IL21gene region with juvenileidiopathic arthritis. Genes Immun,2010,11(2):194-198.
    [80] Tan RJ, Gibbons LJ, Potter C, et al. Investigation of rheumatoid arthritis susceptibility genes identifiesassociation of AFF3and CD226variants with response to anti-tumour necrosis factor treatment. AnnRheum Dis,2010,69(6):1029-1035.
    [81] Cen H, Leng RX, Wang W, et al. Association of AFF1rs340630and AFF3rs10865035polymorphismswith systemic lupus erythematosus in a Chinese population. Immunogenetics,2012,64(12):935-938.
    [82] Kamata K, Kamijo S, Nakajima A, et al. Involvement of TNF-like weak inducer of apoptosis in thepathogenesis of collagen-induced arthritis. J Immunol,2006,177(9):6433-6439.
    [83] Xia L, Shen H, Lu J, et al. TRAF2and cIAP2involve in TWEAK-induced MMP-9production infibroblast-like synoviocytes. Rheumatol Int,2012,32(1):281-282.
    [84] Kobayashi K, Yagasaki M, Harada N, et al. Detection of Fcgamma binding protein antigen in humansera and its relation with autoimmune diseases. Immunol Lett,2001,79(3):229-235.
    [1] Scott DL, Wolfe F,Huizinga TW. Rheumatoid arthritis. Lancet,2010,376(9746):1094-1108.
    [2] Dai SM, Han XH, Zhao DB, et al. Prevalence of rheumatic symptoms, rheumatoid arthritis,ankylosing spondylitis, and gout in Shanghai, China: a COPCORD study. J Rheumatol,2003,30(10):2245-2251.
    [3] Stolt P, Bengtsson C, Nordmark B, et al. Quantification of the influence of cigarette smoking onrheumatoid arthritis: results from a population based case-control study, using incident cases. AnnRheum Dis,2003,62(9):835-841.
    [4] Stastny P. Association of the B-cell alloantigen DRw4with rheumatoid arthritis. New EnglandJournal of Medicine,1978,298(16):869-871.
    [5] Gregersen P, Silver J,Winchester R. The shared epitope hypothesis. An approach to understandingthe molecular genetics of susceptibility to rheumatoid arthritis. Arthritis&Rheumatism,1987,30(11):1205-1213.
    [6] Genome-wide association study of14,000cases of seven common diseases and3,000sharedcontrols. Nature,2007,447(7145):661-678.
    [7] Raychaudhuri S, Remmers EF, Lee AT, et al. Common variants at CD40and other loci confer riskof rheumatoid arthritis. Nat Genet,2008,40(10):1216-1223.
    [8] Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study meta-analysisidentifies seven new rheumatoid arthritis risk loci. Nat Genet,2010,42(6):508-514.
    [9] Okada Y, Terao C, Ikari K, et al. Meta-analysis identifies nine new loci associated with rheumatoidarthritis in the Japanese population. Nat Genet,2012,44(5):511-516.
    [10] Ikari K, Momohara S, Inoue E, et al. Haplotype analysis revealed no association between thePTPN22gene and RA in a Japanese population. Rheumatology (Oxford),2006,45(11):1345-1348.
    [11] Takata Y, Inoue H, Sato A, et al. Replication of reported genetic associations of PADI4, FCRL3,SLC22A4and RUNX1genes with rheumatoid arthritis: results of an independent Japanesepopulation and evidence from meta-analysis of East Asian studies. J Hum Genet,2008,53(2):163-173.
    [12] Raychaudhuri S, Plenge RM, Rossin EJ, et al. Identifying relationships among genomic diseaseregions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet,2009,5(6):e1000534.
    [13] Raychaudhuri S. Recent advances in the genetics of rheumatoid arthritis. Curr Opin Rheumatol,2010,22(2):109-118.
    [14] McInnes IB,Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med,2011,365(23):2205-2219.
    [15] Deighton CM, Walker DJ, Griffiths ID, et al. The contribution of HLA to rheumatoid arthritis. ClinGenet,1989,36(3):178-182.
    [16] Rigby AS, Silman AJ, Voelm L, et al. Investigating the HLA component in rheumatoid arthritis: anadditive (dominant) mode of inheritance is rejected, a recessive mode is preferred. GenetEpidemiol,1991,8(3):153-175.
    [17] Fernando MM, Stevens CR, Walsh EC, et al. Defining the role of the MHC in autoimmunity: areview and pooled analysis. PLoS Genet,2008,4(4):e1000024.
    [18] van der Woude D, Houwing-Duistermaat JJ, Toes RE, et al. Quantitative heritability ofanti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negativerheumatoid arthritis. Arthritis Rheum,2009,60(4):916-923.
    [19] Hill JA, Southwood S, Sette A, et al. Cutting edge: the conversion of arginine to citrulline allowsfor a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401MHC class II molecule. J Immunol,2003,171(2):538-541.
    [20] Feitsma AL, van der Voort EI, Franken KL, et al. Identification of citrullinated vimentin peptidesas T cell epitopes in HLA-DR4-positive patients with rheumatoid arthritis. Arthritis Rheum,2010,62(1):117-125.
    [21] James EA, Moustakas AK, Bui J, et al. HLA-DR1001presents "altered-self" peptides derived fromjoint-associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum,2010,62(10):2909-2918.
    [22] Mahdi H, Fisher BA, Kallberg H, et al. Specific interaction between genotype, smoking andautoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat Genet,2009,41(12):1319-1324.
    [23] van der Woude D, Alemayehu WG, Verduijn W, et al. Gene-environment interaction influencesthe reactivity of autoantibodies to citrullinated antigens in rheumatoid arthritis. Nat Genet,2010,42(10):814-816; author reply816.
    [24] Bang SY, Lee KH, Cho SK, et al. Smoking increases rheumatoid arthritis susceptibility inindividuals carrying the HLA-DRB1shared epitope, regardless of rheumatoid factor or anti-cycliccitrullinated peptide antibody status. Arthritis Rheum,2010,62(2):369-377.
    [25] Salliot C, Bombardier C, Saraux A, et al. Hormonal replacement therapy may reduce the risk forRA in women with early arthritis who carry HLA-DRB1*01and/or*04alleles by protectingagainst the production of anti-CCP: results from the ESPOIR cohort. Ann Rheum Dis,2010,69(9):1683-1686.
    [26] Lee HS, Lee AT, Criswell LA, et al. Several regions in the major histocompatibility complexconfer risk for anti-CCP-antibody positive rheumatoid arthritis, independent of the DRB1locus.Mol Med,2008,14(5-6):293-300.
    [27] Ding B, Padyukov L, Lundstrom E, et al. Different patterns of associations with anti-citrullinatedprotein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis inthe extended major histocompatibility complex region. Arthritis Rheum,2009,60(1):30-38.
    [28] Hu HJ, Jin EH, Yim SH, et al. Common variants at the promoter region of the APOM confer a riskof rheumatoid arthritis. Exp Mol Med,2011,43(11):613-621.
    [29] Park YB, Lee SK, Lee WK, et al. Lipid profiles in untreated patients with rheumatoid arthritis. JRheumatol,1999,26(8):1701-1704.
    [30] Choy E,Sattar N. Interpreting lipid levels in the context of high-grade inflammatory states with afocus on rheumatoid arthritis: a challenge to conventional cardiovascular risk actions. Ann RheumDis,2009,68(4):460-469.
    [31] Burger D,Dayer JM. High-density lipoprotein-associated apolipoprotein A-I: the missing linkbetween infection and chronic inflammation? Autoimmun Rev,2002,1(1-2):111-117.
    [32] Feingold KR, Shigenaga JK, Chui LG, et al. Infection and inflammation decrease apolipoprotein Mexpression. Atherosclerosis,2008,199(1):19-26.
    [33] Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most ofthe association between MHC and seropositive rheumatoid arthritis. Nat Genet,2012,44(3):291-296.
    [34] Steer S, Lad B, Grumley JA, et al. Association of R602W in a protein tyrosine phosphatase genewith a high risk of rheumatoid arthritis in a British population: evidence for an early onset/diseaseseverity effect. Arthritis Rheum,2005,52(1):358-360.
    [35] Onengut-Gumuscu S, Ewens KG, Spielman RS, et al. A functional polymorphism (1858C/T) in thePTPN22gene is linked and associated with type I diabetes in multiplex families. Genes Immun,2004,5(8):678-680.
    [36] Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphismof protein tyrosine phosphatase PTPN22with human SLE. Am J Hum Genet,2004,75(3):504-507.
    [37] Velaga MR, Wilson V, Jennings CE, et al. The codon620tryptophan allele of the lymphoidtyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin EndocrinolMetab,2004,89(11):5862-5865.
    [38] Canton I, Akhtar S, Gavalas NG, et al. A single-nucleotide polymorphism in the gene encodinglymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo.Genes Immun,2005,6(7):584-587.
    [39] Skinningsrud B, Husebye ES, Gervin K, et al. Mutation screening of PTPN22: association of the1858T-allele with Addison's disease. Eur J Hum Genet,2008,16(8):977-982.
    [40] Hinks A, Worthington J,Thomson W. The association of PTPN22with rheumatoid arthritis andjuvenile idiopathic arthritis. Rheumatology (Oxford),2006,45(4):365-368.
    [41] Barton A, Eyre S, Ke X, et al. Identification of AF4/FMR2family, member3(AFF3) as a novelrheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmunesusceptibility genes. Hum Mol Genet,2009,18(13):2518-2522.
    [42] Thomson W, Barton A, Ke X, et al. Rheumatoid arthritis association at6q23. Nat Genet,2007,39(12):1431-1433.
    [43] Kurreeman FA, Daha NA, Chang M, et al. Association of IL2RA and IL2RB with rheumatoidarthritis: a replication study in a Dutch population. Ann Rheum Dis,2009,68(11):1789-1790.
    [44] Barton A, Thomson W, Ke X, et al. Rheumatoid arthritis susceptibility loci at chromosomes10p15,12q13and22q13. Nat Genet,2008,40(10):1156-1159.
    [45] Kawabe T, Naka T, Yoshida K, et al. The immune responses in CD40-deficient mice: impairedimmunoglobulin class switching and germinal center formation. Immunity,1994,1(3):167-178.
    [46] Jacobson EM, Concepcion E, Oashi T, et al. A Graves' disease-associated Kozak sequencesingle-nucleotide polymorphism enhances the efficiency of CD40gene translation: a case fortranslational pathophysiology. Endocrinology,2005,146(6):2684-2691.
    [47] Xie P, Hostager BS, Munroe ME, et al. Cooperation between TNF receptor-associated factors1and2in CD40signaling. J Immunol,2006,176(9):5388-5400.
    [48] Marsters SA, Ayres TM, Skubatch M, et al. Herpesvirus entry mediator, a member of the tumornecrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factorfamily and activates the transcription factors NF-kappaB and AP-1. J Biol Chem,1997,272(22):14029-14032.
    [49] Song HY, Rothe M,Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20interacts with TRAF1/TRAF2and inhibits NF-kappaB activation. Proc Natl Acad Sci U S A,1996,93(13):6721-6725.
    [50] Orozco G, Hinks A, Eyre S, et al. Combined effects of three independent SNPs greatly increase therisk estimate for RA at6q23. Hum Mol Genet,2009,18(14):2693-2699.
    [51] Plenge RM, Cotsapas C, Davies L, et al. Two independent alleles at6q23associated with risk ofrheumatoid arthritis. Nat Genet,2007,39(12):1477-1482.
    [52] Coornaert B, Carpentier I,Beyaert R. A20: central gatekeeper in inflammation and immunity. J BiolChem,2009,284(13):8217-8221.
    [53] Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell deathresponses in A20-deficient mice. Science,2000,289(5488):2350-2354.
    [54] Elsby LM, Orozco G, Denton J, et al. Functional evaluation of TNFAIP3(A20) in rheumatoidarthritis. Clin Exp Rheumatol,2010,28(5):708-714.
    [55] Nakashima K, Hagiwara T, Ishigami A, et al. Molecular characterization of peptidylargininedeiminase in HL-60cells induced by retinoic acid and1alpha,25-dihydroxyvitamin D(3). J BiolChem,1999,274(39):27786-27792.
    [56] Klareskog L, Ronnelid J, Lundberg K, et al. Immunity to citrullinated proteins in rheumatoidarthritis. Annu Rev Immunol,2008,26(651-675.
    [57] Kochi Y, Thabet MM, Suzuki A, et al. PADI4polymorphism predisposes male smokers torheumatoid arthritis. Ann Rheum Dis,2011,70(3):512-515.
    [58] Qian L, Shi HX, Li XP, et al.[The significance of serum peptidylarginine deiminase4inrheumatoid arthritis]. Zhonghua Nei Ke Za Zhi,2011,50(2):107-110.
    [59] Lee YH, Woo JH, Choi SJ, et al. Fc receptor-like3-169C/T polymorphism and RA susceptibility:a meta-analysis. Rheumatol Int,2010,30(7):947-953.
    [60] Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like3,is associated with rheumatoid arthritis and several autoimmunities. Nat Genet,2005,37(5):478-485.
    [61] Kochi Y, Okada Y, Suzuki A, et al. A regulatory variant in CCR6is associated with rheumatoidarthritis susceptibility. Nat Genet,2010,42(6):515-519.
    [62] Han TU, Bang SY, Kang C, et al. TRAF1polymorphisms associated with rheumatoid arthritissusceptibility in Asians and in Caucasians. Arthritis Rheum,2009,60(9):2577-2584.
    [63] Chen R, Wei Y, Cai Q, et al. The PADI4gene does not contribute to genetic susceptibility torheumatoid arthritis in Chinese Han population. Rheumatol Int,2011,31(12):1631-1634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700