纳米金属氧化物催化鲁米诺化学发光新体系的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是指在三维空间中至少有一维在0.1-100nm范围内的超微细颗粒材料。材料在纳米尺度下往往能够表现出一些独特的效应,包括表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应、介电效应等。这些效应使得纳米材料拥有许多奇特的物理和化学性质,具有常规材料所不具备的潜在应用价值。纳米金属氧化物材料是近年来研究的热点,其在光、电、力、磁、声等领域有着广泛的应用和潜在的价值。
     化学发光方法因其不需要光源,仪器设备简单,线性范围宽,灵敏度高,易于微型化等优点,已成为最有发展前景的分析方法之一。近年来,贵金属纳米材料的出现拓展了化学发光的研究应用范围,但是关于金属氧化物纳米材料的化学发光催化行为研究的很少。在本研究工作中,我们系统地研究了多种纳米金属氧化材料的合成及其表征,发现它们对鲁米诺-过氧化氢化学发光反应的催化性能,特别是在低鲁米诺和低过氧化氢浓度下的高灵敏和高选择催化作用;实现了催化化学发光高通量现场检测TATP爆炸物,建立了一种新的化学发光法测定人红血球降解过氧化氢速率及超灵敏化学发光方法测定呼吸道疾病病人呼出冷凝物中的氧化应激生物标志物过氧化氢。论文还研究了介孔金属氧化物纳米粒子的双功能探针及传感器高通量快速测定多种生化物质。
     本论文首先对金属氧化纳米材料的研究及其在分析化学中的应用作了评述;研究报告分为两部分:
     一、金属氧化物纳米材料催化鲁米诺-过氧化氢化学发光新体系的研究及其应用
     研究发现金属氧化物纳米材料(Co3O4, Cr2O3, a-Fe2O3, CeO2, NiO, CuO, Y2O3, Nd2O3, Mn2O3)对鲁米诺-过氧化氢化学发光反应都具有强的催化性能,而且远超过常用的金属离子催化剂、过氧化物酶和其他金属纳米粒子的催化性能。基于此建立了一系列测定过氧化物的新化学发光体系,提高了方法的选择性。
     (1)金属氧化物纳米粒子催化化学发光高通量现场检测TATP爆炸物
     三过氧化三丙酮(Triacetone Triperoxide, TATP)是一种过氧化物型爆炸物,在爆炸中,TATP的每个分子迅速释放出气态4个分子,产生比周围空气高出几百倍的气压,威力与TNT相当。TATP是一种极为敏感的爆炸物,摩擦或敲击就可能引发爆炸,不需要任何起爆装置。TATP可以溶解在很多种溶剂中来增强稳定性,如使用普通的发胶、洗发液、沐浴乳或其他液体和凝胶。由于TATP分子不含硝基,机场传统的安检方法,包括金属探测器,X光机及硝基类爆炸物检查行李的方法都不能检测出TATP。
     我们发现Ce02纳米粒子对鲁米诺-过氧化氢化学发光体系的优秀的催化能力,合成了一种在聚苯乙烯上有极强吸附力的Ce02纳米颗粒,在聚苯乙烯96孔板上组装成传感膜。由于TATP有较高的蒸汽压(8×10-2Torr,25℃;而TNT为6×10-6Torr,25℃),即使包装严密,也会在携带物上(皮革、麻布、塑料和金属等)带来痕迹。我们用一小块医用棉球擦拭样品表面,然后将棉球装入10mL带盖的玻璃小瓶中,加入5mL水解液进行提取。依次移取50μL提取液于96微孔板中,放置于Biotech Gen 5微孔板化学发光分析仪器中,依次向各孔自动注入50μL5×10-5M鲁米诺进行定量。我们成功应用于模拟机场现场的安全检查,完全满足机场现场检测的需要。
     论文中还合成了一种粒径约20nm的三氧化二铬纳米粒子,研究了其对鲁米诺-过氧化氢化学发光反应的催化机理,也用于TATP的现场检测,与其它测定TATP和H202的方法比较,此法最大的特点之一是有机过氧化物如过氧化氢脲、过氧化氢叔丁醇、过氧化氢异丙苯等均不干扰测定。
     (2)四氧化三钴纳米粒子催化鲁米诺-过氧化氢化学发光新体系测定呼出冷凝物中的过氧化氢
     系统研究了四氧化三钴纳米颗粒催化鲁米诺-过氧化氢化学发光新体系。比较了Co3O4, NiO, a-Fe2O3及其他普通催化剂的催化性能,四氧化三钴化学发光体系具有高的选择性和灵敏度。在优化条件下,化学发光强度与过氧化氢浓度在1.0×10-9-1.0×10-6M范围内呈良好的线性关系,方法的检出限是3.0×10-10M(3σ)。结合流动注射技术建立了测定呼出冷凝物中的过氧化氢的的化学发光新方法。该测定方法具有灵敏度高,选择性好,简单可行的优点。该方法已成功应用于对呼吸道感染人群和健康人群呼出冷凝物中痕量氧化应激生物标志物过氧化氢的直接测定。实验结果表明两者具有显著性差异。
     (3)二氧化铈纳米颗粒催化鲁米诺-过氧化氢化学发光新体系研究测定红血球降解过氧化氢速率
     纳米氧化物表面缺陷在催化反应中起到关键作用。二氧化铈表面存在氧空位,具有优异的储氧能力,可应用于氧化还原反应。通过调节制备方法,亲水性二氧化铈纳米粒子也能极大地增敏鲁米诺-过氧化氢化学发光。过氧化氢是在活细胞中的正常代谢物,细胞内多余的过氧化氢会氧化细胞内的组分,控制细胞内的过氧化氢水平很重要。我们结合化学发光微阵列法建立了一种新的化学发光法测定人体血液中红血球降解过氧化氢速率。
     二、纳米金属氧化物双功能探针及传感器高通量快速测定生化物质
     介孔材料是孔径在2nm到50nm之间的一类材料。作为介孔材料的一种,介孔金属氧化物纳米粒子将介孔材料与纳米材料结合起来。介孔金属氧化物纳米粒子具有良好的单分散性、孔道规则、孔径可调、比表面积大和热稳定性好等特性。超过1000m2.g-1表面积及开孔结构的介孔材料可以给目标物-受体之间提供大量供位点和足够的界面以帮助吸附目标物,从而增强本体浓度。因而适合用做装载或固定各种物质,比如药物、酶和抗体。我们的研究发现这些介孔纳米金属氧化物材料本身又对某些化学发光反应具有很强的催化作用,因而设计的固定酶的介孔金属氧化物纳米粒子所构建的化学发光传感器,将具有双功能探针的特性,具此实现了多种生化物质高通量的快速测定。
     (1)介孔四氧化三钴双功能探针高通量测定血清中的葡萄糖
     基于Co3O4-SiO2介孔复合纳米材料的催化和固定酶的作用,建立了一种新的双功能化学光探针阵列。该化学发光探针阵列由Co3O4-SiO2介孔复合材料和固定的酶组成。Co3O4-SiO2介孔复合材料不仅做酶的载体而且对化学发光体系具有催化作用。这种新的化学发光阵列应用到血液中葡萄糖的检测。测量的葡萄糖线性范围是3-90μM。检出限是0.36μM。
     (2)双酶共固定介孔四氧化三钴双功能探针高通量测定牛奶中乳糖
     在本研究工作中,我们进一步探究介孔四氧化三钴双功能探针。将葡萄糖氧化酶和β-半乳糖苷酶同时固定在载体介孔四氧化三钴上。用于测定牛奶中乳糖的含量。测量的乳糖线性范围是3.0×10-7到1.0×10-5g.mL-1。检出限是6.9×10-8g.mL-1。
     (3)介孔四氧化三钴纳米传感器耦合介孔二氧化硅纳米粒子固定化酶柱高通量测定血清中的葡萄糖
     研究将氨基化介孔二氧化硅纳米粒子与海藻酸钙纤维相结合作为载体,将纳米介孔二氧化硅(AMNMS)对酶的吸附作用和催化增强作用与海藻酸钙凝胶对酶的笼蔽效应相结合可以有效的提高固定化酶的催化能力和酶的稳定性。用葡萄糖氧化酶(pI=4.0)为模板制备了海藻酸钙纤维-氨基化介孔二氧化硅(CAF-AMNMS)为载体的微型酶反应器,并将该酶反应器同鲁米诺-H2O2-Co3O4-SiO2介孔催化化学发光体系相耦合,设计了一种阵列传感器,高通量直接测定血清中葡萄糖。
Nanomaterialis between0.1and100nrn in size. Nanomaterials have unique physical and chemical properties due to quantum confinement and exceedingly large surface to volume ratio. They have a superior performance to the materials now existing. Metal oxide nanomaterials have been a hot topic in recent years, which have extensive applications and potential value in optics, electrics, mechanics, and magnetics,
     Chemiluminescence (CL) is known as a powerful analytical technique that promises high sensitivity, wide linear range and simple instrumentation. The emergence of noble metal nanoparticles has expanded the application range of CL studies. However, there are only a few reports on the CL of metal oxide nanomaterials. In our work, we systematically studied a variety of metal oxide nanoparticles, and we found that they exhibit high specific catalytic effects on the CL reaction of the luminol-H2O2system in alkaline solution compared with other common catalysts. In this system, luminol with very low concentration can get excellent experimental result with higher selectivity than other luminol system. We have developed a novel CL sensor array to determine Triacetone Triperoxid (TATP) in the suspected items. We have developed a novel CL method to determine the removal rate constant of H2O2by human erythrocytes. We have developed a novel CL approch to determine trace quantities of H2O2in exhaled breath condensate (EBC) where it is a mediator of oxidative stress and a promising biomarker for diagnosing. We also have developed bifunctional CL probe arrays and sensors to determine a variety of biochemical substances, which were based on mesoporous nanocomposite material.
     The application of metal oxide nanomaterials in analysis is summarized in Chapter
     1. The research work of the dissertation is made up of two sections:
     (I) The study of metal oxide nanomaterials used as catalyter in luminol-H2O2CL system and its application
     Metal oxide nanomaterials (Co3O4, Cr2O3, CeO2, NiO, a-Fe2O3,CuO, Y2O3, Nd2O3, possess more excellent catalysis in H2O2CL system than previously reported (such as Co2+, Cu2+, Cr3+, HRP and so on). The selectivity CL reaction of luminol-H2O2metal oxide nanomaterials has been proposed.
     (1) New CL techniques based on metal oxide nanomaterials catalysis for high-throughput determination of the explosive Triacetone Triperoxide at the scene
     TATP is a new organic peroxide based explosive, which decomposes via an entropically favorable mechanism to form4gas phase molecules (a10g sample gave250cm3expansion in the trauzl test as compared to300cm3for TNT). TATP is a highly unstable compound. Explosions may occur by friction, impact or temperature changes, especially in solid phase samples. TATP can be dissolved in a variety of solvents to enhance the stability, such as using an ordinary hair gel, shampoo, shower gel, or other liquids and gels. Metal detector, X-ray baggage scanner, and many detection devices that readily detect tradition explosives made of organic nitro and nitrate compounds fail to detect TATP.
     Here we report on the finding that CeO2nanoparticles are capable of strongly enhancing the CL of the luminol-H2O2system. CeO2nanoparticles can be firmly adsorbed on the96-well plates made of polystyrene to form a very solid sensing membrane. The vapor pressure of TATP is8×10-2Torr at25℃. Its vapor can be absorbed onto suitcases and rapidly hydrolyze into H2O2in wet air. Soaked swabs were used to sample the suspected items (pen, plastic bag, banknotes, paper, card), which may be possible carried on an airplane. Immediately after collection, samples were transferred to10mL centrifuge tubes with5mL ultrapure water, which were then sealed for storage.50μL sample solution and50μL (5×10-5M) luminol were injected into the CL sensor array and readings were acquired. The integrated kinetic curve for each sensor can be obtained within5s. The process is easy to perform. It has been successfully applied to the detection of TATP in the suspected items, which may be possible carried on an airplane.
     In this paper, we also synthesized Cr2O3nanoparticles (about20nm). Cr2O3nanoparticles were found to greatly enhance the CL intensity of luminol-H2O2system. A reaction mechanism was discussed. The novel CL method also has been successfully applied to the detection of TATP at the scene. Especially, some organic hydroperoxides such as carbamide peroxide, tert-butyl hydroperoxide and cumene hydroperoxide do not interfere with the determination.
     (2) CL assay for hydrogen peroxide in exhaled breath condensate using Co3O4 nanoparticle-based catalysis
     We systematically studied the nanoparticles-luminol-H2O2CL system. The catalytic activity of three nanoparticles (Co3O4, NiO, a-Fe2O3,) were investigated using microarray method. The CL method based on the use of the Co3O4nanoparticles is ultrasensitive and particularly selective. Under the optimum conditions described above, the linear calibration range prolonged over3orders of magnitude from1.0nm to1000nM. The limit of detection (LOD,3σ) for hydrogen peroxide was0.3n M. A new CL method for the determination of H2O2in exhaled breath condensate (EBC) was built by combining with flow injection technology. The method was successfully applied to the determination of trace quantities of H2O2in EBC where it is a mediator of oxidative stress and a promising biomarker for diagnosing (healthy subjects, rheum subjects, and feverish subjects). Our data suggested that the average H2O2concentration of EBC from feverish subjects was significantly higher than healthy subjects and rheumatic subjects.
     (3) A CL microarray based on catalysis by CeO2nanoparticles, and its application to determine the rate of removal of hydrogen peroxide by human erythrocytes
     It is important that nano-oxide surface defects in the catalytic reactions. CeO2nanoparticles vacancies present on the surface. It has excellent oxygen storage capacity. Hydrophilic CeO2nanoparticles were also shown highly active and selective for the luminol-H2O2system. H2O2is a normal metabolite in living cells. It is important for cells to remove hydrogen peroxide due to superfluous H2O2may oxidize cellular components. Tight control of cellular H2O2levels is important to avoid oxidative damage of cellular components and to maintain the regulation of various cell responses. The microarray CL method based on the use of the CeO2nanoparticles is ultrasensitive and particularly selective. It has been successfully applied to the measurement of removal rate constant of hydrogen peroxide by human erythrocytes.
     (II) The study of metal oxide nanomaterials used as bifunctional CL probe arrays and sensors and its application in analysis a variety of biochemical substances.
     Mesoporous material is a material containing pores with diameters between2and50nm. Mesoporous metal oxide nanoparticles have good monodisperse pore rules, adjustable aperture, large surface area, good thermal stability and other characteristics. Mesoporous metal material with over1000m2.g-1surface area and pore structures can provide the target-receptor a lot sites and sufficient interface to help adsorbed target and enhance the concentration of the target. Mesoporous material is suitable for immobilization of various substances, such as drugs, enzymes and antibodies. Our research found that mesoporous metal oxide nanomaterial itself has an excellent catalytic effect on the CL reactions. The novel bifunctional CL probe array has been applied to the high-throughput determination of a variety of biochemical substances.
     (1) A novel bifunctional CL probe array for the determination of glucose in human serum.
     A new CL probe array assay approach was first developed. The new CL probe array was based on Co3O4-SiO2mesoporous nanocomposite material, which not only has an excellent catalytic effect on the luminol-H2O2CL reaction in alkaline medium but also can be used for the immobilization of enzymes. As a model, the novel bifunctional CL probe array has been applied to the high-throughput determination of glucose in human. The linear range of the glucose concentration was3-90μM and the detection limit was0.36μM.
     (2) A novel bifunctional CL probe array for the determination of lactose in milk was established.
     In our work, we further explored the mesoporous Co3O4-SiO2bifunctional CL probe array. The new type CL probe array was also based on enzyme mimics of Co3O4-SiO2mesoporous nanocomposite material, which not only have an excellent catalytic effect on the luminol-H2O2CL reaction in alkaline medium but also can be used for the immobilization of enzymes.β-galactosidase and glucose oxidase were selected as a model for enzyme assays to demonstrate the applicability of Co3O4-SiO2mesoporous nanocomposite material in multienzyme immobilization. It is different from the traditional probe. The linear range of the lactose concentration was3.0×10-7to1.0×10-5g·mL-1and the detection limit was6.9×10-8g·mL-1. It has been successfully applied to determine lactose in milk.
     (3)A novel CL sensor array combined with mesoporous enzyme reactor for high-throughput determination of glucose in human serum
     A novel enzyme reactor was prepared by calcium alginate fiber and amino modified nanosized mesoporous silica (CAF-AMNMS) as support. Combination the adsorption of enzyme on AMNMS with the cage effect of the polymer greatly increases catalytic activity and stability of immobilized enzyme. It was showed that the lifetime, stability and catalytic activity of enzyme reactor greatly improved by incorporating AMS into CAF to efficiently encapsulate enzyme. Glucose oxidase ((pI=4.0)) was chosen as a model enzyme to explore the possibility of CAF-AMNMS as a matrix for enzyme immobilization in the design of a CL microreactor. The unique sensor array combined with the enzyme reactor has been successfully applied to the high-throughput determination of glucose in human
引文
[1]Ashby M. Nanomaterials, nanotechnologies and design:an introduction for engineers and architecls[M]. Oxford:Elsevier Inc,2009.
    [2]Alivisatos A. P. Perspectives on the physical chemistry of semiconductor nanocrystals[J]. J. Phys. Chem.,1996,100(31):13226-13239.
    [3]张立德,牟季美.纳米科学和纳米结构[M].北京.科学出版社,2001:15-17.
    [4]王琛、杨延莲.纳米科技及发展前景[M].纳米科技创新方法研究.2012,1:1-55.
    [5]Alivisatos A. P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271(5251):933-937.
    [6]Herr U., Kuerbanjiang B., Benel C., Papageorgiou G., Goncalves M., Boneberg J., Leiderer P., Ziemann P., Marek P., Hahn H. Near-field effects and energy transfer in hybrid metal-oxide nanostructures[J]. Beilstein J. Nanotechnol.2013,14(4): 306-317.
    [7]Forloni G. Responsible nanotechnology development J]. J. Nanopart. Res.,2012, 14(8):1007/1-1007/17.
    [8]Zhang H. G., Zhu Q. S., Wang Y., Zhang C. Y., Tao L. Low-cost synthesis of hollow Cu2O octahedral with more than one shell[J]. Mater. Lett.,2007,61(23-24): 4508-4511
    [9]Tanaka M., Watanabe T. Vaporization mechanism from Sn-Ag mixture Ar-H2 are nanoparticle preparation [J].Thin Solid Film,2008,516 (19):6645-6649.
    [10]Maccato C., Davide, Barreca G., Gasparotto A., Gombac V. Photoassisted H2 production by metal oxide nanomaterials fabricated through CVD-based approaches[J]. Surf. Coat. Technol.,2013,230:219-227.
    [11]Hongyan M., Changsheng D. Antimony-doped tindioxide nanometer powders prepared by the hydro-thermal method[J]. Microelectron. Eng.,2003,66(1-4): 142-146.
    [12]Hu Y. H., Zhang H. H. Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method[J]. J. Alloys Compd.,2007,428(1-2):327-331.
    [13]Chen H. Y., Chang H. Y. Synthesis ofnanocrystalline cerium oxide particles by the precipitation method [J]. Ceram. Int.,2005,31(6):795.
    [14]KanadeK G., Kale B. B., Aiyer R. C., Das B. K. Effect of solvents on the synthesis of nano-size zinc oxide and its properties [J]. Materials Research Bulletin,2006,41: 590-600.
    [15]Shiraishi Y., Saito N., Hirai T. Adsorption-driven photocatalytic activity ofmesoporous titanium dioxide[J]. J. Am. Chem. Soc,2005,127:12820-12822.
    [16]Wang C. Y., Zhou Y., Mo X., Jiang W. Q., Chen B., Chen Z. Y. Synthesis of Fe3O4 Powder by a novel are discharge method[J]. Mater. Res. Bull.,2003,5(5):755-759.
    [17]Xiao H., Ai Z. H., Zhang L. Z. Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal mierospheres as novel adsothents for waste water treatment[J]. J. Phys.Chem. C,2009,113(38):16625-16630.
    [18]Kong L. B., Ma J. PZT ceramics formed directly from oxides via oxides via reactive sintering [J]. Mater. Lett.,2001,51:95.
    [19]徐国财.纳米科技导论[M].北京:高等教育出版社,2005
    [20]汪信,刘孝恒.纳米材料化学[M].北京:化学工业出版社,2005
    [21]倪星元,姚兰芳,沈军.纳米材料制备技术[M].北京:化学工业出版社,2007
    [22]Kresge L. T., Leonomicz M. E., Roth W. J., Vartuli J. C., Beck J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710-712.
    [23]Zhao L., Qin H. Q, An R., Wu H. F. Recent advances of mesoporous materials in sample preparation [J]. J. Chromatogr. A,2012,1228:193-204.
    [24]Li W., Zhao D. Y. An overview of the synthesis of ordered mesoporous materials. Chem. Commun.,2013,49:943-946.
    [25]Bi H. P., Guan M., Li J. C., Liu T. H. Synthesis and properties of novel functional mesoporous materials[J]. J. Porous Mat.,2013,20(5):1299-1304
    [26]Tuysuz, H., Schuth, F. Ordered Mesoporous Materials as Catalysts[J]. Adv. Synth. Catal.,2012(55):127-239.
    [27]Builes S., Lopez-Aranguren P., Fraile J., Vega L. F., Domingo C. Alkylsilane-functionalized microporous and mesoporous materials:molecular simulation and experimental analysis of gas adsorption [J]. J. Phys. Chem.,2012,116:10150-10161.
    [28]Zhang W. J., Wang H., Han J. Y., Song, Z. Q. Multifunctional mesoporous materials with acid-base frameworks and ordered channels filled with ionic liquid:synthesis, characterization and catalytic performance of Ti-Zr-SBA-15-IL[J]. Applied Surface Science,258(16):6158-6168.
    [29]Nakahiraa A., Hamadaa T., Yamauchi Y. Synthesis and properties of dense bulks for mesoporous silica SBA-15 by a modified hydrothermal method[J]. Mater. Lett.,2010, 19 (15):2053-2055.
    [30]Barry N. P. E., Sadler P. J. Challenges for metals in medicine:How nanotechnology may help to shape the future[J]. ACS Nano,2013,7(7):5654-5659.
    [31]Hagendorfer H., Lorenz C., Kaegi R., Sinnet B., Gehrig, R., Goetz N. V., Scheringer M., Ludwig C., Ulrich A. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles[J]. J. Nanopart. Res.,2010,12 (7):248-2494.
    [32]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [33]张阳德.纳米生物技术学[M].北京:科学出版社,2005.
    [34]薛增泉.纳米科技基础[M].北京:化学工业出版社,2012:1-105.
    [35]唐元洪,斐立宅,赵新奇.纳米材料导论[M].湖南长沙:湖南大学出版社,2011.
    [36]李群.纳米材料制备与应用技术[M].北京:化学工业出版社,2008.
    [37]Hassellovi M., Jonerj E., Teresa F. F. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterization[J]. Sci. Total. Environ.,2010,408(7):1745-1754.
    [38]Aitken R. J., Chaudhry M.Q., Boxall A. B., Hull M. Manufacture and use of nanomaterials:current status in the UK and global trends[J].2006,56:300-306.
    [39]Ramsden J. Nanotechnology for military applications [J].Nanotechnology Perceptions, 2012,8(2):99-131.
    [40]杨志伊.纳米科技[M].北京:机械工业出版社,2004.
    [41]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    [42]高廉.纳米陶瓷[M].北京:化学工业出版社,2002.
    [43]曾令可.纳米陶瓷技术[M].北京:化学工业出版社,2006.
    [44]李凤生.微纳米技术与精细化工[M].中国石化出版社,2009.
    [45]周瑞法,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003.
    [46]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社,2006.
    [47]袁哲俊.纳米科学与技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [48]张秀芝.纳米涂料的制备及应用[M].出版社:化学工业出版社,2013.
    [49]林志东.纳米材料基础与应用.北京:北京大学出版社,2010.
    [50]邓鹏图.纳米过渡金属氧化物的制备及其在固体火箭推进剂燃烧中的应用[D]. 长沙:国防科技大学,1997.
    [51]张晓宏.纳米氧化剂在双基推进剂中的应用研究[D].北京:北京理工大学,2000.
    [52]黄开金.纳米材料的制备及应用[M].冶金工业出版社,2009.
    [53]Survase D. V. S, Gupta M., Asthana S. N. The effect of Nd2O3 on thermal and ballisticproperties of ammoniumperchlorate (AP) based compositepropellants[J]. Prog. Cryst. Growth Charact. Mater.,2002,5:16-1165.
    [54]李学慧.纳米磁性液体.北京:科学出版社,2009.
    [55]Xuan S. H., Jiang W. Q., Gong X. L., Hu Y, Chen Z. Y. Magnetically separable Fe3O4/TiO2 hollow spheres:fabrication and photocatalytic activity[J]. J. Phys. Chem. 2009,113:553-558.
    [56]Cheng B., Le Y., Yu J. G. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires[J]. J. Hazard. Mater.,2010,177: 971-977.
    [57]Vione D., Minero C., MaurinoV., Carlottib M. E., Picatonottoa T., Pelizzettia E. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst[J]. Appl. Catal. B:Environ.,2005,58:81-90.
    [58]Agrawal M., Gupta S., Pich A., Zafeiropoulos N. E., Stamm M. A Facile Approach to Fabrication of Zno-Tio2 Hollow Spheres[J]. Chem. Mater.,2010,21:5343-5348.
    [59]Yang H. Y., Yu S. F., Lau S. P., Zhang X. W., Sun D. D., Jun G. Direct growth of ZnO nanocrystals onto the surface of porous TiO2 nanotube arrays for highly efficient and recyclable photocatalysts[J]. Small,2009,5:2260-2264.
    [60]Wu L., Yu J. C., Fu X. Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation[J]. J. Mol。 Catala.,2006,244:25-32.
    [61]Shuming N., Yun X., Gloria J., Kim, Jonathan W., Simons. Nanotechnology a applications in cancer[J]. Annu. Rev. Biomed. Eng.,2007,9:257-288.
    [62]孙恩杰.纳米生物学[M].化学工业出版社.2010.
    [63]高志贤.纳米生物医药[M].化学工业出版社.2007.
    [64]Won J., Kim M., Yi Y. W., Kim Y. H., Jung N., Kim T. K. A magnetic nanoprobe technology for detecting molecular interactions in live cells [J]. Science,2005,309 (5731):121-125.
    [65]Batchelor-McAuley C, Wildgoose G. G, Compton R. G, Shao L. D. Green M. L. H. Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using[J]. Sens. Actuators, B,2008,132:356-3650.
    [66]Salimi A., Sharifi E., Noorbakhsh A., Soltanian S. Immobilization of glucose on electrodeposited nickel oxide nanoparticles:direct electron transfer and electrocatalytic activity[J]. Biosens. Bioelectron.,2007,22:3146-3153.
    [67]史塔古夫.纳米电化学[M].北京:化学工业出版社,2010.
    [68]Huang X. J., Liu J. H., Shao D. L., Pi Z. X., Yu Z. L. Rectangular made ofoperation for detecting pesticide residue by using a single SnO2-based gas sensor[J]. Sens. Actuator B,2003,96:630-635.
    [69]Viswanathan S., Rani C., Delerue-Matos C. Ultrasensitive detection of ovarian cancer marker using immunoliposomes and gold nanoelectrodes[J]. Anal. Chim. Acta,2012,726:79-84.
    [70]Aronova M. A., Chang K. S., Takeuchi I., Jabs H., Westerheim D., Gonzalez-Martin A., Kim J., Lewis B. Combinatorial libraries of semiconductor gas sensors as inorganic electronic nose[J]. Appl. Phys. Lett.,2003,83:1255-1257.
    [71]Li C. Y., Wang C. F., Wang C. H., Hu S. H. Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode [J]. Sens. Actuator B,2006,117:166-171.
    [72]Kobayashi Y., Martin C. R. Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes[J]. Anal. Chem.,1999,71:3665-3672.
    [73]Zhao G., Xu J. J., Chen H. Y. Fabrication. Characterizationof Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin [J]. Electrochem. Commun,2006,8(3):148-154.
    [74]Panayotov D., Kondratyuk P., Yates J. T. Photooxidation of a mustard gas simulant over TiO2-SiO2 mixed-oxide photocatalyst:site poisoning by oxidation products and reactivation[J]. Langmuir,2004,20:3674-3678.
    [75]Liu G. D., Lin Y. H. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents[J]. Anal. Chem.,2005, 77:5894-5901.
    [76]Du D., Ye X. P., Zhang J. D., Zeng Y., Tu H. Y., Zhang A. D., Liu D. L. Stripping voltammetric analysis of organophosphate pesticiddes based on solidphase extraction at zirconia nanoparticles modified electrode[J]. Electrochem. Commun.,2008,10: 686-690.
    [77]Michalkova A., Ilchenko M., Gorb L., Shishkin O. V., Leszczynska D., Leszczynski J. Theoretical study of the adsorption and decomposition of sarin on magnesium oxide[J]. J. Phys. Chem. B,2004,108:5294-5303.
    [78]Baldini F., Giannetti A., Trono C. Fundamentals of optical chemical sensors[J]. Optochemical Nanosensors,2013:35-50.
    [79]Tsaplev, Yu. B. Chemiluminescence determination of hydrogen peroxide[J]. J. Anal. Chem.,2012,67(6):506-514
    [80]Kricka L. J. Clinical applications of chemilumineseenee[J]. Anal. Chim. Acta, 2003,500 (12):279-286.
    [81]Huang X. J., Wang S. L., Fang Z. L. Determination of organic acids in fermentationproducts of milk [J]. Anal. Chim. Acta,2002,456(2):167-175.
    [82]Gubitz G., Scllmid M. G. Chemiluminescence flow-injection immunoassays [J]. Crit. Rev. Anal. Chem.,2001,31(2):141-148.
    [83]Lin Z., Chen H., Lin J. M. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry. Analyst,2013,138 (18):5182-5193
    [84]Ferreira E. C., Rossia V. Chemiluminescence as an analytical tool:from the mechanism to applications of thereaction of luminol in kinetic based methods[J]. Quim Nova,2002,25(6):1003-1011.
    [85]Albrecht H. O, Uber D. Chemiluminescent desaminophthalsaurehydrazids [J]. J. Phy. Chem.,1928,136:320-321.
    [86]Tokel N. E., Bard A. J. Electrogenerated chemiluminescence.IX. Electrochemistry and emission from systems containing tris (2,2'-bipyridine) ruthenium(II)dichloride[J]. J. Am. Chem. Soc,1972,94(8):2862-2863.
    [87]Qiu H. B., Yan J. L., Sun X. H., Liu J. F., Cao W. D.,Yang X. R., Wang E. K. Microchip capillary electrophoresis with an integrated indium Tin Oxide electrode-based electrochemiluminescence detector[J]. Anal. Chem,2003,75(20): 5435-5440.
    [88]Cui Y.,Duan J.,Lin S., Chen G. N. Flow injection analysis system equipped with a newly designed electrochemiluminescent detector and its application for detection of 2-thiouracil[J]. Anal. Chem.,2006,78(5):1568-1573.
    [89]Lee J. K., Lee S. H., Kim M, Kim D. H., Lee W.Y. Organosilicate thin film containing Ru(bpy)32+for an electrogenerated chemiluminescence (ECL) sensor [J]. Chem. Comm.,2003,13:1602-1603.
    [90]Wang X., Bobbitt D. R. Electrochemically generated Ru(bpy)33+-based chemiluminescence detection in micellar electrokinetic chromatography[J]. Talanta, 2000,53(2):337-345.
    [91]Zhuang Y., Ju H. Study on electrochemiluminesce of Ru(bpy32+immobilized in a titania sol-gel membrane[J]. Electroanalysis,2004,16(17):1401-1405.
    [92]Grinberg A. A. Spektren emissionsfahiger stoffebei erregung durch licht und durch chemische reaktionen [J]. J. Phys. Chem. Sco.,1920,52:151.
    [93]Kim D. J., Lyu Y. K., Choi H. N. Min I. H. Lee W. Y. Nafion-stabilized magnetic nanoparticles(Fe304)for[Ru(bpy)(3)](2+)(bpy=bipyridine)electrogenerated chemilumin-escence sensor[J]. Chem. Commun.,2005,23:2966-2968.
    [94]Abbott R. W., Townshend A. Determination of morphine in body fluids by high-performanceliquid chromatography with chemiluminescence detection[J]. Anal. Proc.,1986,23:25.
    [95]Abbott R. W., Townshend A., Gill R. Determination of morphine by flow injection analysis with chemiluminescence detection[J]. Analyst,1986,111:635.
    [96]Alwarthan A. A., Townshend A. Chemiluminescence determination of buprenorphine hydrochloride by flow injection analysis[J]. Anal. Chim. Acta,1986, 185:329.
    [97]Abbott R. W., Townshend A., Gill R. Determination of morphine in body fluids by high-performance liquid chromatography with chemiluminescence detection[J]. Analyst,1987,112:397.
    [98]Al-tarmrah S. A., Townshend A. Molecular emission cavity analysis determination of tin after conversion to its volatile hydride [J]. Anal. Chim. Acta.,1987,202:247.
    [99]Townshend A. Solution chemiluminescence some recent analytical developments. Plenary lecture [J]. Analyst,1990,115:495.
    [100]Ahmed T. E. A., Townshend A. Flow-injection chemiluminescence determination of the hydrazones of aromatic ketones [J]. Anal. Chim. Acta,1994,292:169.
    [101]Breysse M., Claudel B., Faure L. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface[J]. J. Catalysis.,1976,45:137-144.
    [102]Zhang Z. Y., Xu K., Baeyens W. R. G., Zhang X. R. An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors[J]. Anal. Chim. Acta,2005,535:145-152.
    [103]Wurzinger O., Reinhardt G. CO sensing properties of doped SnO2 sensors in H2 rich gases[J]. Sens. Actuators, B,2004,103(1-2):104-110.
    [104]Zhu,Y. Shi J., J., Zhang Z., Zhang C., Zhang Z. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide[J]. Anal. Chem.,2002,74(1): 120-124.
    [105]Nakagawa, M. A new chemiluminescence-based sensor for discriminating and determining constituents in mixed gases[J]. Sens. Actuator, B:Chem,1995,29(1-3): 94-100.
    [106]Zhang Z. Y., Zhang S. C., Zhang X. R. Recent developments and applications of chemiluminescence sensors[J]. Anal. Chim. Acta,2005,541(1-2):37-47.
    [107]Zach M., Hagglimd C., Chakarov D., Kasemo B. Nanoscience and nanotechnology for advanced energy systems[J]. Curr. Opin. Solid State Mater. Sci.,2006,10(3-4): 132-143.
    [108]Xie J. X., Huang Y. M. Co3O4 nanoparticles-enhanced luminol chemiluminescence and its application in H2O2 and glucose detection[J]. Anal. Methods,2011,3: 1149-1155.
    [1]林金明.化学发光基础理论与应用[M].北京,化学工业出版社:2004,2:33.
    [2]Kugimiya A. Fukada R., Funamoto D. A. Luminol chemiluminescence method for sensing histidine and lysine using enzyme reactions[J]. Anal. Chem.,2013, 443(1):22-26.
    [3]Voicescu M., Vasilescu M., Meghea A. Energy transfer from the aminophthalate dianion to fluorescein[J]. Fluorescein J. of Fluores.,2000,10(3):229-236.
    [4]Merenyi G, Lind J. S. Role of a peroxide intermediate in the chemiluminescence of luminol[J]. J. Am. Chem. Soc.,1980,102:5830-5835.
    [5]Navas Diaz A., Gonzalez Garcia J. A., Lovillo J. Enhancer effect of fluorescein on the luminol-H2O2-horseradish peroxidase chemiluminescence:energy transfer process[J]. Luminescence,1997,12:199-205.
    [6]Miyazawa T., Fujimoto K., Suzuki T., Yasuda K. Determination of phospholipid hydroperoxide using luminol chemiluminescence-high performance liquid chromatography[J]. Methods Enzymol.,1994,233:324-332.
    [7]Xiao C. B., King D. W., Palmer D. A., Wesolowski D. J. Study of enhancement effects in the chemiluminescence method for Cr (Ⅲ) in the ng L-1 range[J]. Anal. Chim. Acta,2000,415:209-219.
    [8]Liu Y. M., Liu Er-Bao, Cheng Jie-Ke. Ultrasensitive chemiluminescence detection of sub-fM level Co (Ⅱ) in capillary electrophoresis[J]. J. Chromatogr. A,2001,939: 91-97.
    [9]Yang M., Liu R., Xu Y., Zou Y., Song X. A sequential injection analysis/chemiluminescent plant tissue-based biosensor system for the determination of diamine[J]. Biosens. Bioelectron.,2007,22:871-876.
    [10]Amini N., McKelvie I. An enzymatic flow analysis method for the determination of phosphatidylcholine in sediment pore waters and extracts[J]. Talanta,2005,66: 445-452.
    [11]Economou A., Panoutsou P., Themelis D. Enzymatic chemiluminescent assay of glucose by sequential-injection analysis with soluble enzyme and on-line sample dilution[J]. Anal. Chim. Acta,2006,572:140-147.
    [12]Moliner-Martinez Y., Mesegrer-Lloret S., Tortajada-Genaro L. A., Campins-Falco P. Influence of water sample storage protocols in chemiluminescence detection of trace elements[J]. Talanta,2003,60:257-268.
    [13]Ren J. C., Huang X. Y. Sensitive and universal indirect chemiluminescence detection for capillary electrophoresis of cations using cobalt(Ⅱ) as a probe ion[J]. Anal. Chem., 2001,73:2663-2668.
    [14]Perez F. J., Rubio S. An improved chemiluminescence method for hydrogen peroxide determination in plant tissues[J]. Plan Growth Regulation,2006,48:89-95.
    [15]Greenway G. M., Leelasattarathkul T., Liawruangrath S., Wheatley R. A., Youngvises N. Ultrasound-enhanced flow injection chemiluminescence for determination of hydrogen peroxide[J]. Analyst,2006,131:501-508.
    [16]Economou A., Clark A. K., Fielden P. R. Determination of Co (Ⅱ) by chemiluminescence after in situ electrochemical pre-separation on a flow-through mercury film electrode[J]. Analyst,2001,126:109-113.
    [17]Yuan J. C., Shiller A. M.. The variation of hydrogen peroxide in rainwater over the South and Central Atlantic Ocean [J]. Atmos. Environ.,2000,34:3973-3980.
    [18]Campins-Falco P., Tortajada-Genaro L. A., Meseguer-Lloret S., Bosch-Reig F. Multivariate calibration applied to simultaneous chemiluminescence determination of cobalt and chromium[J]. Anal. Bioanal. Chem.,2002,374:1223-1229.
    [19]Campins-Falco P., Tortajada-Genaro L. A., Bosch-Reig F. A new flow cell design for chemiluminiscence analysis[J]. Talanta,2001,55:403-413.
    [20]Carretero A. S., Fernandez J. R., Bowiea A. R, Worsfold P. J. Acquisition of chemiluminescence spectral profiles using a continuous flow manifold with two dimensional CCD detection[J]. Analyst,2000,125:387-390.
    [21]Tortajada-Genaro L. A., Campins-Falco P., Verdu-Andres J., Bosch-Reig F. Multivariate versus univariate calibration for nonlinear chemiluminescence data Application to chromium determination by luminol-hydrogen peroxide reaction[J]. Anal. Chim. Acta,2001,450:155-173.
    [22]Paleologos E. K., Vlessidis A. G, Karayannis M. I., Evmiridis N. P. On-line sorption preconcentration of metals based on mixed micelle cloud point extraction prior to their determination with micellar chemiluminescence application to the determination of chromium at ng. L-1 levels[J]. Anal. Chim. Acta,2003,477: 223-231.
    [23]Aum W. S., Threeprom J., Li H. F., Lin J. M. Determination of chromium (Ⅲ) and total chromium using dual channels on glass chip with chemiluminescence detection [J]. Talanta,2007,71:2062-2068.
    [24]Tortajada-Genaro L. A., Campins-Falco P. Multivariate standardisation for non-linear calibration range in the chemiluminescence determination of chromium [J]. Talanta, 2007,72:1004-1012.
    [25]Liu Y. M., Liu Z. L., Shi Y. M., Tian W. The determination of glutamine with flow-injection chemiluminescence detection and mechanism study[J]. Luminescence, 2010,25:50-54.
    [26]Wen Y. Q., Yuan H. Y, Mao J. F., Xiao D., Martin M., Choi F. Droplet detector for the continuous flow luminol-hydrogen peroxide chemiluminescence system[J]. Analyst,2009,134:354-360.
    [27]Yang W. P., Zhang Z. J., Deng W. Simultaneous, sensitive and selective on-line chemiluminescence determination of Cr(III) and Cr(VI) by capillary electrophoresis [J]. Anal. Chim. Acta,2003,485:169-177.
    [28]Huang X. J., Pu Q. S., Fang Z. L. Capillary electrophoresis system with flow injection sample introduction and chemiluminescence detection on a chip platform [J]. Analyst,2001,126:281-284.
    [29]Parejo I., Petrakis C., Kefalas P. A transition metal enhanced luminol chemiluminescence in the presence of a chelator [J]. J. Pharmacol. Toxicol. Methods, 2000,43:183-190.
    [30]Uzu T., Sasaki S. A new copper (II) complex as an efficient catalyst of luminol chemiluminescence [J]. Org. Lett.,2007,9:4383-4386
    [31]Wu F. Q., Huang Y. M., Huang C. Z. Chemiluminescence biosensor system for lactic acid uing natural animal tissue as recognition element[J]. Biosens. Bioelectron.,2005, 21:518-522.
    [32]Wu F. Q., Huang Y. M., Li Q. Animal tissue-based chemiluminescence sensing of uric acid[J]. Anal. Chim. Acta,2005,536:107-113.
    [33]Martelli P. B., Reis B. F., Araujo A. N., Conceicao M., Montenegro B. S. M., A flow system with a conventional spectrophotometer for the chemiluminescent determination of lactic acid in yoghurt [J]. Talanta,2001,54:879-885.
    [34]Li B. X., Zhang Z. J. Chemiluminescence flow biosensor for determination of total D-amino acid in serum with immobilized reagents[J]. Sens. Actuators, B,2000,69: 70-74.
    [35]Lv Y, Zhang Z. J., Chen F. N. Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents[J]. Talanta,2003,59:571-576.
    [36]Nakamura H., Abe Y, Koizumi R., Suzuki K., Mogi Y, Hirayama T., Karube I. A chemiluminescence biochemical oxygen demand measuring method[J]. Anal. Chim. Acta,2007,602:94-100.
    [37]Li Z. P., Wang Y C., Liu C. H., Li Y. K. Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay[J]. Anal. Chim. Acta,2005,551:85-91.
    [38]Parejo I., Petrakis C., Kefalas P. A transition metal enhanced luminol chemiluminescence in the presence of a chelator[J]. J. Pharmacol. Toxicol. Methods, 2000,43:183-190.
    [39]Bezzi S., Loupassaki S., Petrakis C., Kefalas P., Calokerinos A. Evaluation of peroxide value of olive oil and antioxidant activity by luminol chemiluminescence [J]. Talanta,2008,77:642-646.
    [40]Armata M., Gabrieli C., Termentzi A., Zervou M., Kokkalou E. Constituents of sideritis syriaca. ssp. syriaca (Lamiaceae) and their antioxidant activity [J]. Food Chem.,2008,111:179-186.
    [41]Gabrieli C. N., Kefalas P. G, Kokkalou E. L. Antioxidant activity of flavonoids from Sideritis raeseri[J]. J. Ethnopharmacol.,2005,96:423-428.
    [42]Giokas D. L., Vlessidis A. G., Evmiridis N. P. On-line selective detection of antioxidants free-radical scavenging ctivity based on Co(Ⅱ)/EDTA-induced luminol hemiluminescence by flow injection analysis[J]. Anal. Chim. Acta,2007,589:59-65.
    [43]Parejo I., Codina C., Petrakis C., Kefalas P. Evaluation of scavenging activity assessed by Co (Ⅱ)/EDTA-induced luminol chemiluminescence and DPPH (2, 2-diphenyl-l-picrylhydrazyl) free radical assay [J]. J. Pharmacol. Toxicol. Methods, 2000,44:507-512.
    [44]Atanassova D., Kefalas P., Psillakis E. Measuring the antioxidant activity of olive oil mill wastewater using chemiluminescence [J]. Environ. Int.,2005,31:275-280.
    [45]Rongen H. A. H., van der Horst H. M., Oosterhout A. J. M., Bult A., van Bennekom W. P. Application of xanthine oxidase-catalyzed luminol chemiluminescence in a mouse interleukin-5 immunoassay[J]. Journal of Immounological Methods,1996, 197:161-169.
    [46]Yang C. Y., Zhang Z. J. Flow-injection chemiluminescence determination of uric acid based on diperiodatoargentate (Ⅲ) oxidation [J]. Talanta,2010,81:477-481.
    [47]Yang C. Y, Zhang Z. J., Wang J. L. New luminol chemiluminescence reaction using tetravalent nickel-periodate complex as an oxidate and its applications [J]. Microchim. Acta,2009,167 (1-2):91-96.
    [48]Alpeeva I. S., Sakharov I. Y. Luminol-hydrogen peroxide Chemiluminescence produced by sweet potato peroxidase [J]. Luminescence,2007,22:92-96.
    [49]Li B. X., Zhang Z. J., Jin Y. Plant tissue-based chemiluminescence flow biosensor for determination of unbound dopamine in rabbit blood with on-line microdialysis sampling [J]. Biosens. Bioelectron.,2002,17:585-589.
    [50]Janasek D., Spohn U. A chemiluminometric FIA procedure for the enzymatic determination of L-aspartate [J]. Sens. Actuators, B,2001,74:163-167.
    [51]Li B. X., Zhang Z. J., Jin Y. Plant tissue-based chemiluminescence flow biosensor for glycolic acid [J]. Anal. Chem.,2001,73:1203-1206.
    [52]Kuroda N., Murasaki N., Wada M., Nakashime K. Application of an enhanced luminol chemiluminescence reaction using 4-[4,5-di (2-pyridyl)-1H-imidazol-2-yl]phenylboronic acid to photographic detection of horseradish peroxidase on a membrance [J]. Luminescence,2001,16:167-172.
    [53]Sanchez F. G., Diaz A. N., Bracho V., Aguilar A., Algarra M. Automated determination of asulam by enhanced chemiluminescence using luminol/peroxidase system [J]. Luminescence,2009,24:448-452.
    [54]Li B. X., Zhang Z. J., Jin Y. Chemiluminescence flow biosensor for hydrogen peroxide with immobilized reagents [J]. Sens. Actuators, B,2001,72:115-119.
    [55]Ichibangase T., Ohba Y, Kishikawa N., Nakashima K., Kuroda N. Chemiluminescence assay of lipase activity using a synthetic substrate as proenhancer for luminol chemiluminescence reaction[J]. Luminescence,2004,19: 259-264.
    [56]Lv Y, Zhang Z. J., Chen F. N. Chemiluminescence biosensor chip based on a microreactor using carrier air flow for determination of uric acid in human serum [J]. Analyst,2002,127:1176-1179.
    [57]Li B. X., Lan D., Zhang Z. J. Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform [J]. Anal. Biochem.,2008,374:64-70.
    [58]Wolter A., Niessner R., Seidel M. Detection of escherichia coli O157:H7, salmonella typhimurium, and legionella pneumophila in water using a flow-through chemiluminescence microarray readout system[J].Anal. Chem.,2008,80: 5854-5863.
    [59]Nozaki O., Kawamoto H. Determination of hydrogen peroxide by micro-flow injection-chemiluminescence using a coupled flow cell reactor chemiluminometer[J]. Luminescence,2000,15:137-142.
    [60]Karsunke X. Y. Z., Niessner R., Seidel M. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria [J]. Anal. Bioanal. Chem.,2009,395:1623-1630.
    [61]Varsamis D. G, Touloupakis E., Morlacchi P., Ghanotakis D. F., M. Giardi T., Cullen D. C. Development of a photosystem II-based optical microfluidic sensor for herbicide detection [J]. Talanta,2008,77:42-47.
    [62]Inoue K. Y, Ino K., Shiku H., Kasai S., Yasukawa T., Mizutani F., Matsue T. Electrochemical monitoring of hydrogen peroxide released from leucocytes on horseradish peroxidase redox polymer coated electrode chip[J]. Biosens. Bioelectron., 2010,25(7):1723-1728.
    [63]Hong H. C., Huang H. J. Flow injection analysis of uric acid with a uricase-and horseradish peroxidase-coupled sepharose column based luminol chemiluminescence system [J]. Anal. Chim. Acta,2003,499:41-46.
    [64]Zhou G. J., Wang G., Xu J. J., Chen H. Y. Reagentless chemiluminescence biosensor for determination of hydrogen peroxide based on the immobilization of horseradish peroxidase on biocompatible chitosan membrance[J]. Sens. Actuators B,2002,81: 334-339.
    [65]Kuroda N., Shimoda P., Wada M., Nakashima K. Lophine derivatives and analogues as new phenolic enhancers for the luminol-hydrogen peroxide-horseradish peroxidase chemiluminescence system[J]. Anal. Chim. Acta,2000,403:131-136.
    [66]Ren S. Q., Wang X., Tang B. J., Hu G. M., Li Z. J., Nan G. N., Lin J. M.. Micro-plate chemiluminescence enzyme immunoassay for clinical determination of progesterone in human serum[J]. Chin. J. Anal. Chem.,2008,36:729-734.
    [67]Jin H., Wang X., Xin T. B., Gao P., Lin J. M., Liang S. X. Microplate chemiluminescence enzyme immunoassay for the quantitative evaluation of carbohydrate antigen 72-4 in human serum[J]. Chin. Sci. Bull.,2008,53:2958-2963.
    [68]Lin J. H., Zhang H., Zhang S. S. New bienzymatic strategy for glucose determination by immobilized-gold nanoparticle-enhanced chemiluminescence[J]. Sci. China, Ser. B,2009,52:196-202.
    [69]Nozaki O., Kawamoto H. Reactivation of horseradish peroxidase with imidazole for continuous determination of hydrogen peroxide using a microflow injection-chemiluminescence detection system[J]. Luminescence,2003,18:203-206.
    [70]Nozaki O., Kawamoto H. Reactivation of inactivated horseradish peroxidase with ethyleneurea and allantoin for determination of hydrogen peroxide by micro-flow injection horseradish peroxidase-catalyzed chemiluminescence[J]. Anal. Chim. Acta, 2003,495:233-238.
    [71]Kasai S., Hirano Y., Motochi N., Shiku H., Nishizawa M., Matsue T. Simultaneous detection of uric acid and glucose on a dual-enzyme chip using scanning electrochemical microscopy/scanning chemiluminescence microscopy [J]. Anal. Chim. Acta,2002,458:263-270.
    [72]Sun Wei, Jiang hong, Jiao kui. Electrochemical determination of hydrogen peroxide using o-dianisidine as substrate and hemoglobin as catalyst[J]. Chem. Sci.,2005, 117(4):317-322.
    [73]Zhang K., Mao L., Cai R. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst[J]. Talanta,2000,51 (1):179-186.
    [74]Zhang J. R., Cazers A. R., Lutzke B. S., Hall E. D. HPLC-chemiluminescence and thermospray LC/MS study of hydroperoxides generated from phosphatidylcholine [J]. Free Radical Bio. Med.,1995,18:1-10.
    [75]Li B. X., Zhang Z. J., Zhao L. X. Chemiluminescent flow-through sensor for hydrogen peroxide based on sol-gel immobilized hemoglobin as catalyst[J]. Anal. Chim. Acta,2001,445:161-167.
    [76]Santos V. R. D., Paula W. X., Kalapothakis E. Influence of the luminol chemiluminescence reaction on the confirmatory tests for the detection and characterization of bloodstains in forensic analysis[J]. Forensic Sci. Int.,2009,2: 196-197.
    [77]Azizova O. A., Piryazev A. P., Sherstnev M. P., S. Drinitsina V., Lopukhin Y. M. Chemiluminescence assay of the antioxidant state in patients with atherosclerosis [J]. Bull. Exp. Biol. Med.,2001,131:524-526.
    [78]Zhou S. L., Wang J. H., Huang W. H., Lu X., Cheng J. K. Monitoring the reaction of hemoglobin with hydrogen peroxide by capillary electrophoresis-chemiluminescence detection [J]. J. Chromatogr. B,2007,850:343-347.
    [79]Zhi Q., Xie C., Huang X. Y., Ren J. C. Coupling chemiluminescence with capillary electrophoresis to analyze single human red blood cells [J]. Anal. Chim. Acta,2007, 583:217-222.
    [80]Luo L. R., Zhang Z. J., Ma L. F. A design of reaction-controlled chemiluminescence imaging and its application [J]. Anal. Chim. Acta,2005,543:222-228.
    [81]Nakamra M., Nakamra S. One-and two-electron oxidations of luminal by peroxidase systems [J]. Free Radical Bio. Med.,1998,24:537-544.
    [82]Candy T. E. G, Jones P. Attenuation of 4-I-phenol-enhanced chemiluminescence by non-enhancer phenols [J]. J. Biolumin. Chemilum.,1991,6:239-243.
    [83]Vlasenko S. B., Arefyev A. A., Klimov A. D., Kim B. B., Gorovits E. L., A. P. Osipov, E. M. Gavrilova, A. M. Yegorov. An investigation on the catalytic mechanism of enhanced chemiluminescence:immunochemical applications of this reaction [J]. J. Biolumin. Chemilumin.,1989,4:164-176.
    [84]Hodgson M., Jones P. Enhanced chemiluminescence in the peroxidase-luminol-H2O2 system:Anomalous reactivity of enhancer phenols with enzyme intermediates [J]. J Biolumin. Chemilumin.,1989,3:21-25.
    [85]Navas D. A., Garcia S. F., Gonzalez G. J. A. Enhancement and inhibition of luminol chemiluminescence by phenolic acids [J]. J. Biolumin. Chemlumin.,1995,10: 175-184.
    [86]Zhang Z. F., Cui H., Lai C. Z., Liu L. J. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications [J]. Anal. Chem.,2005,77: 3324-3329.
    [87]Yang P., Chen Y. H., Zhu Q. Y., Wang F. W., Wang L., Li Y. X. Sensitive chemiluminescence method for the determination of glutathione, L-cysteine and 6-mercaptopurine [J]. Microchim. Acta,2008,163:263-269.
    [88]Zhao S. L., Lan X. H., Liu Y. M. Gold nanoparticle-enhanced capillary electrophoresis-chemiluminescence assay of trace uric acid[J]. Electrophoresis,2009, 30:2676-2680.
    [89]Zhao S. L., Niu T. X., Song Y. R., Liu Y. M. Gold nanoparticle-enhanced chemiluminescence detection for CE[J]. Electrophoresis,2009,30:1059-1065.
    [90]Xu S. L., Cui H. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles[J]. Luminescence,2007,22:77-87.
    [91]Li S. F., Zhang X. M., Du W. X., Ni Y. H., Wei X. W. Chemiluminescence reactions of a luminol system catalyzed by ZnO nanoparticles[J]. J. Phys. Chem. C,2009,113: 1046-1051.
    [92]Wang L., Yang P., Li Y. X., Chen H. Q., Li M. G., Luo F. B. A flow injection chemiluminescence method for the determination of fluoroquinolone derivative using the reaction of luminal and hydrogen peroxide catalyzed by gold nanoparticles[J]. Talanta,2007,72:1066-1072.
    [93]Safavi A., Absalan G., Bamdad F. Effect of gold nanoparticle as a novel nanocatalyst on luminal-hydrazine chemiluminescence system and its analytical application [J]. Anal. Chim. Acta,2008,610:243-248.
    [94]Triantis T. M., Papadopoulosa K., Yannakopoulou E., Dimotikali D., Hrbac J., Zboril R. Sensitized chemiluminescence of luminol catalyzed by colloidal dispersions of nanometer-sized ferric oxides[J]. Chem. Eng. J.,2008,144:483-488.
    [95]Guo J. Z., Cui H., Zhou W., Wang W. Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide[J]. J. Photochem. Photobiol. A, 2008,193:89-96.
    [96]Modi A., Koratkar N., Lass E., Wei B. Q, Pulickel M. A. Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature,2003,424:171-174.
    [97]Guo X. F., Small J. P., Klare J. E., Wang Y., Purewal M. S., Tam I. W., Hong B. H., Caldwell R., Huang L., O'brien S., Yan J., Breslow R., Wind S.J., Hone J., Kim P., Nuckolls C. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules[J]. Science,2006,311:356
    [98]Katz A., Davis M. E. Molecular imprinting of bulk, microrous silica[J]. Nature,2000, 403:286-289.
    [99]Seiyama T., Kato A., Fujiishi K., Nagatani M., A.new detector for gaseous components using seminconductive thin films[J]. Anal. Chem.,1962,34:1502-1503
    [100]Koumlnig L., RabinI I., Schulze W, Ertl G. Chemiluminescence in the agglomeration of metal clusters[J]. Science,1996,274 (5261):1353-1355.
    [101]McCord P., Yau S. L, Bard A. J. Chemiluminescence of anodized and etched silicon: evidence for a luminescent siloxene-like layer on porous silicon[J].Science,1992, 257:68-69.
    [102]Moore D. S. Instrumentation for trace detection of high explosives [J]. Rev. Sci. Instrum.,2004,75,2499-2513.
    [103]McKay G. J., Kayaku Gakkaishi, Forensic characteristics of organic peroxide explosives (TATP, DADP, and HMTD)[J]. Japan Explosives Society,2002,63: 323-329.
    [104]Sigman M. E, Clark C. D., Caiano T., Mullen R. Analysis of triacetone triperoxide (TATP) and TATP synthetic intermediates by electrospray ionization mass spectrometry[J]. Rapid Commun Mass Spectrom.,2008,22(2):84-90.
    [105]Oxley J. C., Smith J. L., Chen H. Decomposition of a multi-peroxidic compound: Triacetone Triperoxide (TATP)[J]. Propellants Explos Pyrotech.,2002,27:209-216.
    [106]Oxley J. C., Smith J. L., Shinde K., Moran J. Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique[J]. Propellants Explos. Pyrotech.,2005,30:127-130.
    [107]Amania M., Chua Y, Watermana K. L., Hurleya C. M., Platekb M. J., Gregorya O. J. Detection of triacetone triperoxide (TATP) using a thermodynamic based gas sensor. 2012,162(1):7-13.
    [108]Crowson A., Beardah M. S. Development of an LC/MS method for the trace analysis of hexamethylenetriperoxidediamine (HMTD)[J]. Analyst,2001,126:1689-1693.
    [109]Schulte-Ladbeck R., Karst U. Liquid chromatography-post-column photochemical conversion and electrochemical detection for discrimination of peroxide-based explosives[J]. Chromatographia,2003,57:S61-S65.
    [110]Sella E., Shabat D. Self-immolative dendritic probe for direct detection of triacetone triperoxide[J]. Chem. Commun.,2008,5701-5703.
    [111]Caygill J. S., Davis F., Higson S. P. J. Current trends in explosive detection techniques[J]. Talanta,2012,88:14-29.
    [112]Buttigieg G A., Knight A. K., Denson S., Pommier C., Denton M. B. Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry[J].Forensic Sci. Int.,2003,135:53-59.
    [113]Cotte-Rodriguez I., Chen H., Cooks, R. G. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization[J]. Chem. Commun.,2006,7(9):953-955.
    [114]Bulatov V., Reany O., Grinko R., Schechtera I.,Keinan E. Show Affiliations Time-resolved, laser initiated detonation of TATP supports the previously predicted non-redox mechanism[J]. Phys. Chem. Chem. Phys.,2013,15:6041-6048.
    [115]Muller D., Levy A., Shelef R., Abramovich-Bar S., Sonenfeld D., Tamiri T. Improved method for the detection of TATP after explosion[J]. J. Forensic Sci.,2004,49(5): 935-938.
    [116]Matyas R., Chylkova J. Study of TATP:method for determination of residual acids in TATP[J]. Forensic Sci. Int.,2013,228(1-3):170-173.
    [117]Fialkov A. B., Amirav A. Cluster chemical ionization for improved confidence level in sample identification by gas chromatography/mass spectrometry[J]. Rapid Commun Mass Spectrom.,2003,17:1326-1338.
    [118]Yinon J. Field detection and monitoring of explosives [J]. Trends Anal. Chem.,2004, 75:2499-2512.
    [119]Imagawa., Suda A., Yamamura K., Sun S. H. Monodisperse CeO2 nanoparticles and their oxygen storage and release properties[J]. J. Phys. Chem. C,2011,115,1740-1745.
    [120]Deng M. J., Huang F. L., Sun I. W., Tsai W. T., Chang J. K. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity[J]. Nanotechnol.,2009,20:175602
    [121]Lin C., Ritter J. A., Popov B. N. Characterization of sol-gel derived cobalt oxide xerogels as electrochemical capacitors [J]. J. Electrochem. Soc.,1998,145:4097-4103
    [122]Barbero C., Planes G. A., Miras M. C. Redox coupled ion exchange in cobalt oxide films[J]. Electrochem. Commun.,2011,3:113-116
    [123]Gao Y. Y., Chen S. L., Cao D. X., Wang G. L., Yin J. L. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam[J]. J. Power Sources,2011, 195:1757-1760.
    [124]Mul G., Zhu W. D., Kapteijn F., Moulijn J. A. The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon blank oxidation:An exploratory study [J]. Appl. Catal. B,1998,17:205-220.
    [125]Bentes E., Gomes H.L., Stallinga P., Moura L. Detection of explosive vapors using organic thin-film transistors[J]. IEEE Sensors,2004,2004:766-769
    [126]Cabalo, J., Sausa, R. Trace detection of explosives with low vapor emissions by laser surface photofragmentation-fragment detection spectroscopy with an improved ionization probe [J]. Applied Optics,2005,44:1084.
    [127]Ostmark H., Wallin S., Ang H. G. Vapor pressure of explosives:a critical review[J]. Propellants, Explosives, Pyrotechnics,2012,37(1):12-23.
    [128]Hodyss R., Beauchamp J. L. Multidimensional detection of nitroorganic explosives by gas chromatography-pyrolysis ultraviolet detection[J]. Anal. Chem.,2005,77: 3607-3610.
    [129]Pinnaduwage L. A., Thundat T., Gehl A., Wilson S. D., Hedden D. L., Lareau R. T. Desorption characteristics of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors[J]. Ultramicroscopy,2004,100:211-216.
    [130]Pettersson A., Johansson I., Wallin S., Nordberg M., Ostmark H. Near real-time standoff detection of explosives in a realistic outdoor environment at 55□m distance[J]. Propellants, Explosives, Pyrotechnics.2009,34(4):297-306.
    [131]Tuschel D. D., Mikhonin A. V., Lemoff B. E., Asher S. A. Deep ultraviolet resonance raman excitation enables explosives detection[J]. Applied Spectroscopy,2010,64: 425-432.
    [132]Cabalo, J., Sausa, R. Trace detection of explosives with low vapor emissions by laser surface photofragmentation-fragment detection spectroscopy with an improved ionization probe[J]. Applied Optics,2005,44:1084.
    [133]Gottfried J. L., Lucia F. C., Munson C. A., Miziolek A. W. Laser-induced breakdown spectroscopy for detection of explosives residues:a review of recent advances, challenges, and future prospects[J]. Anal. Bioanal. Chem.,2009,395(2):283-300.
    [134]Lee S. H., Stubbs D. D., Hunt W. D., Edmonson P. J. Vapor phase detection of plastic explosives using a SAW resonator immunosensor array[J]. IEEE Sensors,2005,1-2: 468-471.
    [135]Carter J. C., Angel S. M., Lawrence-Snyder M., J. Scaffidi, R. E. Whipple, Reynolds J. G Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Appl. Spectrosc.,2005,59(6): 769-775.
    [136]Dubnikova F., Kosloff R., Zeiri Y., Karpas Z. Novel approach to the detection of Triacetone Triperoxide (TATP):Its Structure and Its complexes with Ions[J]. J. Phys. Chem.,2002,106:4951-4956.
    [137]Robert Matyas, Jakub Selesovsky.Power of TATP based explosives[J]. J Hazard Mater..2009,165(1-3):95-99.
    [138]Walter M. A. Walter, Pfeifer D., Kraus W., Franziska, Emmerling R. J. Schneider, Ulrich Panne, and Michael G. Weller. Triacetone triperoxide (TATP):Hapten design and development of antibodies[J]. Langmuir,2010,26 (19):15418-15423.
    [139]Horvath I., Hunt J., Barnes P. J. On behalf of the ATS/ERS task force on exhaled breath condensate:exhaled breath condensate:methodological recommendations and unresolved questions[J]. Eur Respir. J.,2005,26:523-548.
    [140]Soyer O. U., Dizdar E. A., Keskin O., Lilly C., Kalayci O. Comparison of two methods for exhaled breath condensate collection[J]. Allergy,2006,61:1016-1018.
    [141]Johnson G. R., Morawska L. The mechanism of breath aerosol formation[J].J. Aerosol. Med. Pulm. Drug. Deliv.,2009,22:229-237.
    [142]Hoffmeyer F., Raulf-Heimsoth M., Bruning T. Exhaled breath condensate and airway inflammation[J]. Curr. Opin. Allergy Clin. Immunol,2009,9:16-22
    [143]Keen C., Gustafsson P., Lindblad A., Wennergren G, Olin A. C. Low levels of exhaled nitric oxide are associated with impaired lung function in cystic fibrosis[J]. Pediatr Pulmonol,2010,45:241-248.
    [144]Goodman J. E., Prueitt R. L., Thakali S., Oller A. R. The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung[J]. Crit. Rev.,2011,41:142-74.
    [145]Hoffmeyer F., Raulf-Heimsoth M., Tobias Weiss, Lehnert M., Gawrych K., Kendzia B., Harth V., Henry J., Pesch B., Bruning T., Weldox Group. Relation between biomarkers in exhaled breath condensate and internal exposure to metals from gas metal arc welding[J]. J. Breath. Res.,2012,6:027105.
    [146]Hoffmeyer F., Raulf-Heimsoth M., Lehnert M., Kendzia B., Bernard S., Berresheim H., Diiser M., Henry J., Weiss T., Koch H. M., Pesch B., Bruning T., Weldox Group. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders[J]. J. Toxicol. Environ. Health. A.,2012,75: 525-532
    [147]Koskela H. O., Purokivi M. K., Nieminen R. M., Moilanen E. Asthmatic cough and airway oxidative stress[J]. Respir. Physiol. Neurobiol.,2012,181:346-50
    [148]Inonu H., Doruk S., Sahin S., Erkorkmaz U., Celik D., Celikel S., Seyfikli Z. Oxidative stress levels in exhaled breath condensate associated with COPD and smoking[J]. Respiratory Care,2012,57:413-419.
    [149]Svensson S., Olin A. C., Larstad M., Ljungkvist G, Toren K. Determination of hydrogen peroxide in exhaled breath condensate by flow injection analysis with fluorescence detection[J]. J. Chromatogr. B,2004,809:199-203.
    [150]Bruhn A., Liberona L., Lisboa C., Borzone G. Limitations of the technique to determine hydrogen peroxide levels in exhaled breath condensate from patients with adult respiratory distress syndrome[J]. Arch. Bronconeumol.,2005,41:542-546
    [151]Hunt J. Exhaled breath condensate:an overview[J]. Immunol. Allergy Clin. North. Am.,2007,27:587-596.
    [152]Vasiliou E. G, Makarovska Y. M., Pneumatikos I. A., Lolis N. V., Kalogeratos E. A., Papadakis E. K., Georgiou C. A. Hydrogen peroxide assessment in exhaled breath condensate:Condensing equipment-rapid flow injection chemiluminescence method[J]. J. Braz. Chem. Soc.,2007,18:1040-1047.
    [153]Grob N. M., Aytekin M., Dweik R. A. Biomarkers in exhaled breath condensate:a review of collection, processing and analysis[J]. J. Breath Res,2008,2:037004.
    [154]Sapey E., Bayley D., Ahmad A., Stockley R. The validation of assays used to measure biomarkers in exhaled breath condensate [J]. Eur. Respir. J.,2008,32: 1408-1409
    [155]Bayley D. L., Abusriwil H., Ahmad A., Stockley R. A. Validation of assays for inflammatory mediators in exhaled breath condensate[J]. Eur. Respir. J.,2008,31: 943-948
    [156]Marek E., Muckenhoff K., Streckert H. J., Becher G, Marek W. Measurements of L-lactate and H2O2 in exhaled breath condensate at rest and mild to moderate exercise in young and healthy subjects[J]. Pneumologie,2008,62:541-547.
    [157]Stolarek R., Bialasiewicz P., Krol M., Nowak D. Breath analysis of hydrogen peroxide as a diagnostic tool[J]. Clin. Chim. Acta.,2010,411:1849-1861.
    [158]Gajdocsi R., Bikov A., Antus B., Horvath I., Barnes P. J., Kharitonov S. A. Assessment of reproducibility of exhaled hydrogen peroxide concentration and the effect of breathing pattern in healthy subjects[J]. J. Aerosol. Med. Pulm Drug Deliv., 2011,24:271-275.
    [159]Mergler Y. J., Hoebink J., Nieuwenhuys B. E. CO oxidation over a Pt/CoOx/SiO2 catalyst:a study using temporal[J]. J. Catal.,1997,167:305-313.
    [160]Jansson J. Low-temperature CO oxidation over Co3O4/Al2O3[J]. J. Catal.,2000,194: 55-60.
    [161]Asano K., Ohnishi C., Iwamoto S., Shioya Y, Inoue M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Applied Catalysis B,2008,78:242-249.
    [162]Piskorz W., Zasada F., Stelmachowski P., Kotarba A., Sojka Z. Decomposition of N2O over the surface of cobalt spinel:A DFT account of reactivity experiments[J]. Catalysis Today,2008,137:418-422.
    [163]Lai T. L., Lai Y L., Lee C. C., Shu Y. Y, Wang C. B. Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol [J]. Catalysis Today,2008,131:105-110.
    [164]Geng B. Y, Zhan F. M., Fang C. H., Yu N. A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties[J]. J. Mater. Chem.,2008,18:4977-4984.
    [165]Du Y, Wang W. N., Li X. W., Zhao J., Ma J. M., Liu Y. P., Lu G. Y. Laterally connected bent-core dimers and bent-core-rod couples with nematic liquid crystalline phases[J]. Mater. Lett.,2012,68:168-170.
    [166]Cohen G., Hochstein P. Glutathione peroxidase:The major pathway of peroxide detoxification of erythrocytes[J]. Biochem.,1963,2:1420-1428.
    [167]Nicholls P. Contributions of catalase and glutathione peroxidase to red cell peroxide removal[J]. Biochim. Biophys. Acta.,1972,279:306-309.
    [168]Halbach S., Ballatori N., Clarkson T. W. Mercury vapor uptake and hydrogen peroxide detoxification in human and mouse red blood cells[J]. Toxicol. Appl. Pharmacol,1988,96:517-524.
    [169]Takahara S., Mihara S., Tsugawa K., Doi M. Acatalasemia Ⅱ Contents of catalase in blood and tissues of men and animals[J]. Proc. Japanese Academy,1952,28: 383-387.
    [170]Ogata M., Ikeda M. In vitro mercury uptake by human acatalasemic erythrocytes[J]. Arch Environ Health.,1979,34:218-221.
    [171]Gaetani G. F., Galiano S., Canepa L., Ferraris A. M., Kirkman H. N. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes[J]. Blood,1989,73:334-339.
    [172]Makino N., Mochizuki Y., Bannai S., Sugita Y. Kinetic studies on the removal of extracellular hydrogen peroxide by cultured fibroblasts[J]. J. Biol. Chem.,1994,269: 1020-1025.
    [173]Nakano T., Takahashi A. Spectrophotometric determination of hydrogen peroxide by the formation of indamine dye with the catalyst of water-soluble ironporphyrin[J]. Anal. Sci.,1990,6:823-826.
    [174]Scott M. D., Lubin B. H., Zuo L., Kuypers F. A. Erythrocyte defense against hydrogen peroxide:preeminent importance of catalase [J]. J. Lab. Clin. Med.,1991, 118:7-16.
    [175]Feinstein R. N., Howard J. B., Braun J. T., Seaholm J. E. Acatalasemic and hypocatalasemic mouse mutants[J]. Genetics,1966,53:923-933.
    [176]Gaetani G. F., Ferraris A. M., Rolfo M., Mangerini R., Arena S., Kirkman H. N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes [J]. Blood,1996,87(4):1595-1559.
    [177]Giulivi C, Hochstein P, Davies K. J. Hydrogen peroxide production by red blood cells[J].CVFree Radic Biol Med,1994,16:123-129.
    [178]Masuoka N., Wakimoto M., Ubuka T., Nakano T. Spectrophotometric determination of hydrogen peroxide:catalase activity and rates of hydrogen peroxide removal by erythrocytes[J]. Clin. Chim. Acta.,1996,254:101-112.
    [179]Wakimoto M., Masuoka N., Nakano T., Ubuka T. Determination of glutathione peroxidase activity and its contribution to hydrogen peroxide removal in erythrocytes[J]. Acta. Med. Okayama.,1998,52:233-237.
    [180]Nagababu E., Chrest F. J., Rifkind J. M. Hydrogen-peroxide-induced heme degradation in red blood cells:the protective roles of catalase and glutathione peroxidas[J]. Biochim. Biophys. Acta.,2003,1620:211-217.
    [181]Masuoka N., Kodama H., Abe T., Wang D. H., Nakano T. Characterization of hydrogen peroxide removal reaction by hemoglobin in the presence of reduced pyridine nucleotides[J]. Biochim Biophys Acta.,2003,1637:46-54.
    [182]Guo J., Cui H., Zhou W., Wang W. Ag Nanoparticle-catalyzed chemiluminescent Reaction Between Luminol and Hydrogen Peroxide[J]. J. Photochem. Photobiol. A: Chemistry,2008,193:89-96.
    [183]Cui H., Guo J., Li N., Liu L. Gold nanoparticle triggered chemiluminescence between Luminol and AgNO3[J]. J. Phys. Chem. C,2008,112:11319-11323.
    [1]Ionescu R. E., Cosnier S., Marks R. S. Protease amperometric sensor[J]. Anal. Chem., 2006,78:6327-6331.
    [2]Pandey P., Singh S. P., Arya S. K., Gupta V., Datta M., Singh S., Malhotra B. D. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity [J]. Langmuir,2007,23:3333-3337.
    [3]Krajewska B. Application of chitin-and chitosan-based materials for enzyme immobilizations:a review[J]. Enzyme Microb. Technol.,2004,35:126-139.
    [4]Pedro, H. A. L., Alfaia A. J., Marques J., Vila-Real H. J., Calado A., Ribeiro M. H. L. Design of an immobilized enzyme system for naringin hydrolysis at high-pressure[J]. Enzyme Microb. Technol.,2007,40:442-446.
    [5]Rodriguez B. B., Bolbot J.A., Tothill I. E. Urease-glutamic dehydrogenase biosensor for screening heavy metals in water and soil samples[J]. Anal. Bioanal. Chem.,2004, 380:284-292.
    [6]Coppi G., Iannuccelli V., Bernabei M. T., Cameroni R. Alginate microparticles for enzyme peroral administration[J]. Int. J. Pharm,2002,242:263-266.
    [7]Haider T., Husain Q. Hydrolysis of milk/whey lactose by β galactosidase:a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme[J]. Chem. Eng. Process,2009,48:576-580.
    [8]Zhu H. G, Srivastava R., Brown J. Q., McShane M. J. Combined physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity[J]. Bioconjugate Chem.,2005,16:1451-1458.
    [9]Syed M. M., Suhail A., Amjad A. K., Qayyum H. An enconomical, simple and high yield procedure for the immobilization/stabilization of peroxidases from turnip roots [J]. J. Sci. Ind. Res.,2004,63:540-547.
    [10]Nelson J. M., Griffin E. G Adsorption of Invertase[J]. J. Am. Chem. Soc.1916,38: 1109-1916.
    [11]Dashevsky A. Protein loss by the microencapsulation of an enzyme (lactase) in alginate beads[J]. Int. J. Pharm.,1998,161:1-5.
    [12]Davisct M. Ordered porousmaterials for emerging applications [J]. Nature,2002,417: 813-821.
    [13]Yiu H. P., Wright P. A., Botting N.P., Botting. Enzyme immobilization using siliceous mesoporous molecular sieves[J]. Microporous Mesoporous Mater.,2011,44-45: 763-768.
    [14]Lei J., Fan J., Yu C. Z., Zhang L. Y, Jiang S. Y., Tu B., Zhao D. Y Immobilization of enzymes in mesoporous materials:controlling the entrance to nanospace[J]. Microporous Mesoporous Mater.,2004,73:121-128.
    [15]Reis P., Witula T., Holmberg K. Mesoporous materials as host for an entrapped enzyme[J]. Microporous Mesoporous Mater.,2008,110:355-362.
    [16]Lee C. H., Lin T. S., Mou C. Y. Mesoporous materials for encapsulating enzymes[J]. Nano Today,2009,4:165-179.
    [17]Matsuura S., Ishii R., Itoh T., Hanaoka T., Hamakawa S., Tsunoda T., Mizukami F. Direct visualization of hetero-enzyme co-encapsulated in mesoporous silicas[J]. Microporous Mesoporous Mater.,2010,127:61-66.
    [18]Ikebukuro K., Shimomura M., Onuma N., Watanabe A., Nomura Y, K., Nakanishi Y Arikawa, Karube I. A novel biosensor system for cyanide based on a chemiluminescence reaction [J]. Anal. Chim. Acta,1996:329:111-116.
    [19]Li B. X., Zhang Z. J. Chemiluminescence flow biosensor for determination of total D-amino acid in serum with immobilized reagents [J]. Sens. Actuators, B,2000,69: 70-74.
    [20]Hu Y F., Zhang Z. J. Determination of free cholesterol based on a novel flow-injection chemiluminescence method by immobilizing enzyme [J]. Luminescence,2008,23:338-343.
    [21]Li B. X., Zhang Z. J, Jin Y Plant tissue-based chemiluminescence flow biosensor for glycolic acid [J]. Anal. Chem.,2001,73:1203-1206.
    [22]Zhang Z. Y, Zhang S. C., Zhang X. R. Recent developments and applications of chemiluminescence sensors[J]. Anal. Chim. Acta,2005,541:37-46.
    [23]Li B. X., Zhang Z. J., Jin Y. Chemiluminescence flow sensor for in vivo on-line monitoring of glucose in awake rabbit by microdialysis sampling[J]. Anal. Chim. Acta,2001,432:95-100.
    [24]Yang C. Y., Zhang Z. J., Wang J. L. A new luminol chemiluminescence reaction using a tetravalent nickel-periodate complex as the oxidant[J]. Microchim. Acta, 2009,167:91-96.
    [25]Chicheportiche D., Reach G. In vitro kinetics of insulin release by microencapsulated rat islets:effect of the size of the microcapsules [J]. Diabetologia,1988,31:54-57.
    [26]Chen X. M., Cai Z. M., Lin Z. J., Jia T. T., Liu H. Z., Jiang Y. Q., Chen X. A novel non-enzymatic ECL sensor for glucose using palladium Nanoparticles supported on functional carbon nanotubes [J]. Biosens. Bioelectron.,2009,24:3475-3480.
    [27]Girelli A. M., Mattei E. Application of immobilized enzyme reactor in on-line hig performance liquid chromatography:A review[J]. J. Chromatogr. B,2005:819: 3-16.
    [28]Choi S. H., Lee K. P.,Lee J. GAdsorption behaviour of urokinase by polypropylene film modified with amino acids as affinity groups[J]. Microchem.,2001,68:205-213
    [29]Kacar Y, Yakup A. M. Preparation of reversibly immobilized lysozyme on to procion green H-E4BD-attached Poly(hydroxyethylmethacrylate)film for hydrolysis of bachterial cells[J]. Food Chem.,2001,75:325-332.
    [30]Maxim S., Flondor A. New crosslinked functionalized acrylic copolymers for biotechnological applications[J]. Revroum Chim 1989,34:1389-1395.
    [31]Buchholz K. Non-uniform enzyme distribution inside carriers[J]. Biotechnol. Lett. 1979,1:451-456.
    [32]Kurokawa Y, Ohta H., Okubo M., Takahashi M. Formation and use in enzyme immobilization and use in enzyme immobilization of cellulose acetate-metal alkoxide gels[J]. Carbohydr. Polym,1994,23:1-4.
    [33]Lindomar R. D., Silva D., Gushikem Y, Kubota L. T. Horseradish peroxidase enzyme immobilized on titanium (Ⅳ) oxide coated cellulose micofibers:study of the enzymic activity by flow injection system[J]. Colloid Surf B:Bioionterf,1996, 6:309-315.
    [34]Furusaki S., Asai N. Enzyme immobilization by the coulombilisation by the Couluomb force[J]. Biotechnol Bioeng,1983,25:2209-2219.
    [35]Mojovic L., Knezevic Z., Popadic R, Jovanovic S. Immobilisation of lipase from Candida rugosa on a polymer support[J]. Appl. Microb. Biotechnol.,1998,50: 676-681.
    [36]Ampon K. Distribution of an enzyme in porous polymer beads[J]. J. Chem. Technol. Biotechnol.,1992,55:185-190.
    [37]Diaz J. F., Balkus K. J. Enzyme immobilization in MCM-41 molecular sieve[J]. J. Mol. Catal. B:Enzym.,1996,2:115-126.
    [38]Macario A., Calabro V., Curcio S., Paola M. D., Giordano G, Iorio G, Katovic A. Preparation of mesoporous meterials as a support for the immobilization of lipase[J].Stud. Surf. Sci. Catal. B,2002,142:1561-1568.
    [39]Ruckenstein E.,Wang X. A novel support for the immobilization of lipase and the effects of the details of its preparation on the hydrolysis of triacylglycerides[J]. Biotechnology Techniques,1993,7(2):117-122.
    [40]Suzuki T., Toriyama M., Hosono H., Abe Y. Application of a microporous glassceramics with a microporous glassceramics with a skeleton of calcium titanic phosphate (CaTi4(PO4)6) to carriers for immobilization of enzymes[J]. J. Ferm. Bioeng.,1991:72:384-391.
    [41]Tweddell R. J., Kermasha S., Combes D., Marty A. Immobilisation of lipase from Rhizopus niveus:a way to enhance its synthetic activity in organic solvent[J]. Biocatal. Biotrans.1999,16:411-426.
    [42]Adlercreutz P. On the importance of the support material for enzymatic synthesis in organic media.support effects at controlled water activity[J]. Eur. J. Biochem.,1991, 199:609-614.
    [43]He B. L.,Li M. Q., Wang D. B. Studies on aminoacylase from Aspergillus oryzae immobilized on polyacrylate copolymer [J]. Reactive Polymers.,1992,17(3): 341-346.
    [44]Murry M., Rooney D., Van Neikerk M., Montenegro A., Weatherley L. R. Immobilisation of lipase on to lipophilic polymer particles and application to oil hydrolysis.process[J]. Biochem.,1997,32:479-486.
    [45]Nakajima N., Ishihara K., Sugimoto M., Nakahara T.,Tsuji H. Further stabilization of by chemical modification and immobilization[J]. Biosi. Biotechnol. Biochem.,2002, 66:2739-2742.
    [46]Chen C. C., Do J. S., Gu Y. Immobilization of HRP in mesoporous silica and its application for the construction of polyaniline modified hydrogen peroxide biosensor[J]. Sensors,2009,9(6):4635-4648.
    [47]Okubo M., Ahmad H. Adsorption of enzymes on to submicron-sized temperature-sensitive composite polymer particles and its activity[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.1999,153:429-433.
    [48]Somers W. A. C., Lojenga A. K., Bonte A., Rozie H. J.,Visser J., Romouts F. M. Alginate-starch copolymers and immobilized starch as affinity adsorbents for α-amylase[J]. Biotechnol. Appl. Biochem.,1993,18:9-24.
    [49]Ansaria S. A., Husain Q. Potential applications of enzymes immobilized on/in nano materials:A review[J]. Biotechnol. adv.,2012,30(3):512-523.
    [50]Dicosimo R., Mcauliffe J., Poulose A. J., Bohlmann G. Industrial use of immobilized enzymes[J]. Chem. Soc. Rev.,2013,42(15):6437-6474.
    [51]Xie T., Wang A., Huang L.F., Li H. F., Chen Z. M., Wang Q. Y., Yin X. Y. Recent advance in the support and technology used in enzyme immobilization[J]. Afr. J. Biotechnol.,2009,8 (19):4724-4733.
    [52]Asanomi Y, Yamaguchi H., Miyazaki M, Maeda H. Enzyme-immobilized microfluidic process reactors[J]. Molecules,2011,16,6041-6059.
    [53]Zhang Y., Xu J. L., Yuan Z. H. Stimuli-responsive materials applied as carriers of immobilized enzymes[J]. Materials Science Forum,2009,610-613:1198-1202.
    [54]Hartmann M., Jung D. Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends[J]. J. Mater. Chem.,2010,20,844-857.
    [55]Rahman M. A., Kwon N. H., Won M. S., Choe E..S., Shim Y. B. Functionalized conducting polymer as an enzyme-immobilizing substrate:an amperometric glutamate microbiosensor for in vivo measurements [J]. Anal Chem.,2005,77(15): 4854-60.
    [56]Fried D. I., Brieler F. J., Froba M. Designing inorganic porous materials for enzyme adsorption and applications in biocatalysis[J]. Chem. Cat. Chem.,2013,5(4): 862-884.
    [57]Liang J. F., Li Y. T., Yang V. C. Biomedical application of immobilized enzymes[J].. J. Pharm. Sci.,2000,89(8):979-90.
    [58]Roessl U, Nahalka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis[J]. Biotechnol Lett.,2010,32(3):341-50.
    [59]Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J. A DNA-based method for rationally assembling nanoparticles into materials [J]. Nature,1996,382:60-609.
    [60]Jia J. J., Schwickardi M., Weidenthaler C, Schmidt W., Korhonen S., B. M.,Weckhuysen, F. S. Co3O4-SiO2 nanocomposite:a very active catalyst for CO oxidation with unusual catalytic behavior[J]. J. Am. Chem. Soc.,2011,133: 11279-11288.
    [61]Severac E., Galy O., Turon F., Pantel C. A., Condoret J. S., Monsan P., Marty A. Selection of CalB immobilization method to be used in continuous oil transesterification:analysis of the economical impact[J]. Enzyme Microb. Technol., 2011,48:61-70.
    [62]Michael G. Evolving new types of enzymes[J]. Curr. Biol.,2013:23 R214-R217.
    [63]Ma J. F., Zhang L. H., Liang Z., Zhang W. B., Zhang Y. K.. Recent advances in immobilized enzymatic reactors and their applications in proteome analysis [J]. Anal. Chim.Acta.,2009,632:1-8.
    [64]Rios G. M., Belleville M. P., Paolucci D., Sanche J. Z. Progress in enzymatic membrane reactors[J]. J. Membr. Sci.,2004,242:189-196.
    [65]Kim H. J., Sum Y., Lee S. H., Kim J. A., Kim H. S. Immobilization of horseradish peroxidase onto clay minerals using soil organic matter for phenol removal[J]. J. Mol. Catal. B Enzym.,2012,83:8-15.
    [66]Talbert J. N., Goddard J. M. Enzymes on material surfaces[J]. Colloids Surf. B Biointerfaces.,2012,93:8-19.
    [67]Ansari S. A., Husain Q. Potential applications of enzymes immobilized on/in nano materials:A review[J]. Biotech. Adv.,2012,30(3):512-523.
    [68]Kim J., Jia H., Lee C. W., Chung S. W., Kwak J. H., Shin Y., Doh-nalkova A., Kim B. G., Wang P., Grate J. W. Enzym. Single enzyme nanoparticles in nanoporous silica:A hierarchical approach to enzyme stabilization and immobilization[J].Microb. Technol.,2006,39:474-480.
    [69]Zhou Z., Hartmann M. Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts[J]. Top Catal.,2012,55:1081-1100.
    [70]Rodriguez-Colinas B., Alcalde M., Ballesteros A. O., Plou F. J., Immobilized biocatalysts:novel approaches and tools for binding enzymes to supports[J]. Adv. Mater.,2011,23:5275-5282.
    [71]Lee C. H., Lin T. S., Mou C. Y. Mesoporous materials for encapsulating enzymes [J]. Nano Today,2009,4:165-179.
    [72]Thomas J. M., Raja R. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity[J]. Acc. Chem. Res.,2008,41,708-720.
    [73]Zheng Y., Zhang L., Shi J. F., Liang Y. P., Wang X. L., Jiang Z. Y. Mussel-inspired surface capping and pore filling to confer mesoporous silica with high loading and enhanced stability of enzyme[J]. Micropor. Mesopor. Mater.,2012,152:122-127.
    [74]Charles F. F. J., Robert R., Anthony J. P. A study of the direct o-toluidine blood glucose determination[J]. Clin. Chim. Acta.,1973,43:105-111.
    [75]Albala-Hurtado S., Veciana-Nogues M. T., Izquierdo-Pulido M., Marine-Font A.Determination of water-soluble vitamins in infant milk by HPLC[J]. J. Chromatogr. A,1997,778:247-253.
    [76]Thakur, M. S., Kumar, L. Selva S. Assay by biosensor and chemiluminescence for vitamin B12[J]. Food and Nutritional Components in Focus,2013,4:439-457.
    [77]Service R. F. Nanotechnology grows up[J]. Science,2004,304:1732-1734.
    [78]Liu M., Lin Z., Lin J. M. A review on applications of chemiluminescence detection in food analysis[J]. Anal. Chim. Acta.,2010:670(1-2):1-10.
    [79]Quan Y., Zhang Y., Wa S., Lee N., Kennedy I. R. A rapid and sensitive chemiluminescence enzyme-linked immunosorbent assay for the determination of fumonisin B1 in food samples[J]. Anal. Chim. Acta.,2006, 580(1):1-8.
    [80]Roda A., Pasini P., Mirasoli M., Michelini E, Guardigli M. Biotechnological applications of bioluminescence an chemiluminescence[J]. Trends Biotechnol., 2004,22 (6):294-303.
    [81]Saito H., Nakazato T., Ishii N., Kudo H., Otsuka K., Endo H., Mitsubayashi K.An optical flow injection analysis system for measurement of glucose in tomato[J]. Eur. Food Res. Technol.,2008,227(2):473-478.
    [82]Li B. X., Zhang Z. J., Jin Y. Chemiluminescence flow biosensor for hydrogen peroxide with immobilized reagents[J]. Sens. Actuators B,2001,72 (1):115-119.
    [83]Kiba N., Ito S., Tachibana M., Tani K., Koizumi H. Flow-through chemiluminescence sensor using immobilized oxidases for the selective determination of L-glutamate in a flow-Injection system[J]. Ana. Sci.,2001,17(8): 929-934.
    [84]Li B., Zhang Z. J. Chemiluminescence flow biosensor for determination of total damino acid in serum with immobilized reagents[J]. Sens. Actuators, B,2000, 69(1/2):70-74
    [85]Lv Y.,Zhang Z. J., Chen F. N. Chemiluminescence biosensor chip based on a microreactor using carrier air flow for determination of uric acid in human serum[J]. Analyst,2002,127(9):1176-1179.
    [86]Nakamura H., Murakami Y., Yokoyama K.,Tamiya E., Karube I. A compactly integrated flow cell with a chemiluminescent FIA system for determining lactate concentration in serum[J]. Anal. Chem.,2001,73(2):373-378.
    [87]Kiba N., Ito S., Tachibana M., Tani K., Koizumi H. Simultaneous determination of choline and acetylcholine based on a trienzyme chemiluminescence biosensor in a single line flow injection system[J]. Anal. Sci.,2003,19(12):1647-1651.
    [88]Gubitz G., Schmid M. G., Silviaeh H., Aboul-Enein H. Y. Chemiluminescence flow-injection immunoassays[J]. Crit. Rev. Anal. Chem.,2001,31(2):141-148.
    [89]Kiba N., Miwa T., Tachibana M., Tani K., Koizumi H. Chemiluminometric sensor for simultaneous determination of L-Glutamate and L-Lysine with immobilized oxidases in a flow injection system[J]. Anal. Chem.,2002,74(6):1269-1274.
    [90]Li B. X., Zhang Z., J., Jin Y. Plant tissue-based chemiluminescence flow biosensor for glycolic scid[J]. Anal. Chem.,2001,73(6):1203-1206.
    [91]Qin W., Zhang Z., Peng Y. Plant tissue-based chemiluminescence flow biosensor for urea [J]. Anal. Chim. Acta.,2000,407(1/2):81-86.
    [92]Zhu Y. F., Shi J. J., Zhang Z. Y, Zhang C., Zhang X. R. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide[J]. Anal. Chem., 2002,74(1):120-124.
    [93]Zhang Z. Y., Zhang C., Zhang X. R. Development of a chemiluminescence ethanol sensor based on nanosized ZrO2[J]. Analyst,2002,127(6):792-796.
    [94]Lu J., Qin, W., Zhang, Z., Feng, M., Wang Y. A flow-injection type chemiluminescence-based sensor for cyanide[J]. Anal. Chim. Acta.,1995,304: 369-373.
    [95]Fang Y. J., Yan S. L., Ning B. A., Liu N., Gao Z. X, Chao F. H. Flow injection chemiluminescence sensor using molecularly imprinted polymers as recognition element for determination of maleic hydrazide[J]. Biosens. Bioelectron.,2009,24(8): 2323-2327.
    [96]Zang D., Yan M., Zhao P., Ge L., Liu S., Yu J. A novel high selectivity chemiluminescence sensor for fenvalerate based on double-sided hollow molecularly imprinted materials[J]. Analyst,2012,137(18):4247-53.
    [97]Zhou, G, Zhang, G, Chen H. Y. Development of integrated chemiluminescence flow sensor for the determination of adrenaline and isoprenaline[J]. Anal. Chim. Acta.,2002, 463(2):257-263.
    [98]Song Z, Lu J, Zhao T. Chemiluminescence sensor for isoniazid with controlled-reagent-release technology [J]. Talanta,2001,53(6):1171-1177.
    [99]Cui H. Wang W. Duan C. F., Dong Y. P., Guo J. Z. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor[J]. Chem. Eur. J.,2007,13(24): 6975-6984.
    [100]Hun X., Zhang Z. J. A novel electro generated chemiluminescence (ECL) sensor based on Ru(bpy)32+-doped titania nanoparticles dispersed in nafion on glassy carbon electrode[J]. Electroanalysis,2008,20 (8):874-880.
    [101]Zang D., Yan M., Zhao P., Ge L., Liu S., Yu J., Song Z., Lu J., Zhao T. A novel high selectivity chemiluminescence sensor for fenvalerate based on double-sided hollow molecularly imprinted materials [J]. Analyst,2012,137(18):4247-4253.
    [102]Cauda V., Schlossbauer A., Kecht J., Zurner A., Bein T. multiple core-shell functionalized colloidal mesoporous silica nanoparticles[J].J. Am. Chem. Soc.,2009, 131:11361-11370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700