千米深井巷道群稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着浅部资源的日益枯竭,超千米深井开采将成为我国煤炭资源的主要来源。在深部矿井的建设中,煤矿岩巷作为主要的运输、轨道、通风巷道,是连接采区的主要巷道,相互之间联系密切,构成了复杂的深井巷道群体系。深部高地应力和岩体低强度的矛盾问题造成了巷道群开挖后围岩整体稳定性的一系列问题。本文以深部巷道群的稳定性为研究目标,通过自定义本构模型嵌入数值软件对巷道群的稳定性进行分析,分别从巷道群布置方式、开挖顺序、支护对策三个方面进行研究,对其稳定性进行评价并得出有工程意义的结论。主要内容如下:
     1)首先针对深部煤矿巷道群产生的大变形的围岩进行试验的数据整理,获得结果分析并进行了强度参数随围岩和等效塑性应变的变化关系拟合,建立了反映岩石峰后碎胀变形的渐进破坏本构模型,在岩土工程数值软件FLAC3D中进行了数值实现和模型验证,证明了其有效性。
     2)从巷道群的布置方式、施工顺序、支护优化三个方面对深部煤矿巷道群稳定性进行了大量的数值模拟分析研究。首先对品字形、一字型、斜一字型的布置方式进行模拟分析,得出最优的品字形布置方式;然后针该布置方式进行了不同开挖顺序的计算分析,得出合理的开挖方案;最后针对开挖巷道对邻近巷道的扰动影响,进行了支护方式和时机的模拟分析,得出了一些有意义的结论。
     3)以淮南朱集煤矿-960m东翼巷道群为工程实例,在前述渐进破坏本构模型、巷道群的稳定性研究的基础上,对邻近巷道开挖扰动下支护对策进行研究。通过数值仿真分析和现场监测的数据分析,从理论和实践上证明了该方案的有效性。
As the coal resource exhausted increasingly in shallow mining area, the main coal resource will be from deep mining. In the construction of deep coal mine, complicated roadway group system is composed compactly by rock roadways like airway, pathway, haulageway, which are the main ways to mining area. The basic contradiction between high crustal stress and low rock strength is the basic root of global stability problem after excavation. Taking the global stability of deep roadway group as research target, the user-defined constitutive model and numerical recipes software as measure, this paper analyzes the global stability from layout method, excavation sequence and support optimization. The main research work and contributions are as follows:
     1) First, this paper makes the date of large deformation rock test form deep coal mine and obtains the relation of intensity parameter, confining pressure and equivalent plastic strain. A progressive failure constitutive model is established,which can reflect post-peak hulking deformation of deep soft rock. The model is derived and numerical computational function and model validity are proceed by using FLAC3D.
     2) Second, it analyzes the global stability from layout method, excavation sequence and support optimization, getting the most optimal layout, reasonable excavation scheme, support pattern and opportunity.
     3) Third, taking the east roadway group at-960m level of Zhuji coal mine in Huainan area as an example, the paper researches the support method under the disturbance of adjacent roadways excavation on the basis of the first two chapters'research. The validity of support method is proved both from theroy and practice by numerical calculation and field monitoring.
引文
1.谢和平.深部高应力下的资源开采与地下工程——机遇与挑战.香山科学会议第175次学术讨论会交流材料,2001年11月,1-9.
    2.贺永年,韩立军,邵鹏等.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-295.
    4. Hagan T N. Design and Performance of Underground Excavation[J]. ISRM Symposium Sponsored by:Int Soc for Rock Mechanics,Lisbon,Port British Geotechnical Soc.1984: 255-262.
    5. Diering D H. Ultra-deep level mining:future requirements[J]. Journal of the South African Institute of Mining and Metallurgy,1997,97(6):249-255.
    6. Diering D H. Tunnels under pressure in an ultra-deep Wifwatersr and gold mine[J]. Journal of the South African Institute of Mining and Metallurgy,2000,100:319-324.
    7. Gurtunca R G, Keynote L. Mining below 3000 m and challenges for the South African gold mining industry[A]. In:Proceedings of Mechanics of Jointed and Fractured Rock[C]Rotterdam:A.A.Balkema.1998:3-10.
    8. Vogel M. Andrast H E Alp transit—safety in construction as a challenge, health and safety aspects in very deep tunnel construction [J]. Tunneling and Underground Space Technology.2000,15(4):481-484.
    9.何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报.2005,24(16):2803-2813.
    10.刘泉声等.煤矿深部岩巷稳定控制理论与支护成套技术研究及应用[M].2009.
    11.王思敬等.地下工程岩体稳定性分析[M].北京:科学出版社.1984.
    12.孙广忠.工程地质与地质工程[M].北京:地震出版社.1993.
    13.于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M].北京:煤炭工业出版社.1983.
    14.陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社.1994.
    15.周维垣.岩体力学数值计算方法的现状与展望.岩石力学与工程学报,1993,12(1):84-88.
    16. FLAC3D. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version3.261. User's Mannual. Itasea Consulting Group, Inc.USA.
    17. Hart R, Cundall P A, Lemos J. Formulations of three-dimensional distinct element model. Part Ⅱ:Mechanical calculation of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences,1988 (3):117-125.
    18. Yoichi H, Yamashita R. Study on the stability of a group of caverns[J]. Numerical methods in Geomechanics,Nagoya 1985. Proceeding s of the fifth international conference.
    19. Liu H Y, Small J C, Carter J P. Full 3D modelling for effects of tunnelling on existing support systems in the Sydney region. Tunnelling and Underground Space Technology 2007.23:399-420.
    20. Yamaguchi I, Yamazaki I, Kiritani Y. Study of ground-tunnel interactions of four shield tunnels driven in close proximity, in relation to design and construction of parallel shield tunnels. Tunnelling and Underground Space Technology.1998,13(3):289-304.
    21. Asano T, Ishihara M, Kiyota Y.etl. An observational excavation control method for adjacent mountain tunnels. Tunnelling and Underground Space Technology.2003,18: 291-301.
    22.徐干成,白洪才,郑颖人等.地下工程支护结构[M].北京:中国水利水电出版社.2002.
    23.樱井春辅.地下洞室设计和监控的一种途径[J].隧道译丛.1986(4):13-15.
    24. Wang C, Wang Y, Lu S. Deformational behaviour of roadways in soft rocks in underground coal mines and principles for stability control. International Journal of Rock Mechanics and Mining Sciences.2000,37:937-946.
    25. Pells P J N. Developments in the design of tunnels and caverns in the Triassic rocks of the Sydney region. International Journal of Rock Mechanics & Mining Sciences.2002,39: 569-587.
    26. Mahmut Yavuz, Melih Iphar, Guner Once. The optimum support design selection by using AHP method for the main haulage road in WLC Tuncbilek colliery. Tunnelling and Underground Space Technology.2007,23:111-119.
    27. Cantieni L, Anagnostou G. The interaction between yielding supports and squeezing ground. Tunnelling and Underground Space Technology.2009,24:309-322.
    28. Anagnostou G. A model for swelling rock in tunneling[J]. Rock Mechanics and Rock Engineering.1993,26(4):307-331.
    29. T Kitagawa. Application of Convergence Confinement Analysis to the Study of Predicating Displacement of a Squeezing Rock Tunnel[J]. Rock Mechanics and Rock Engineering.1991,24(1):31-51.
    30. Scholz CH. Microfracturing and the inelastic deformation of rock in compression[J]. J Geophys Res.1968,73:1417-1432.
    31. Schock RN, Heard HC, Stephens DR. Stress-strain behaviour of a granodiorite and two graywackes on compression to 20 kilobars[J]. J Ceophys Res.1973,78:5922-5941.
    32.冯夏庭.智能岩石力学导论[M].北京:科学出版社.2000.
    33.殷有泉,黄杰藩.房山大理岩本构性质的实验研究[J].岩石力学与工程学报.1993,12(3):240-248.
    34.徐干成,郑颖人.岩石工程中屈服准则应用的研究[J].岩土工程学报.1990,12(2): 93-99.
    35.时卫民,郑颖人.莫尔-库仑屈服准则的等效变换及其在边坡分析中的应用[J].岩土工程技术,2003,(3):155-159.
    36.郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学.2002,4(10):57-61,78.
    37.陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报.1982,1(1):1-20.
    38.董芳庭等.围岩松动圈巷道支护理论应用技术[M].北京:煤炭工业出版社.2001.
    39.靖洪文,李元海,许国安等.深埋巷道破裂围岩位移分析[J].中国矿业大学学报.2006,35(5):565-570.
    40. L Jing, J A Hudson. Numerical methods in rock mechanics[J]. International Journal of Rock Mechanics & Mining Sciences.2002,39:409-427.
    41.周家文,徐卫亚,李明卫等.岩石应变软化模型在深埋隧洞数值分析中的应用[J].岩石力学与工程学报.2009,28(6):1116-1127.
    42.卢兴利.深部巷道破裂岩体块系介质模型及工程应用研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所.2010.
    43.张帆,盛谦,朱泽奇等.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报.2008,27(增1):2651-2655.
    44.李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[博士学位论文][D].徐州:中国矿业大学.1995.
    45.王学滨.剪胀对岩样全部变形特征的影响[J].四川大学学报(工程科学版).2005,37(5):25-30.
    46. Vermeer P A, de Borst R. Non associated plasticity for soils, concrete and rock[J]. Heron 1984,29(3):3-64.
    47.赵星光,蔡明,蔡美峰.岩石剪胀角模型与验证[J].岩石力学与工程学报.2010,29(5):970-981.
    48.夏才初,龚建伍,唐颖.大断面小净距公路隧道现场监测分析研究[J].岩石力学与工程学报.2007,26(1):44-50.
    49.何满潮.深部开采工程岩石力学的现状及其展望[A].第八次全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会主编,北京:科学出版社.2004,88-94.
    50.晏玉书.我国煤矿软岩巷道围岩控制技术现状及发展趋势[A].何满潮主编:中国煤矿软岩巷道支护理论与实践[C].北京:中国矿业大学出版社.1996,1-17.
    51.何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报.2005,24(16):2804-2813.
    52.王者超,李术才,陈卫忠.分岔隧道变形监测与施工对策研究[J].岩土力学.2007,28(4):785-789.
    53.王芝银,杨志法,王思敬.岩石力学位移反分析回顾及进展[J].力学进展.1998,28(4): 488-498.
    54.肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报.2000,22(4):0421-0425.
    55.王民寿,谢培忠.地下洞室群合理施工顺序研究[J].工程力学.2000,002(C00):0724-0728.
    56.王民寿,杨兴国.小湾水电站地下厂房施工期洞室群施工仿真模拟的研究[J].云南水力发电.2000,016(002):44-49.
    57.李术才,朱维申.小浪底地下洞室群施工顺序优化分析[J].煤炭学报.1996,21(4):393-398.
    58.李术才,王渭明.大型洞室群不同开挖顺序围岩稳定效果分析[J].山东矿业学院学报.1997,016(002):0128-0132.
    59.张玉祥,包四根.复杂地质体中地下硐室的施工优化与稳定性评价[J].岩石力学与工程学报.2002,19(6):722-725.
    60.杨明举.超大型地下洞室群施工过程围岩稳定分析[D].硕士学位论文.成都:四川大学,1998.
    61. FU Guo-bin,JING Hong-wen. Stability analysis of surrounding rock of a deep roadway and its supporting practice[A]. Proceedings of the International Congress on Rock Mechanics[C]. Tokyo:[s.n.].1995:559-661.
    62.何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报.2005,24(16):2803-2813.
    63.何满潮.深部的概念体系和工程评价指标[J].岩石力学与工程学报.2005,24(16):2854-2858.
    64.柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报.2006,35(2):145-148.
    65. M S Diederichs,P K Kaiser. Tensile strength and abutment relaxation as failure control mechanisms in underground excavations. International Journal of Rock Mechanics and Mining sciences.1999,36:69-96.
    66. Sellers E J, Klerck P. Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels. Tunneling and Underground Space Technology.2000, 15(4):463-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700