阵列波导光栅及可调色散补偿器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据波导阵列光栅(Arrayed Waveguide Grating,简称AWG)近年来具有往低成本、无热封装、以及基于AWG的可调色散补偿器(Tunable Optical DispersionCompensator,TODC)的方向发展的趋势,着重进行了如下几个方面的研究,并取得了如下创新性的成果:
     进行了低成本曲线型切割AWG有热稳定封装技术研究。通过理论分析与实验的方法研究了AWG芯片受加热片、受封装盒线膨胀系数与AWG芯片或带装光纤之间的不同导致的热应力。本论文提出了一种通过在加热片与曲线AWG芯片接触面之间使用导热硅脂、在AWG芯片周围用硅橡胶将其贴到加热片上的方法减小加热片对AWG芯片的应力,并通过在加热片下贴一块高硼硅玻璃片将AWG上的带状光纤固定到该玻璃片上的方案极大低降低了封装盒对AWG芯片的应力,同时又保证了AWG芯片不受通过带状光纤传递过来的来自封装盒外的外力的影响。实验表明环境温度在-20~65℃范围内变化时使用本方案封装的AWG热应力引起的中心波长变化典型值为5pm。
     进行了新型无热AWG研究。本论文提出一种新型无热AWG方案:在两条线膨胀系数较大的材料上贴两片平整的基片A与B,将曲线切割的AWG芯片沿着输入平板波导且垂直于光传输方向切断为A、B两个部分并分别贴在这些基片上,利用补偿杆的热胀冷缩导致的AWG芯片各个部分之间的相对运动来实现无热AWG。本方案的特点是使用的补偿杆本身比较稳定,不易产生弹性形变,封装的无热AWG不易受外力的影响,而且可以在封装过程中通过在曲线型AWG芯片上施加外力改变AWG芯片的中心波长,用以补偿贴AWG芯片以及其它操作中使用的夹具应力、胶的应力的释放引起的AWG中心波长的漂移并精确调整波长。实验结果表明,可以在-5~70℃环境温度范围内实现波长温度系数为-0.79pm/℃的无热AWG。
     进行了新型小尺寸AWG芯片设计研究。本论文提出了一种新型的小尺寸低折射率差硅基二氧化硅AWG芯片的设计方案,该方案通过将输出波导与AWG输出平板连接的部分制作成高折射率差的空气槽波导,从而缩减AWG芯片尺寸。该方案优点是除输出波导与AWG输出平板波导连接的部分制作成高折射率差的空气槽波导外,其余各处的波导均为低折射率差波导,这就保留了低折射率差波导与普通单模光纤之间的低耦合损耗的特性,以及阵列波导低相位误差的特性。设计结果表明可以在一个6英寸的硅片上加工并切出49个40通道100GHz间隔的AWG芯片——是常规曲线切割AWG的2倍左右。
     本论文提出了一种新型的单片集成的基于AWG的TODC的设计方案:将AWG中输出波导与输出平板波导连接的部分制作成高折射率差的空气槽波导以获得相邻输出波导光谱中心波长差很小的AWG,并将AWG输出波导分成若干组,每组中各个输出波导均利用热光效应改变该波导中的光信号的相位,实现多通道同时或独立可调TODC功能。模拟结果显示多通道独立可调TODC可以实现-402~402ps/nm的色散补偿能力,设计的多通道同时可调TODC可以实现-783~783ps/nm的色散补偿能力。同时提出了一种超低群时延抖动的级联TODC方案,模拟结果表示在色散补偿范围为-776~776ps/nm内时,级联的TODC的群时延抖动的峰-谷值小于0.9ps。
Dense wavelength division multiplexer (DWDM) based on arrayed waveguide grating(AWG) is widely used in the backbone, metropolitan, and access networks, for itsadvantages of small channel spacing, easy integration with other optical components,compact size, high reliability, high yield, and low cost. In the recent years, most effortswere paid in the AWGs with low cost and athermal packaging technologies. Further more,more and more attentions were paid in the multiple channel tunable optical dispersioncompensator (TODC) based on AWG with the development of40Gbps systemts. For thesereasons, we did some researches and made the following innovations:
     In this thesis, we experimentally studied the thermal stresses in curve diced AWG chipintroduced by the differences between the linear expansion coefficient of AWG and those ofthe heater and the packaging box, and we introduced a new low thermal stress AWGpackaging. In this packaging, the AWG chip was bonded to the heater by heater conductivesilicon greese and silicon rubber, so the stress was very small which was caused by thethermal expansion coefficient difference between the AWG chip and the heater. Aborosilicate glass plate was bonded to the ceramic heater, and the ribbon fibbers werebonded to it with silicon rubber. For the linear expansion coefficient difference between theborosilicate glass plate and ribbon fiber is very samll, the thermal stress of ribbon fibber orAWG chip is very small. Further more, this new pakaging can assure that the AWG in thepackaging case will not be influenced by the forces outside of the case. Experimentalresults showed the typical center wavelength variation introduced by the thermal stress forthermally stabled AWG modules manufactured with this technique was smaller than5pm,when the ambient temperature varied from-20℃to65℃.
     We introduced a new athermalized AWG packaging. In this athermal AWG, two plaes Aand B with the same thermal expansion coefficient as AWG chip were adhered to thealuminium alloy compensation bars with large thermal expansion coefficient, and two parts(A and B)of AWG chip were adhered to the plate A and B, repectively. The part A and B ofAWG chip were fabricated by cutting a curve-shape AWG chip from the center of its inputslab waveguide. For the thermal expansion coefficient of compensation bar is larger than thatof AWG chip, the position between the AWG part A and B varies with the variation of theambient temperature, so the AWG center wavelength variation caused by the variation of the ambient temperature can be reduced. For this new athermal AWG have no any flexibility, itcan not be influenced by the outside force. And for the curve-shape AWG center wavelengthcan be adjusted by the radial stress, the center wavelength of this athermal AWG can beadjusted during packaging process, which can be used to compensate the center wavelengthvariation introduced by the mechanical and thermal stress. The experiment results showedthe coefficient of center wavelength varying with the ambient temperature was as small as-0.79pm/℃, when the ambient temperature varied from-5℃to70℃
     A novel compact AWG based on low refractive index contrast silica-on-silicontechnology is proposed. In this AWG, only the segments connected with slab waveguides inthe input and output waveguides are air trench (AT) waveguides. By using these ATsegments, the distance between the adjacent output waveguides connected with the outputslab is decreaced greatly, so the size of AWG chip is decreased dramatically. The segmentscoupling to fibers in the input or output waveguides and the arrayed waveguides are allfabricated with low refractive index contrast waveguides, for the purpose to obtain lowcoupling loss with fibers and good performances as traditional SOS AWGs. The designresuts show that the size of an AWG designed consisting of40channels on100GHz ITUgrid is very small, and forty-nine pieces of square AWG dies can be cut from a six inchsilicon wafer.
     This thesis proposes an integrated tunable optical dispersion compensator whichconsists of an AWG with air trench output waveguides and waveguide-type phasemodulators based on thermo-optic effect. The air trenches are formed on both sides of eachoutput waveguide to minimize the size of AWG. One TODC design for compensatingchromatic dispersion (CD) channel by channel with a tunable range from-402ps/nm to402ps/nm and another TODC design for compensating chromatic dispersions of multiplechannels simultaneously with a tunable range from-783ps/nm to783ps/nm are introduced.Finally, a TODC consisting of two cascaded TODCs is analyzed, which peak-to-peak groupdelay ripple is as low as0.9ps, when its CD can be tuned from-776ps/nm to776ps/nm.
引文
[1] G. Winzer, H. F. Mahlein, A. Reichelt. Single-mode and multimode all-fiberdirectional couplers for WDM. Appl. Opt.,1981,20(18):3128-3135
    [2] K. O. Hill, G. Meltz. Fiber Bragg grating technology fundamentals and overview. J.Ligthwave Technol.,1997,15(8):1263-1276
    [3] I. Nishi, T. Oguchi, K. Kato. Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism. Electron. Lett.,1985,21(10):423-424
    [4] C. K. Madsen. Efficient architectures for exactly realizing optical filters with optimumbandpass designs. IEEE Photon. Technol. Lett.,1998,10(8):1136-1138
    [5] B. Verbeek, M. K. Smit. Phased array based WDM devices. in Proc. Eur. Conf. onOptical Communication (ECOC’95), Brussels, Belgium, Sept.,1995.195-202
    [6] M. K. Smit. New focusing and dispersive planar component based on an opticalphased array. Electron. Lett.,1988,24(7):385-386
    [7] H. Takahashi, S. Suzuki, K. Kato, et al. Arrayed-waveguide grating for wavelengthdivision multi/demultiplexer with nanometer resolution. Electron. Lett.,1990,26:87-88
    [8] H. Takahashi, I. Nishi, Y.Hibino.10GHz spacing optical frequency divisionmultiplexer based on arrayed-waveguide grating. Electron. Lett.,1992,28(4):380-382
    [9] C. Dragone. An N N optical multiplexer using a planar arrangement of two starcouplers. IEEE Photon. Technol. Lett.,1991,3(9):812-815
    [10] C. Dragone, C. A. Edwards, R. C. Kistler. Integrated optics N N multiplexer onsilicon. IEEE Photon. Technol. Lett.,1991,3(10):896-899
    [11] Takahashi H, Toba H, Inoue Y. Transmission characteristics of arrayed waveguideN N wavelength multiplexer. J. Ligthwave Technol.,1995,13(3):447-455
    [12] H. G. Alan, R. W. Tkach, A. R. Chraplyvy, et al. High-capacity optical transmissionsystems. J. Ligthwave Technol.,2008,26(9):1032-1045
    [13] C. R. Doerr, K. Okamoto. Advamces in silica planar lightwave circuits. J. LigthwaveTechnol.,2006,24(12):4763-4789
    [14] H. Takahashi, Y. Hibino, I. Nishi. Polarization-insensitive arrayed-waveguide gratingwavelength multiplexer on silicon. Opt. Lett.,1992,17(7):499-501
    [15] K. Okamoto, A. Sugita. Flat spectral response arrayed-waveguide grating multiplexerwith parabolic waveguide horns. Electron. Lett.,1996,32(18):1661
    [16] J. Jiang, C. L. Callender, C. Blanchetière, et al. Arrayed waveguide gratings based onperfluorocyclobutane polymers for CWDM applications. IEEE Photon. Technol. Lett.,2006,18(2):370-372
    [17] J.-F. Viens, C. L. Callender, J. P. Noad, et al. Compact wide-band polymerwavelength-division multiplexers. IEEE Photon. Technol. Lett.,2000,12(8):1010-1012
    [18] H. Tanobe, Y. Kondo, Y. Kadota, et al. Temperature insensitive arrayed waveguidegratings on InP substrates. IEEE Photon. Technol. Lett.,1998,10(2):235-237
    [19] J. H. Baek, F. M. Soares, S. W. Seo, et al.10-GHz and20-GHz channel spacinghigh-resolution AWGs on InP. IEEE Photon. Technol. Lett.,2009,21(5):298-300
    [20] P. Munoz, D. Pastor. Modeling and design of arrayed waveguide grating. J. LightwaveTechnol.,2002,20(4):661-674
    [21] M. K. Smit, C. van Dam. PHASAR-based WDM-Devices: principles, design andapplications. IEEE J. Sel. Top. Quant. Electron.,1996,2(2):236-250
    [22] J. Canning. Birefringence control in planar waveguides using doped top layers. Opt.Comm.,2001,191(3-6):225-228
    [23] M. Okuno, A. Sugita, K. Jinguji, et al. Birefringence control of silica waveguides onSi and its application to a polarization-beam splitter/switch. J. Lightwave Technol.,1994,12(4):625-631
    [24] H. Takahashi, Y. Hibino, Y. Ohmori, et al. Polarization-insensitive arrayed-waveguidewavelength multiplexer with birefringence compensation film. IEEE Photon. Technol.Lett.,1993,5(6):707-709
    [25] S. Suzuki, S. Sumida, Y. Inoue, et al. Palarization-insensitive arrayed-waveguidegratings using dopant-rich silica-based glass with thermal expansion adjusted to Sisubstrate. Electron. Lett.,1997,33(13):1173
    [26] Y. Inoue, Y. Ohmori, M. Kawachi, et al. Polarization mode converter with polyimidehalf waveplate in silica-based planar lightwave circuits. IEEE Photon. Technol. Lett.,1994,6(5):626-628
    [27] H. Yamada, K. Takada, Y. Inoue, et al, Statically-phase-compensated10GHz-spacedarrayed-waveguide grating. Electron. Lett.,1996,32(17):1580-1581
    [28] T. Goh, S. Suzuki, A. Sugita. Estimation of waveguide phase error in silica-basedwaveguides. J. Lightwave Technol.,1997,15(11):2107-2113
    [29] K. Takada, M. Abe. Slab-waveguide irradiation of UV laser light for photosensitivephase error compensation of arrayed-waveguide gratings. IEEE Photon. Technol. Lett.,2002,14(6):813-827
    [30] M. R. Amersfoort, C. R. de Boer, F. P. G. M. van Ham, et al. Phased-arraywavelength demultiplexer with flattened wavelength response. Electron. Lett.,1994,30(4):300-302
    [31] M. R. Amersfoort, J. B. D. Soole, H. P. Leblanc, et al. Passband broadening ofintegrated arrayed waveguide filters using multimode interference couplers. Electron.Lett.,1996,32(5):449-451
    [32] C. Dragone. Frequency routing device having a wide and substantially flat passband.USA Patent, Patent Number: US5412744,1995.1-3
    [33]王文敏,马卫东,陈光等.一阶模的滤除及在Y分支和多模干涉结构中的应用.光学学报,2003,23(11):1330-1334
    [34] K. Maru, M. Ohkawa, H. Nounen, et al. Athermal and center wavelength adjustablearrayed-waveguide grating. in OFC2000, Baltimore, Maryland, USA,2000,2:130-132
    [35] K. Okamoto, H. Yamada. Arrayed-waveguide grating multiplexer with flat spectralresponse. Opt. Lett.,1995,20(1):43-45
    [36] T. Kamalakis, T. Sphicopoulos. An efficient technique for the design of anarrayed-waveguide grating with flat spectral response. J. Lightwave Technol.,2001,19(11):1716-1725
    [37] G. H. B. Thompson, R. Epworth, C. Rogers, et al. An original low-loss and flattenedSiO2on Si planar wavelength multiplexer. In OFC’98, San Diego, California, USA,1998. TuN1
    [38] H. F. Bulthuis, M. R. Amersfoort. Passband flatting of a PHASAR. USA Patent, PatentNumber: US6289147,2001.1-3
    [39] T. Kitoh, Y. Inoue, M. Itoh, et al. Low chromatic-dispersion flat-top arrayedwaveguide grating filter. Electron. Lett.,2003,39(15):1116-1118
    [40] K. Nara, T. Nakajma, K. Kashihara. Array waveguide diffraction grating. Europeanpatent: EP1128193A1,2001.1-3
    [41] Wenmin Wang, Yuanzhong Xu, Weidong Ma, et al. DWDM based on AWG with widepass-band and low crosstalk. Proc. SPIE,2004,5279:611-617
    [42] K. Maru, T. Mizumoto. Modeling of multi-input arrayed waveguide grating and itsapplication to design of flat-passband response using cascaded mach–zehnderinterferometers. J. Lightwave Technol.,2007,25(2):544-555
    [43] K. Maru, T. Mizumoto, H. Uetsuka. Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascadedMach–Zehnder interferometers. J. Lightwave Technol.,2007,25(8):2187-2197
    [44] Y. P. Li. Optic device having low insertion loss. USA Patent, Patent Number:US5745618,1998.1-3
    [45] J. Hasegawa, K. Nara. Low-loss athermal AWG module with high reliability.Electronics and Communications in Japan, Part2,2006,89(3):428-435
    [46] Z. Weissman, A. Hardly. Modes of periodically segmented waveguides. J. LightwaveTechnol.,1993,11(11):1831-1838
    [47] Z. Weissman, I. Hendel. Analysis of periodically segmented waveguide modeexpanders. J. Lightwave Technol.,1995,13(10):2053-2058
    [48] Y. Uchida, H. Kawashima, K. Nara. Vertical spot size converter with0.06dB/facetcoupling loss using2.5%silica-based waveguide. in OECC2009, Vienna, Austria,Jul.,2009.1-2
    [49] Y. Uchida, H. Kawashima, K. Nara. Development of vertical spot size converter (SSC)with low coupling loss using2.5%Δ silica-based planar lightwave circuit. FurukawaReview,2010,37:1-5
    [50] K. Maru, T. Hakuta, Y. Abe, et al. Spot-size converter using vertical ridge taper forlow fibre-coupling loss in2.5%-silica waveguides. Electron. Lett.,2006,42(4):219-220
    [51] Zhou Tianhong, Ma Weidong. A novel approach for an athermal arrayed-waveguidegrating. Journal of Semiconductors,2010,31(1):014005
    [52] H. Albrecht, D. Rosenberger, G. Heise, et al. Devices for coupling light between twowaveguide end surfaces. USA Patent, Patent Number: US6470119B1,2002.1-3
    [53] K. Kashihara, K. Nara, Arrayed waveguide grating. USA Patent, Patent Number: US6563986B2,2003.1-2
    [54] J. Hasegawa, K. Nara. Athermal AWG module with extremely low temperaturedependence (<+/-5pm) of center wavelength using multi-compensating plates. inECOC2006, Cannes, France, Sep.,2006.1-2
    [55] J. Hasegawa, K. Nara. Ultra-low-loss athermal AWG module with a large number ofchannels. Furukawa Review,2004,26:1-5
    [56] S. Kamei, K. Iemura, A. Kaneko, et al.1.5%-athermal arrayed-waveguide gratingmulti/demultiplexer with very low loss groove design. IEEE Photon. Technol. Lett.,2005,17(3):588-590
    [57] K. Maru, Y. Abe, M. Ito, et al.2.5%-silica based athermal arrayed waveguidegrating employing spot-size converters based on segmented core. IEEE Photon.Technol. Lett.,2005,17(11):2325-2327
    [58] S. Kamei, T. Kitoh, M. Itoh, et al.50-GHz-spacing athermal mach–zehnderinterferometer-synchronized arrayed-waveguide grating with improved temperatureinsensitivity. IEEE Photon. Technol. Lett.,2009,21(17):1205-1207
    [59] S. Kamei, Y. Inoue, T. Mizuno, et al. Extremely low-loss1.5%-32-channel athermalarrayed-waveguide grating multi/demultiplexer. Electron. Lett.,2005,41(9):544-546
    [60] M. Itoh, S. Kamei, M. Ishii, et al. Ultra-small40-channel athermal arrayed-waveguidegrating module with low-loss groove design. Electron. Lett.,2008,44(21):1271-1272
    [61] S. Kamei, M. Kohtoku, T. Shibata, et al. Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and widepassband. Electron. Lett.,2008,44(3):201-202
    [62] K. Maru, K. Matsui, H. Ishikawa, et al. Super-high-athermal arrayed waveguidegrating with resin-filled trenches in slab region. Electron. Lett.,2004,40(6):374-375
    [63] H. Huang, W. Liu, D. Huang. Analytical solutions to estimate the temperaturesensitivity of arrayed waveguide gratings with stress plates. J. Lightwave Technol.,2008,44(12):1263-1270
    [64] N. Ooba, Y. Hibino, Y. Inoue, et al. Athermal silica-based arrayed-waveguide gratingmultiplexer using bimetal plate temperature compensator. Electron. Lett.,2000,36(21):1800-1801
    [65] J.B.D. Soole, M. Schlax, C. Narayanan, et al. Athermalisation of silica arrayedwaveguide grating multiplexers. Electron. Lett.,2003,39(16):1182–1184
    [66] J.B.D. Soole, M. Schlax, M.P. Earnshaw, et al. Athermalised monolithic VMUXemploying silica arrayed waveguide grating multiplexer. Electron. Lett.,2003,39(18):1318-1319
    [67] H. Hirota, M. Itoh, M. Oguma, et al. Athermal arrayed-waveguide gratingmulti/demultiplexers composed of TiO2–SiO2waveguides on Si. IEEE Photon.Technol. Lett.,2005,17(2):375-377
    [68] Eun-Seok Kang, Woo-Soo Kim, Duk-Jun Kim, et al. Reducing the thermaldependence of silica-based arrayed-waveguide grating using inorganic–organic hybridmaterials. IEEE Photon. Technol. Lett.,2004,16(12):2625-2627
    [69] N. Keil, H. H. Yao, C. Zawadzki, et al. Athermal all-polymer arrayed waveguidegrating multiplexer. Electron. Lett.,2002,37(9):579-580
    [70] H. Huang, S-T Ho, D. Huang, et al. Design of temperature-independent arrayedwaveguide gratings based on the combination of multiple types of waveguide. AppliedOptics,2010,49(16):3025-3034
    [71] L. Grave de Peralta, A. A. Bernussi, V. Gorbounov, et al. Temperature-insensitivereflective arrayed-waveguide grating multiplexers. IEEE Photon. Technol. Lett.,2004,16(3):831-833
    [72] Zhiyi Zhang, Gao Zhi Xiao, Jiaren Liu, et al. A cost-effective solution for packagingthe Arrayed Waveguide Grating (AWG) photonic components. IEEE Trans. Compon.Packag. Tech.,2005,28(3):564-570
    [73] S. Akiyama, K. Wadaa, J. Michela, et al. Air trench waveguide bend for high densityoptical integration. in Proceedings of SPIE,2004,5355:14-21
    [74] Y. Hibino. High contrast waveguide devices. in OFC2001, Anaheim, California, USA,Mar.,2001. WB1
    [75] Y. Hibino. Recent advances in high-density and large-scale AWG multi/demultiplexerswith higher index-contrast silica-based PLCs. IEEE J. Sel. Top. Quantum Electron.,2002,8(6):1090-1101
    [76] K. Takada, M. Abe, M. Shibata, et al. Low-crosstalk10GHz-spaced512-channelarrayed-waveguide grating multi/demultiplexer fabricated on a4-in wafer. IEEEPhoton. Technol. Lett.,2001,13(11):1182-1184
    [77] K. Maru, H. Ishikawa, H. Komano, et al.2.5%-silica-based arrayed-waveguidegrating multi/demultiplexer with low crosstalk. in Proc. OECC/COIN,2004,15F1-4:720-721
    [78] K. Maru, M. Okawa, Y. Abe, et al. Silica-based2.5%-arrayed waveguide gratingusing simple polarisation compensation method with core width adjustment. Electron.Lett.,2007,43(1):26-27
    [79] M. Popovic, K. Wada, S. Akiyama, et al. Air trenches for sharp silica waveguide bends.J. Lightwave Technol.,2002,20(9):1762-1772
    [80] S. Akiyama, M. A. Popovic, P. T. Rakich, et al. Air trench bends and splitters for denseoptical integration in low Index contrast. J. Lightwave Technol.,2005,23(7):2271-2277
    [81] T. Yen-Ting Fan, J. Ito, T Suzuki, et al. Compact arrayed-waveguide grating using airtrench and high mesa structures. in Integrated Photonics Research and Applications(IPRA), Uncasville, Connecticut, USA, Apr.,2006. IMB3
    [82] J. Ito, H. Tsuda. Small bend structures using trenches filled with low-refractive indexmaterial for miniaturizing silica planar lightwave circuits. J. Lightwave Technol.,2009,27(6):786-790
    [83] J. Ito, H. Tsuda. Compact arrayed-waveguide grating with a locally enhanced opticalconfinement structure using trenches filled with low-refractive index materials. inProceedings of ECIO, Copenhagen, Denmark, Apr.,2007. THA6
    [84] L. Li, G. P. Nordin, J. M. English, et al. Small-area bends and beamsplitters forlowindex-contrast waveguides. Optics Express,2003,11(3):282-290
    [85] T. Suzuki, H. Tsuda. Ultrasmall arrowhead arrayed-waveguide grating with V-shapedbend waveguides. IEEE Photon. Technol. Lett.,2005,17(4):810-812
    [86] C. K. Madsen, J. A. Walker, J. E. Ford, et al. A tunable dispersion compensatingMEMS all-pass filter. IEEE Photon. Technol. Lett.,2000,12(6):651-653
    [87] K. Takiguchi, K. Jinguji, Y. Ohmori. Variable group-delay dispersion equaliser basedon a lattice-form programmable optical filter. Electron. Lett.,1995,31(15):1240-1241
    [88] M. Sumetsky, N.M. Litchinitser, P.S. Westbrook, et al. High-performance40Gbit/sfibre Bragg grating tunable dispersion compensator fabricated using group delayripple correction technique. Electron. Lett.,2003,39(16):1196-1198
    [89] C. K. Madsen, G. Lenz, A. J. Bruce, et al. Integrated all-pass filters for tunabledispersion and dispersion slope compensation. IEEE Photon. Technol. Lett.,1999,11(12):1623-1625
    [90] D. M. Marom, C. R. Doerr, M. A. Cappuzzo, et al. Compact colorless tunabledispersion compensator with1000-ps/nm tuning range for40-Gb/s data rates. J.Lightwave Technol.,2006,24(1):237-241
    [91] C. K. Madsen. Sub band all-pass filter architectures with applications to dispersionand dispersion-slope compensation and continuously variable delay lines. J.Lightwave Technol.,2003,21(10):2412-2420
    [92] S. Ayotte, S. Xu, H. Rong, et al. Silicon waveguide based dispersion compensation byoptical phase conjugation. in OFC/NFOEC’2007, Anaheim, California, USA, Mar.,2007. PDP42
    [93] I. Giuntoni, D. Stolarek, A. Gajda, et al. Chirped gratings on tapered SOI ribwaveguides for dispersion compensation. in BGPP’2010, Karlsruhe, Germany, Jun.,2010. BMB4
    [94] J. E. Roman, K. A. Winick. Waveguide grating filters for dispersion compensation andpulse compression. IEEE J. Quantum Electron,1993,29(3):975-982
    [95] M., Parker, S. D. Walker. Dynamic dispersion compensation using a Fourier-Fresnelphase apertured active arrayed-waveguide grating. in the Digest of the LEOS SummerTopical Meetings, San Diego, CA, USA, Jul.,1999. TuBl.4
    [96] M. C. Parker, S. D. Walker. Adaptive chromatic dispersion controller based on anelectro-optically chirped arrayed-waveguide grating. in the Optical CommunicationConf., Baltimore, Maryland, USA, Mar.,2000. WM16
    [97] M. C. Parker, S. D. Walker. Optimisation of polyphase concatenated arrayed-waveguide grating designs for40Gb/s adaptive dispersion compensation. inOFC’2001, Anaheim, California, USA,2001. WDD82
    [98] F. Kerbstadt, K. Petermann. Analysis of adaptive dispersion compensators withdouble-AWG structures. J. Lightwave Technol.,2005,23(3):1468-1477
    [99] C. R. Doerr, R. Blum, L. L. Buhl, et al. Colorless tunable optical dispersioncompensator based on a silica arrayed-waveguide grating and a polymer thermoopticlens. IEEE Photon. Technol. Lett.,2006,18(11):1222-1224
    [100] Y. Ikuma, H. Tsuda. AWG-based tunable optical dispersion compensator with multiplelens structure. J. Lightwave Technol.,2009,27(22):5202-5207
    [101] C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, et al. Multichannel integrated tunabledispersion compensator employing a thermooptic lens. in Optical CommunicationConf., Anaheim, California, USA, Mar.,2002. FA6
    [102] C. R. Doerr, S. Chandrasekhar, L. L. Buhl. Tunable optical dispersion compensatorwith increased bandwidth via connection of a Mach–Zehnder interferometer to anarrayed-waveguide grating. IEEE Photon. Technol. Lett.,2008,20(8):560-562
    [103] Y. Ikuma, H. Takahashi, S. Fukushima, et al. Tunable optical dispersion compensatormodule using integrated multiple lenses in an arrayed-waveguide grating. in ECOC2009, Vienna, Austria, Sep.,2009.7.2.9
    [104] C. R. Doerr, D. M. Marom, M. A. Cappnzzo, et al.40-Gb/s colorless tunabledispersion compensator with1000-ps/nm tuning range employing a planar lightwavecircuitand a deformable mirror. in OFC’2005, Anaheim, California, USA, Mar.,2005.PDP5
    [105] D. M. Marom, C. R. Doerr, M. A. Cappuzzo, et al. Compact colorless tunabledispersion compensator with1000-ps/nm tuning range for40-Gb/s data rates. J.Lightwave Technol.,2006,24(1):237-241
    [106] K. Suzuki, N. Ooba, M. Ishii, et al.40-wavelength channelized tunable opticaldispersion compensator with increased bandwidth consisting of arrayed waveguidegratings and liquid crystal on silicon. in Optical Communication Conf., San Diego,California, USA, Mar.,2009. OThB3
    [107] S. Sohma, K. Mori, T. Takahashi, et al.40λ WDM channel-by-channel and flexibledispersion compensation at40Gb/s using uulti-channel tunable optical dispersioncompensator. in the35th European Conference on Optical Communication, Vienna,Austria, Sep.,2009.3.3.1
    [108] K. Seno, K. Suzuki, K. Watanabe, et al. Channel-by-channel tunable optical dispersioncompensator cConsisting of arrayed-waveguide grating and liquid crystal on silicon.in OFC’2008, San Diego, California, USA, Feb.,2008. OWP4
    [109] K. Seno, K. Suzuki, N. Ooba, et al.50-wavelength channel-by-channel tunable opticaldispersion compensator using combination of arrayed-waveguide and bulk gratings. inOFC’2010, San Diego, California, USA, Mar.,2010. OMT7
    [110] S. Sohma, K. Mori, H. Masuda, et al. Flexible chromatic dispersion compensationover entire L-band for over40-Gb/s WDM transparent networks using multichanneltunable optical dispersion compensator. IEEE Photon. Technol. Lett.,2009,21(17):1271-1273
    [111] K. Seno, K. Suzuki, N. Ooba, et al.50-wavelength channel-by-channel tunable opticaldispersion cCompensator using a combination of AWG and bulk grating. IEEE Photon.Technol. Lett.,2010,22(22):1659-1661
    [112] K. Seno, N. Ooba, K. Suzuki, et al. Wide-passband88-wavelength channel-by-channel tunable optical dispersioncompensator with50-GHz spacing. in OFC’2011,Los Angeles, California, USA, Mar.,2011. OWM5
    [113] K. Seno, N. Ooba, K. Suzuki, et al. Tunable dispersion compensator consisting ofsimple optics with arrayed-waveguide grating and flat mirror. in LEOS2008,Acapulco, Mexico, Nov.,2008. WE1
    [114] H. Tsuda, H. Takenouchi, A. Hirano, et al. Performance analysis of a dDispersioncompensator using arrayed-waveguide gratings. J. Lightwave Technol.,2000,18(8):1139-1147
    [115] Y. Lee. Dispersion-compensation device with waveguide grating routers. Opticalreview,1998,5(4):226-233
    [116] R. Adar, C. H. Henry, C. Dragone, et al. Broad-band array multiplexers made withsilica waveguides on silicon. J. Lightwave Technol.,1993,11(2):212-219
    [117] Z. Zhang, G. Xiao, J. Liu, et al. Attaching planar waveguide to aluminum usinglow-stress thermal conductive adhesives. Fiber and integrated optics,2004,23(4):311-326
    [118] Z. Zhang, G. Xiao, J. Liu. A stress-free packaging solution for planar waveguide-basedphotonic components. IEEE Photon Technol Lett,2005,17(5):1082-1084
    [119] C-H Lee, W. V. Sorin, B.Y. Kim. Fiber to the home using a PON infrastructure. J.Lightwave Technol.,2006,24(12):4568-4583
    [120] J. Ingenhoff. Athermal AWG devices for WDM-PON architectures. in LEOS’2006,Montreal, Quebec, Canada, Oct.,2006.26-27
    [121] G-K Chang, A. Chowdhury, Z. Jia, et al. Key technologies of WDM-PON for futureconverged optical broadband access networks. In IEEE/OSA Journal of OpticalCommunications and Networking,2009,1(4): C35-C49
    [122] H. Uetsuka, M. Okawa, K. Maru, et al. Optical wavelength multiplexer/demultiplexer.United States Patent: US6549696B1,2003.1-2
    [123] T. Bricheno. Thermal compensation and alignment for optical devices. United StatesPatent: US2003/0118308A1,2003.1-3
    [124] K. Purchase, R. Cole, A. J. Ticknor, et al. Athermal AWG and AWG with low powerconsumption using groove of changeable width. United States Patent: US7062127B2,2006.1-2
    [125] K. Johannessen. Apparatus for thermal compensation of an arrayed waveguide grating.United States Patent: US6954566B2,2005.1-3
    [126] T. H. Rhee, H. J. Lee, T. H. Kim. Packaging method of temperature insensitivearrayed waveguide grating. Korea Patent: WO/2006/073229,2006.1-2
    [127] J. Hasegawa, K. Nara. Arrayed waveguide grating. United States Patent: US7539368B2,2009.1-3
    [128] T. Shimoda, K. Suzuki, S. Takaesu, et al. A low-loss, compact wide-FSR-AWG usingSiON planar lightwave circuit technology. in OFC’2003, Atlanta,Georgia, USA, Mar.,2003,2:703
    [129] Y. Barbarin, X.J.M. Leijtens, E.A.J.M. Bente, et al. Extremely small AWGdemultiplexer fabricated on InP by using a double-etch process. IEEE Photon TechnolLett.,2004,16(11):2478-2480
    [130] M. Kohtoku, T. Hirono, S. Oku, et al. Control of higher order leaky modes indeep-ridge waveguides and application to low-crosstalk arrayed waveguide gratings. J.Lightwave Technol.,2004,22(2):499-508
    [131] N. Kikuchi, Y. Shibata, H. Okamoto, et al. Monolithically integrated100-channelWDM channel selector employing low-crosstalk AWG. IEEE Photon Technol Lett,2004,16(11):2481-2483
    [132] M. G. Thompson, D. Brady, S. W. Roberts. Chromatic dispersion and bandshapeimprovement of SOI flatband AWG multi/demultiplexers by phase-error correction.IEEE Photon Technol Lett.,2003,15(7):924-926
    [133] H. Yamada, H. Sanjoh, M. Kohtoku, et al. Measurement of phase and amplitude errordistributions in arrayed-waveguide grating multi/demultiplexers based on dispersivewaveguide. J. Lightwave Technol.,2000,18(9):1309-1320
    [134] N. Ismail, F. Sun, G. Sengo, et al. Improved arrayed-waveguide-grating layoutavoiding systematic phase errors. Optics Express,2011,19(9):8781-8794
    [135]叶培大,吴彝尊.波导技术基本理论.(第一版).北京:人民邮电出版社,1981.345-348
    [136] A. Yariv, P. Yeh. Photonics: optical electronics in modern communications.(Sixthedition). New York: Oxford University Press,2007.137-139
    [137] K. Kawano, T. Kitoh. Introduction to optical waveguide analysis: solving Maxwell’sequations and the Schr dinger equation.(First edition). New York:John Wiley&Sons, Inc.,2001.165-231
    [138]王文敏,马卫东,陈光等.低插损平坦谱响应阵列波导光栅解复用器优化设计.光子学报,2003,32(9):1049-1052
    [139] Y. Takuma, M. Miyagi, S. Kawakami. Bent asymmetric dielectric slab waveguides: adetailed analysis. Applied Optics,1981,20(13):2291-2298
    [140] Q. Yu, A. Shanbhag. Electronic data processing for error and dispersion compensation.J. Lightwave Technol.,2006,24(2):4514-4525
    [141] H. Bülow, F. Buchali, A. Klekamp. Electronic dispersion compensation. J. LightwaveTechnol.,2008,26(1):158-167
    [142] T. Kotanigawa, T. Kawasaki, H. Masuda, et al. Dispersion compensation configurationapplying a combination of EDC and tunable-ODC for extended L-band WDMtransmission. IEEE Photon. Technol. Lett.,2009,21(6):350-352
    [143] Q. Lai, W. Hunziker, H. Melchior. Low-power compact22thermoopticsilica-on-silicon waveguide switch with fast response. IEEE Photon. Technol. Lett.,1998,10(5):681-683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700