微波无源器件综合与诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波谐振腔滤波器和双工器是现代通信系统(如无线基站和通信卫星)的重要器件。对一个设计师来说,从给定的指标开始到最后获得一个典型的滤波器或双工器的物理实现,这往往是个漫长的路程。这个漫长的过程通常包括传输零点和滤波器阶数的确定、耦合矩阵的综合,为获得物理尺寸在EM设计阶段的诊断与调谐、加工与测试、和/或在产品阶段的诊断和调谐。本文研究的重点在谐振腔滤波器和双工器综合与诊断上。详细的研究给出如下:
     首先,提出了利用遗传算法(GA)的优化方法确定谐振腔带通滤波器(包括自均衡滤波器)的阶数和最优的传输零点位置。此方法是基于根据给定的幅度和/或群延时指标构造一个目标误差函数,然后利用遗传算法通过最小化这个目标误差函数得到滤波器的阶数和传输零点(TZs)。该方法解决了具有广义切比雪夫响应的谐振腔滤波器耦合矩阵综合的首要问题。此外,给出了基于单一的SolvOpt优化方法综合谐振腔滤波器的耦合矩阵,为寻找代价函数的全局最小值,给出了SolvOpt初始值的设置规则。
     第二,对不包含源与负载耦合的谐振腔滤波器的诊断,提出了两个诊断方法,包括三参数优化方法和五参数优化方法。该方法可以用于从窄带交叉耦合谐振腔带通滤波器的测试或电磁仿真的S参数中提取耦合矩阵和无载Q(也称为滤波器的诊断)。在提出的方法中,柯西法用于确定在归一化低通频域中滤波器S参数的特征多项式,测试(或电磁仿真)的S参数的相移效应首次通过优化移除,谐振腔的无载Q(假设所有的谐振腔具有相同的无载Q)也同时通过优化得到。
     第三,为准确地从有耗的交叉耦合谐振腔带通滤波器测试(或仿真)的S参数中提取耦合矩阵和每个谐振腔的无载品质因数(无载Q),提出了一个两阶段优化方法。该方法是基于提出的五参数优化方法正确扩展到能处理存在源与负载耦合和每个谐振腔有不同的无载Q的情况。
     第四,提出了一种通过使用导纳参数(也就是从所周知的Y参数)的新方法提取包含源与负载耦合的有耗交叉耦合谐振腔带通滤波器的耦合矩阵。Y参数是通过测试的S参数对应的特征多项式计算,然后谐振腔的无载Q以及耦合矩阵可以从这个Y参数中提取。该方法允许对一个包含源与负载耦合的滤波器进行诊断,而不需要处理Y参数的去极点问题和测试噪声问题。
     最后,提出了两种综合耦合谐振腔双工器的方法,该双工器由TX和RX滤波器构成(连接TX和RX滤波器的两种结节类型被研究)。一种方法是分别单独综合TX和RX滤波器的耦合矩阵(MTX和MRX),然后双工器的耦合矩阵通过MTX和MRX获得。另一种方法是利用提出的线性频率变换和混合优化方法,直接得到整个双工器的“N+3”耦合矩阵。提出的滤波器的诊断方法也可用于指导双工器每个信道的调谐。
     综合出的滤波器或双工器的耦合矩阵可用于分析这个滤波器或双工器的幅度和群时延响应,以及获得它们初始的物理尺寸。提出的诊断方法可用于指导交叉耦合的谐振腔滤波器或双工器在EM设计阶段和/或产品阶段的调谐,进而加快该滤波器或双工器的设计和物理实现,从而可以降低产品成本和节约时间。
Microwave resonators filters and diplexers are important components in moderncommunication systems (such as wireless base stations and communication satellites).Starting from given specifications, it is often a long journey for a designer to obtain thefinal physical realization of a typical filter or diplexer. This long journey usuallyinclude the determination of transmission zeros and filter order, coupling matrixsynthesis, diagnosis and tuning in the stage of EM (electromagnetic) design forphysical dimensions, fabrication and measurement, and/or diagnosis and tuning in thestage of the production. This paper focuses on the study of the synthesis and diagnosisof resonators filters and diplexers. The detailed studies are given as follow:
     First, a method to determine the filter order and the optimum locations oftransmission zeros of resonators bandpass filters (including self-equalized filters) ispresented using genetic algorithm (GA). This method is based on constructing anobjective error function according to given amplitude and/or group delay specifications,and then the filter order and transmission zeros (TZs) can be obtained by minimizingthe proposed error function using GA. The method has solved the first problem ofcoupling matrix synthesis of general Chebsyshev coupled-resonator filters. In addition,a single optimization algorithm based on single SolvOpt that synthesizes couplingmatrices for coupled-resonator filters is presented. The rules for setting initial values ofSolvOpt are proposed to find global minimum of the cost function.
     Second, for the diagnosis of the resonators filters without source-load coupling,two diagnosis methods, including a three-parameter optimization method and afive-parameter optimization method, are presented. The methods can be applied forextracting the coupling matrix and the unloaded Q (also called filter diagnosis) fromthe measured or electromagnetic simulated S-parameters of a narrow bandcross-coupled resonator bandpass filter. In the methods, the Cauchy method is appliedfor determining the characteristic polynomials of the S-parameters of a filter in thenormalized low-pass frequency domain, the phase-shift effects of the measured (orelectromagnetic simulated) S-parameters are removed for the first time by optimization,and the unloaded Q (assuming all the resonators with the same unloaded Q) is also obtained simultaneously by optimization.
     Third, a two-stage optimization method is proposed for accurately extracting thecoupling matrix (CM) and the unloaded quality factor (unloaded Q) of each resonatorfrom the measured (or simulated) S-parameters of lossy cross-coupled resonatorbandpass filters. The method is based on the proposed five-parameter optimizationmethod with proper extension to handle the presence of source-load coupling andnon-uniform unloaded Q for each resonator.
     Fourth, a novel approach using admittance parameters (also know as Y-parameters)is proposed to extract the coupling matrix of a lossy cross-coupled resonator bandpassfilter with source–load (S-L) coupling. The Y-parameters are calculated bycharacteristic polynomials corresponding to the measured S-parameters, and then theunloaded Q of resonators and the coupling matrix can be extracted from theY-parameters. The method allows one to diagnose a filter with S-L coupling withoutnecessity of dealing with the degenerate poles problem of the Y-parameters and themeasurement noise.
     Last, two methods for synthesizing coupled resonator diplexers composed of TXand RX filters (two types of junctions connecting the TX and RX filters areconsidered). One method is that the coupling matrices of the TX and RX filters (MTXand MRX) are synthesized independently, and then the coupling matrix of the diplexerscan be obtained from MTXand MRX. Another method is that the”N+3” couplingmatrix of overall diplexer can be obtained based on the proposed linear frequencytransformation and hybrid optimization methods. The proposed filter diagnosismethods can also be applied to guide the tuning of each channel in the diplexer.
     The synthesized coupling matrix of a filter or diplexer can be used for analyzingthe amplitude and group delay responses of this filter or diplexer and obtaining theirinitial physical dimensions. The proposed diagnosis methods can guide the tuning inthe stages of the EM design and/or production of a cross-coupled resonator filter ordiplexer, and thus accelerate the design and the physical realization of this filter ordiplexer, which can reduce production costs and scheduling.
引文
[1] R. J. Cameron. General coupling matrix synthesis methods for chebyshev filtering functions.IEEE Trans. Microw. Theory Tech.,1999,47(4):433–442.
    [2] R. J. Cameron. Advanced coupling matrix synthesis techniques for microwave filters. IEEETrans. Microw. Theory Tech.,2003,51(1):1–10.
    [3] S. Amari. Synthesis of cross-coupled resonator filters using an analytical gradient-basedoptimization technique. IEEE Trans. Microw. Theory Tech.,2000,48(9):1559–1564.
    [4] S. Amari, R. Rosenberg, J. Bornemann. Adaptive synthesis and design of resonator filters withsource/load-multiresonator coupling. IEEE Trans. Microw. Theory Tech.,2002,50(8):1969–1978.
    [5] A. E. Atia, A. E. Williams. Narrow-bandpass waveguide filters. IEEE Trans. Microw. TheoryTech.,1972,20(4):258–265.
    [6] A. E. Atia, A. E. Williams, R. W. Newcomb. Narrow-band multiple-coupled cavity synthesis.IEEE Trans. Circuit Syst.,1974,21(9):649–655.
    [7] R. Levy. Filters with single transmission zeros at real or imaginary frequencies: IEEE Trans.Microw. Theory Tech.,1976,24(4):172–181.
    [8] S. A. Alseyab. A novel class of generalized Chebyshev low-pass prototype for suspendedsubstrate stripline filters. IEEE Trans. Microw. Theory Tech.,1982,30(9):1341–1347.
    [9] J. D. Rhodes, S. A. Alseyab. The generalized Chebyshev low-pass prototype filter. Int. J. Circuit.Theory Appl.,1980,8:113–125.
    [10] Z. D. Milosavljevic, M. V. Gmitrovic. A class of generalized Chebyshev low-pass prototypefilter design. Int. J. Electron. Commun.,1997,51(6):311–314.
    [11] Z. D. Milosavljevic, M. V. Gmitrovic. An efficient procedure for narrow-band bandpass filterdesign. Appl. Microwave Wireless,2000,12(5):30–41.
    [12] Z. D. Milosavljevic, M. V. Gmitrovic. Design of maximally selective generalized Chebyshevfilters. Circuits Syst. Signal Process,2002,21(2):195–205.
    [13] Z. D. Milosavljevic. A class of generalized Chebyshev prototype filters with asymmetricallylocated transmission zeros. Proc.6th Int. TELSIKS Conf., Nis, Serbia and Montenegro,2003,323–326.
    [14] Z. D. Milosavljevic. Design of generalized Chebyshev filters with asymmetrically locatedTransmission Zeros. IEEE Trans. Microw. Theory Tech.,2005,53(7):2411–2415.
    [15] R. Ye, Q. X. Chu. Extraction of finite transmission zeros of general chebyshev filters,4thInternational Conference on Microwave and Millimeter Wave Technology (ICMMT2004),Beijing,2004,272–274.
    [16] Z. H. Tu, Q. X. Chu. Determining transmission zeros of general Chebyshev lowpass prototypefilter.5th International Conference on Microwave and Millimeter Wave Technology (ICMMT2007), Guilin,2007,1–4.
    [17] Q. X. Chu, Z. H. Tu. Determining transmission zeros of the general chebyshev filter.Microwave Opt. Tech. Lett.,2007,49(9):2270–2275.
    [18] Q. X. Chu, Z. H. Tu. A novel method to determine general Chebyshev filters transmissionzeroes. Microwave Opt. Tech. Lett.,2007,49(11):2849–2853.
    [19] S. Kallianteris. Low loss linear phase filters. IEEE MTT-S Int. Microwave Symp. Dig.,1977,394–396.
    [20] M. H. Chen. The design of a multiple cavity equalizer. IEEE Trans. Microw. Theory Tech.,1982,30(9):1380–1383.
    [21] N. Ylldirim, O. A. Sen, Y. Sen, et al. A revision of cascade synthesis theory coveringcross-coupled filters. IEEE Trans. Microw. Theory Tech.,2002,50(6):1536–1543.
    [22] H. T. Hsu, H.-W. Yao, K. A. Zaki, et al. Synthesis of coupled-resonators group-delay equalizers.IEEE Trans. Microw. Theory Tech.,2002,50(8):1960–1968.
    [23] X. P. Chen, K. Wu. Self-equalised pseudo-elliptical filter made of substrate integratedwaveguide. Electronics Letters,2009,45(2):112–113.
    [24]李骁骅.广义Chebyshev滤波器数值综合及小型化研究:[硕士学位论文].成都:电子科技大学,2009.
    [25] R. J. Cameron, A. R. Harish, C. J. Radcliffe. Synthesis of advanced microwave filters withoutdiagonal cross-couplings. IEEE Trans. Microw. Theory Tech.,2002,50(12):2862–2872.
    [26] G. Macchiarella. Accurate synthesis of in-line prototype filters using cascaded triplet andquadruplet sections. IEEE Trans. Microw. Theory Tech.,2002,50(7):1779–1783.
    [27] S. Tamiazzo, G. Macchiarella. An analytical technique for the synthesis of cascaded N-tupletscross-coupled resonators microwave filters using matrix rotations. IEEE Trans. Microw. TheoryTech.,2005,53(5):1693–1698.
    [28] R. J. Cameron, J. D. Rhodes. Asymmetric realizations for dual-mode bandpass filters. IEEETrans. Microw. Theory Tech.,1981,29(1):51–58.
    [29] W. M. Fathelbab. Synthesis of Cul-de-Sac filter networks utilizing hybrid couplers. IEEEMicrow. Wireless Comp. Lett.,2007,17(5):334–336.
    [30] R. Levy. Design of CT and CQ filters using approximation and optimization. IEEE Trans.Microw. Theory Tech.,2001,49(12):2350–2356.
    [31] M. Uhm, S. Nam, J. Kim. Synthesis of resonator filters with arbitrary topology using hybridmethod. IEEE Trans. Microw. Theory Tech.,2007,55(10):2157–2167.
    [32] G. L. Nicholson, M. J. Lancaster. Coupling matrix synthesis of cross-coupled microwave filtersusing a hybrid optimization algorithm. IET Microw. Antennas Propag.,2009,3(6):950–958.
    [33] J. S. Hong, M. J. Lancaster. Microstrip filters for RF/microwave applications, Wiley, New York,2001,299–312.
    [34] R. J. Cameron, C. M. Kudsia, R. R. Mansour. Microwave filters for communication systems,fundamentals, design and applications. New York: Wiley,2007.
    [35] R. J. Cameron. Advanced filter synthesis. IEEE microwave magazine, Oct.2011,42–61.
    [36] S. Amari, M. Bekheit. Physical interpretation and implications of similarity transformations incoupled resonator filter design. IEEE Trans. Microw. Theory Tech.,2007,55(7):1139–1153.
    [37] S. Amari, U. Rosenberg. Direct synthesis of a new class of bandstop filters. IEEE Trans.Microw. Theory Tech.,2004,52(2):607–616.
    [38] R. J. Cameron, M. Yu, Y. Wang. Direct-coupled microwave filters with single and dualstopbands. IEEE Trans. Microw. Theory Tech.,2005,53(11):3288–3297.
    [39] J. Lee, M. S. Uhm, J. H. Park. Synthesis of self-equalized dual passband filter. IEEE Microw.Wireless Comp. Lett.,2005,15(4):256–258.
    [40] M. Mokhtaari, J. Bornemann, K. Rambabu, et al. Coupling-matrix design of dual and triplepassband filters. IEEE Trans. Microw. Theory Tech.,2006,54(11):3940–3946.
    [41] G. Macchiarella, S. Tamiazzo. Design techniques for dual-passband filters. IEEE Trans. Microw.Theory Tech.,2005,53(11):3265–3271.
    [42] J. L. Member, K. Sarabandi. A synthesis method for dual-passband microwave filters. IEEETrans. Microw. Theory Tech.,2007,55(6):1163–1170.
    [43] G. Macchiarella, S. Tamiazzo. A design technique for symmetric dual-band filters. IEEE MTT-SInt. Microwave Symp. Dig. Long Beach, CA,2005.
    [44] S. Amari, G. Macchiarella. Synthesis of inline filters with arbitrarily placed attenuation poles byusing nonresonating nodes. IEEE Trans. Microw. Theory Tech.,2005,53(10):3075–3081.
    [45] S. Amari, U. Rosenberg. A universal building block for advanced modular design of microwavefilters. IEEE Microw. Wireless Comp. Lett.,2003,13(12):541–543.
    [46] S. Amari, U. Rosenberg. New building blocks for modular deisgn of elliptic and self-equalizedfilters. IEEE Trans. Microw. Theory Tech.,2004,52(2):721–736.
    [47] R. b. Wu, S. Amari, U. Rosenberg. Cross-coupled microstrip band reject filters withnon-resonating nodes. IEEE Microw. Wireless Comp. Lett.,2005,15(9):585–587.
    [48] D. C. Rebenaque, F. Q. Pereira, J. P. Garcia, et al. Two compact configurations forimplementing transmission zeros in microstrip filters. IEEE Microw. Wireless Comp. Lett.,2004,14(10):475–477.
    [49] S. Amari, U. Rosenberg, J. Bornemann. Singlets, cascaded singlets and the nonresonating nodemodel for advanced modular design of elliptic filters. IEEE Microw. Wireless Comp. Lett.,2004,14(5):237–239.
    [50] M. Bekheit, S. Amari, W. Menzel. Modeling and optimization of compact microwave bandpassfilters. IEEE Trans. Microw. Theory Tech.,2008,56(2):420–430.
    [51] S. Amari, F. Seyfert, M. Bekheit. Theory of coupled resonator microwave bandpass filters ofarbitrary bandwidth. IEEE Trans. Microw. Theory Tech.,2010,58(8):2188–2203.
    [52] V. Miraftab, M. Yu. Advanced coupling matrix and admittance function synthesis techniques fordissipative microwave filters. IEEE Trans. Microw. Theory Tech.,2009,57(10):2429–2438.
    [53] M. Oldini, G. Macchierella, G. Gentili, et al. A new approach to the synthesis of microwavelossy filters. IEEE Trans. Microw. Theory Tech.,2010,58(5):1222–1229.
    [54] A. Guyette, I. Hunter, R. Pollard. The design of microwave bandpass filters using resonatorswith nonuniform Q. IEEE Trans. Microw. Theory Tech.,2006,54(11):3914–3922.
    [55]韩应宾.交叉耦合滤波器的综合与诊断调试:[硕士学位论文].西安:西安电子科技大学,2008.
    [56]彭杰.微波滤波器机辅设计与调试技术研究:[硕士学位论文].西安:西安电子科技大学,2010.
    [57] H. L. Thal. Computer-aided filter alignment and diagnosis. IEEE Trans. Microw. Theory Tech.,1978,26(12):958–963.
    [58] L. Accatino. Computer aided tuning of microwave filters. IEEE MTT-S Int. Microwave Symp.Dig.1986:249–252.
    [59] M. Yu. Simulation/design techniques for microwave filters—An engineering perspective. IEEEMTT-S Int. Microwave Symp.Dig., Workshop WSA: State-of-the-Art Filter Design Using EMand Circuit Simulation Techniques. Phoenix, AZ,2001.
    [60] M. Yu, W. C. Tang. A fully automated filter tuning robot for wireless base station diplexers.IEEE MTT-S Int. Microwave Symp. Dig.2003:8–13.
    [61] M. Yu. Robotic computer-aided tuning. Microwave J., Mar.2006,136–138.
    [62] M. Kahrizi, S. Safavi-Naeini, S. K. Chaudhuri, et al. Computer diagnosis and tuning of RF andmicrowave filters using model-based parameter estimation. IEEE Trans. Circuit Syst. I,2002,49(9):1263–1270.
    [63] P. Harscher, R.Vahldieck, S. Amari. Automated filter tuning using generalized low-passprototype networks and gradient-based parameter extraction. IEEE Trans. Microw. TheoryTech.,2001,49(12):2532–2538.
    [64] W. Meng, K. L. Wu. Analytical diagnosis and tuning of narrowband multicoupled resonatorfilters. IEEE Trans. Microw. Theory Tech.,2006,54(10):3765–3771.
    [65] C. K. Liao, C. Y. Chang, J. Lin. A vector-fitting formulation for parameter extraction of lossymicrowave filters. IEEE Microw. Wireless Comp. Lett.,2007,17(4):277–279.
    [66] M. Meng, K. L.Wu. An analytical approach to computer-aided diagnosis and tuning of lossymicrowave coupled resonator filters. IEEE Trans. Microw. Theory Tech.,2009,57(12):3188–3195.
    [67] H. T. Hsu, H. W. Yao, K. A. Zaki, et al. Computer-aided diagnosis and tuning of cascadedcoupled resonators filters. IEEE Trans. Microw. Theory Tech.,2002,50(4):1137–1145.
    [68] H. T. Hsu, Z. Zhang, K. A. Zaki, et al. Parameter extraction for symmetric coupled-resonatorfilters, IEEE Trans. Microw. Theory Tech.,2002,50(12):2971–2978.
    [69] G. Macchiarella, D. Traina. A formulation of the Cauchy method suitable for the synthesis oflossless circuit models of microwave filters from lossy measurements. IEEE Microw. WirelessComp. Lett.,2006,16(5):243–245.
    [70] M. Esmaeili, A. Borji. Diagnosis and tuning of multiple coupled resonator filters.18th IranianConference on Electrical Engineering (ICEE), Iran2010,124–129.
    [71] A. G. Lampérez, S. L. Romano, M. S.Palma, et al. Filter model generation from scatteringparameters using the Cauchy method. Proc.32nd Eur. microwave conf., vol.1, Milan, Italy,2002:413–416.
    [72] A. G. Lampérez, S. L. Romano, M. S. Palma, et al. Efficient electromagnetic optimization ofmicrowave filters and multiplexers using rational models. IEEE Trans. Microw. Theory Tech.,2004,52(2):508–520.
    [73] G. Macchiarella. Extraction of unloaded Q and coupling matrix from measurements on filterswith large losses. IEEE Microw. Wireless Comp. Lett.,2010,20(6):307–309.
    [74] A. G. Lampérez, T. K. Sarkar, M. S. Palma. Generation of accurate rational models of lossysystems using the Cauchy method. IEEE Microw. Wireless Comp. Lett.,2004,14(10):490–492.
    [75] A. R. H. AlHawari, A. Ismail, M. F. A. Rasid, et al. Compact microstrip bandpass filter withsharp passband skirts using square spiral resonators and embedded-resonators. Journal ofElectromagnetic Waves and Applications,2009,23(5–6):675–683.
    [76] A. J. Vera, I. L. Garro. Coaxial narrowband filters using a versatile suspended resonator.Progress In Electromagnetics Research,2011, Vol.115,79–94.
    [77] Y. Z. Zhu, H. S. Song, K. Guan. Design of optimized selective quasi-elliptic filters. Journal ofElectromagnetic Waves and Applications,2009,23(10):1357–1366.
    [78] B. López-García, D. V. B. Murthy, A. Corona-Chávez. Half mode microwave filters based onEpsilon near zero and Mu near zero concepts. Progress In Electromagnetics Research,2011, Vol,113,379–393.
    [79] M. D. C. Velázquez-Ahumada, J. Martel, F. Medina, et al. Design of band-pass filters usingstepped impedance resonators with floating conductors. Progress In Electromagnetics Research,2010, Vol.105,31–48.
    [80] M. H. Weng, C. H. Kao, Y. C Chang. A compact dual-band bandpass filter with high bandselectivity using cross-coupled asymmetric Sirs for Wlans. Journal of Electromagnetic Wavesand Applications,2010,24(2–3):161–168.
    [81] X. Lai, N. Wang, B. Wu, et al. Design of dual-band filter based on OLRR and DSIR. Journal ofElectromagnetic Waves and Applications,2010,24(2–3):209–218.
    [82] H. J. Lin, X. Q. Chen, X. W. Shi, et al. A dual passband filter using hybrid microstrip open loopresonators and coplanar waveguide slotline resonators. Journal of Electromagnetic Waves andApplications,2010,24(1):141–149.
    [83] A. M. Abu-Hudrouss, M. J. Lancaster. Design of multiple-band microwave filters usingcascaded filter elements. Journal of Electromagnetic Waves and Applications,2009,23(16):2109–2118.
    [84] R. Q. Li, X. H. Tang, F. Xiao. An novel substrate integrated waveguide square cavity dual-modeFilter. Journal of Electromagnetic Waves and Applications,2009,23(17–18):2523–2529.
    [85] S. G. Mo, Z. Y. Yu, L. Zhang. Compact dual-mode bandpass filters using hexagonal meanderloop resonators. Journal of Electromagnetic Waves and Applications,2009,23(13):1723–1732.
    [86] G. Pepe, F. J. Gortz, H. Chaloupka. Sequential tuning of microwave filters using adaptivemodels and parameter extraction. IEEE Trans. Microw. Theory Tech.,2005,53(1):22–31.
    [87] J. J. Michalski. Inverse modeling in application for sequential filter tuning. Progress InElectromagnetics Research,2011, Vol.115,113–129.
    [88] G. Pepe, F. J. Gortz, H. Chaloupka. Computer-aided tuning and diagnosis of microwave filtersusing sequential parameter extraction. IEEE MTT-S Int. Microwave Symp. Dig.2004, Vol.3:1373–1376.
    [89] V. Miraftab, R. R. Mansour. A robust fuzzy-logic technique for computer-aided diagnosis ofmicrowave filters. IEEE Trans. Microw. Theory Tech.,2004,52(1):450–456.
    [90] V. Miraftab, R. R. Mansour. Fully automated RF/microwave filter tuning by extracting humanexperience using fuzzy controllers. IEEE Trans. Circuit Syst. I: Reg. Papers,2008,55(5):1357–1367.
    [91] J. Dunsmore. Tuning bandpass filters in the time domain. IEEE MTT-S Int. Microwave Symp.Dig.1999,1351–1354.
    [92] J. J. Michalski. Artificial neural networks approach in microwave filter tuning. Progress InElectromagnetics Research M,2010, Vol.13,173–188.
    [93] H. Kabir, Y. Wang, M. Yu, et al. Neural network inverse modeling and applications tomicrowave filter design. IEEE Trans. Microw. Theory Tech.,2008,56(4):867–879.
    [94] J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Electromagnetic optimization exploitingaggressive space mapping. IEEE Trans. Microw. Theory Tech.,1995,43(12):2874–2882.
    [95] M. H. Bakr, J. W. Bandler, R. M. Biernacki, et al. A trust region aggressive space mappingalgorithm for EM optimization. IEEE Trans. Microw. Theory Tech.,1998,46(12):2412–2425.
    [96] J. J. Michalski. On linear mapping of filter characteristic to position of tuning elements in filtertuning algorithm. Progress In Electromagnetics Research,2012, Vol.123:279–298.
    [97] T. Yang, P. L. Chi, T. Itoh. High isolation and compact diplexer using the hybrid resonators.IEEE Microw. Wireless Comp. Lett.,2010,20(10):551–553.
    [98] J. Shi, J. X. Chen, Z. H. Bao. Diplexers based on microstrip line resonators with loadedelements. Progress In Electromagnetics Research,2011, Vol.115,423–439.
    [99] R. Y. Yang, C. M. Hsiung, C. Y. Hung, et al. Design of a high band isolation diplexer for GPSand WLAN system using modified stepped-impedance resonators. Progress InElectromagnetics Research,2010, Vol.107,101–114.
    [100] C. Y. Huang, M. H. Weng, C. S. Ye, et al. A high band isolation and wide stopband diplexerusing dual-mode stepped-impedance resonators. Progress In Electromagnetics Research,2010,Vol.100,299–308.
    [101] A. Morini, T. Rozzi. Constraints to the optimum performance and bandwidth limitations ofdiplexers employing symmetric three-port junctions. IEEE Trans. Microw. Theory Tech.,1996,40(2):242–248.
    [102] G. Macchiarella, S.Tamiazzo. Novel approach to the synthesis of microwave diplexers. IEEETrans. Microw. Theory Tech.,2006,54(12):4281–4290.
    [103] G. Lamperez, A. M. Salazar-Palma, T. K. Sarkar. Analytical synthesis of microwave multiportnetworks. IEEE MTT-S Int. Microwave Symp. Dig. USA, June2004,455–458.
    [104] T. F. Skaik, M. J. Lancaster, F. Huang. Synthesis of multiple output coupled resonator circuitsusing coupling matrix optimisation. IET Microw. Antennas Propag.,2011,5(9):1081–1088.
    [105] T. F. Skaik, M. J. Lancaster. Coupled resonator diplexer without external junctions. Journal ofElectromagnetic Analysis and Applications,2011,3(6):238–241.
    [106] C. F. Chen, T. Y. Huang, C. P. Chou, et al. Microstrip diplexer design with common resonatorsection for compact size but high isolation. IEEE Trans. Microw. Theory Tech.,2006,54(5):1945–1952.
    [107] M. L. Chuang, M. T. Wu. Microstrip diplexer design using common T-shaped resonator. IEEEMicrow. Wireless Comp. Lett.,2011,21(11):583–585.
    [108] T. Yang, P. L. Chi, T. Itoh. Compact quarter-wave resonator and its applications to miniaturizeddiplexer and triplexer. IEEE Trans. Microw. Theory Tech.,2011,59(2):260–269.
    [109] G. Macchiarella, S. Tamiazzo. Synthesis of star-junction multiplexers. IEEE Trans. Microw.Theory Tech.,2010,58(12):3732–3741.
    [110] C. Kudsia, R. J. Cameron, W. C. Tang. Innovations in microwave filters and multiplexingnetworks for communications satellite systems. IEEE Trans. Microw. Theory Tech.,1992,40(6):1133–1149.
    [111] R. J. Cameron, M. Yu. Design of manifold coupled multiplexers. IEEE microwave magazine,Oct.2007,46–59.
    [112] M. Yu, Y. Wang. Enhanced microwave multiplexing network. IEEE Trans. Microw. TheoryTech.,2011,59(2):270–277.
    [113] J. S. Hong, M. J. Lancaster. Microstrip filters for RF/microwave applications, Wiley, NewYork,2001,235–244.
    [114] J. S. Hong, M. J. Lancaster. Microstrip filters for RF/microwave applications, Wiley, NewYork,2001,257–271.
    [115] S. Amari. On the maximum number of finite transmission zeros of coupled resonator filterswith a given topology. IEEE Microw. Guided Wave Lett.1999,9(9):354–356.
    [116] S. Amari, J. Bornemann. Maximum number of finite transmission zeros of coupled resonatorfilters with source/load-multi-resonator coupling and a given topology. Proc. Asia–PacificMicrow. Conf., Sydney,2000(APMC2000),1175–1177.
    [117] GA Toolbox. Available at: http://www.shef.ac.uk/acse/research/ecrg/getgat.html.
    [118] M. Sagawa, M. Makimoto, S. Yamashita. Geometrical structures and fundamentalcharacteristics of microwave stepped-impedance resonators. IEEE Trans. Microw. Theory Tech.,1997,45(7):1078–1085.
    [119] J. S. Hong, M. J. Lancaster. Theory and experiment of novel microstrip slow-wave open-loopresonator filters. IEEE Trans. Microw. Theory Tech.,1997,45(12):2358–2365.
    [120] X. P. Chen, K. Wu, D. Drolet. Substrate integrated waveguide filter with improved stopbandperformance for satellite ground terminal. IEEE Trans. Microw. Theory Tech.,2009,57(3):674–683.
    [121] B. Potelon, C. Quendo, J. F. Favennec, et al. Design of bandpass filter based on hybrid planarwaveguide resonator. IEEE Trans. Microw. Theory Tech.,2010,58(3):635–644.
    [122] K. K. Samanta, D. Stephens, I. D. Robertson. Design and performance of a60-GHz multi-chipmodule receiver employing substrate integrated waveguides. IET Microw. Antennas Propag.,2007,1(5):961–967.
    [123] Z. Y. Zhang, Y. R. Wei, K. Wu. Millimeter-wave wireless communication systems integratedwith a novel receiver front-end. IEEE MTT-S Int. Microwave Symp. Dig.2010,1612–1615.
    [124] F. Xu, K. Wu. Guided-wave and leakage characteristics of substrate integrated waveguide.IEEE Trans. Microw. Theory Tech.,2005,53(1):66–72.
    [125] Y. Cassivi, L. Perregrini, P. Arcioni, et al. Dispersion characteristics of substrate integratedrectangular waveguide. IEEE Microw. Wireless Comp. Lett.,2002,12(9):333–335.
    [126] SolvOpt manual and SolvOpt Toolbox for Matlab. Download via the internet: http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/index.html
    [127] J. T. Kuo, M. J. Maa, P. H. Lu. A microstrip elliptic function filter with compact miniaturizedhairpin resonators. IEEE Microw. Guided Wave Lett.,2000,10(3):94–95.
    [128] S. Song, C. S. Yoo, K. S. Seo. W-Band bandpass filter using micromachined air-cavityresonator wth current probes. IEEE Microw. Wireless Comp. Lett.,2010,20(4):205–207.
    [129] B. Pan, Y. Li, M. M. Tentzeris, et al. Surface micromachining polymer-core-conductorapproach for high-performance millimeter-wave air-cavity filters integration. IEEE Trans.Microw. Theory Tech.,2008,56(4):959–970.
    [130] R. J. Cameron, C. M. Kudsia, R. R. Mansour. Microwave filters for communication systems.New York: Wiley,2007,186–187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700