智能粒子群优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,国民经济和国防科技等领域的生产过程越来越离不开优化设计,尤其是大量的高、精、尖产品,更需要性能非常优越的优化方法。粒子群算法具有原理简单、参数少、易实现及收敛速度快等特点,该方法对于不同类型问题具有较广泛的适应性,并很快在多个领域被有效地应用。
     粒子群算法作为一种新的智能算法,存在着迭代初期易出现早熟、迭代后期收敛速度变慢等问题,在应用拓展上也依赖于具体问题。为此,本文对粒子群优化算法进行了深入的理论分析,面向连续优化问题和组合优化问题,针对算法所存在的问题提出几种相应的改进新算法,并将其应用到具体工程实践中。
     在单目标连续优化方面,本文提出将多种群思想引入到粒子群优化算法中,提出了一种双层多种群粒子群优化新算法,该算法实现粒子群优化算法的群体拓展和双并行运行机制,这样可以针对性地提高粒子群算法的全局搜索能力,同时采用不同粒度的多子群并行机制和种群间的双向最优信息流动也提高了该算法的局部搜索能力。通过对多个多峰、欺骗性典型函数的测试验证了上述算法的有效性,进一步通过对机器人结构参数的优化实例验证了本算法的实用性。
     粒子群算法后期收敛速度较慢的主要原因是群体中各个个体极值更新缓慢。为此本文提出一种粒子位置择优更新的粒子群算法。利用粒子位置的可择优更新,就是使每个粒子在每步迭代时都可以从3个备选点中选择最佳点进行更新,增加了粒子找到更好位置的概率,提高了个体极值乃至全局极值的更新速率,以极小的时间代价提高了算法的效能。通过六个典型测试函数和移动机器人路径规划的实例对该算法的实用性和有效性进行了验证。
     多目标约束优化一直是优化领域中的瓶颈问题,除需处理多个目标外,还存在着约束处理影响计算效率的问题。粒子群算法只保留最优信息,对邻近最优点的不可行解缺乏智能性的判断和保留机制,在解决多目标优化问题中效果不理想。而文化算法由于具有基于文化的信仰空间和群体空间的双并行机制,特别适合处理约束优化问题。为此本文提出一种求解多目标约束优化问题的双层次进化的文化粒子群算法。新算法在群体空间采用改进的粒子群算法,并采用直接比较法处理约束条件,避免了传统罚函数方法存在的缺点。在算法迭代过程中随时调整不可行解参数,使解集中不可行解保持在一定的比例范围内,维持了种群的多样性,进一步避免算法陷入“早熟”,提高了算法全局搜索能力。信仰空间接收群体空间中的精英粒子,并采用了交叉操作和小生境Pareto竞争策略保证所产生的最优解集能够均匀地分布在Pareto前沿。最后采用两个测试函数和一个工程减振器的优化设计实例对此算法进行了验证,测试和实例计算表明该算法是一种快速、有效的多目标优化方法。
     组合优化问题具有广泛的应用背景,它的目标是寻找解空间中离散状态的最优组合。离散粒子群算法为求解这类问题提出了一种新方法,本文针对基本离散粒子群优化算法存在的易于陷入局部最优解、求得的解的精度不高的缺点,提出了两种具体改进新算法:
     以典型的01背包问题为研究对象,基于生物病毒机制和宿主与病毒基于感染操作等思想,提出一种解决单目标组合优化问题的病毒协同进化离散粒子群优化新算法。该算法利用病毒的水平感染和垂直传播能力提高粒子群算法的性能。实验证明,病毒感染操作成功地增强了对解空间的局部搜索功能,使求解精度明显优于其它几种算法。
     以典型的虚拟企业中的伙伴选择问题为应用背景,研究将离散粒子群算法应用到多目标组合优化问题。基于改变粒子速度策略提出了粒子速度阈值可调的离散粒子群优化新算法。该算法通过引入随迭代过程逐步变小的适应性可调速度阈值参数来平衡全局搜索能力和局部搜索能力之间的矛盾,提高算法的性能。
With the development of science and technology,the production process in national economy and defense science and technology field needs optimization design. Especially there will be a large number of high, precise, advanced products in aeronautics and astronautics fields in great need of more ascendant optimization methods. Particle Swarm Optimization (PSO) algorithm has the advantages of simple theory, less parameters, easy realization and quick convergence. Meanwhile it has the widespread adaptivity for different types of functions and has been applied in many fields.
     However, because PSO algorithm is a new arisen intelligent algorithm, it has the drawbacks of easy premature in initial iteration stages, and slowed-down converging speed in final stages and so on. Furthermore, the application expansion of PSO algorithm depends more on specific problems. Therefore this thesis mainly focuses on the deep theoretical analysis on PSO algorithm. Aiming at solving continuous and combination optimization problems, this thesis discussed the improving strategies to overcome the above drawbacks, put forwards a series of new algorithms and applied them into specific engineering practices.
     In terms of single-objective continuous function optimization, this thesis introduces the multi-swarm idea into PSO algorithm and put forward a two-layer multi-swarm particle swarm algorithm. This algorithm realized the swarm size expansion and the dual parallel-running mechanism, so it can purposefully enhance the algorithm global search ability. Meanwhile the different granularity multi-subswarms parallel mechanism and dual direction optimal information flow between subswarms also increases the algorithm local search ability. Tests on multimode and fraudulent typical functions verified the effectiveness of the above algorithm. An application Example of robot structure parameters optimization is further completed to testified its feasibility.
     Theory analysis and simulation tests in this paper show that the slow updating rate of individual best is one main cause for the slow converging speed in the later iteration stage of PSO algorithm. Therefore this thesis put forwards a vector position selecting-best updating PSO algorithm. In this algorithm, the position of each particle can be updated in a selectable way, namely each particle can select the best one from three candidate points as the new position, which can heighten the probability of finding much better position and increase the updating rate of individual best and global best. It consequently raises the algorithm performance with less computing time cost. By means of six test functions and an application example of mobile robot path planning, the feasibility and effectiveness of the algorithm is verified.
     Multi-objective constrained optimization has still been the bottle-neck problem in optimization field. Besides handling multiple objectives, it also has the problem that its constraint handling will affect the computing efficiency. PSO algorithm only keeps the optimal information and lacks of the intelligent judgment and reservation mechanism for the unfeasible solutions adjacent to the optimum,so it cannot get a satisfactory results in multi-objective optimization. Cultural algorithms are particularly fit for the constrained optimization problem because of its culture-based dual parallel mechanism of belief space and population space. Therefore this thesis put forward a dual level evolutionary cultural particle swarm algorithm for multi-objective constrained optimization problems. This new algorithm takes the improved particle swarm algorithm as its population space. It uses a direct comparison method to handle constraint conditions which can avoid the demerits of traditional penalty function method. Moreover, an adjustable parameter is regulated in a real-time way during the iteration process to keep unfeasible solutions within a certain proportion range and to maintain the diversity of the whole swarm. Therefore the evolutionary process in population space can avoid the premature problem and increase the global search ability. The belief space accepts the elitist particles from the population space. A crossover operation and niche Pareto competition strategy are further executed to ensure that the optimal set can be distributed uniformly on the Pareto frontier. Two test functions and an application example of engineering damper optimization design are finally presented to verify this algorithm,test and experiment results show this algorithm is a quick and effective multi-objective optimization method.
     Combination optimization problem has many extensive application backgrounds, and its objective is to find the optimal combinations of discrete status in the solution space. The discrete particle swarm algorithm presents a new solution for this kind of problems. This thesis considered the prime discrete particle swarm disadvantages of easily trapped local optimum and low solution precision, and put forward two specific new improved algorithms as follows.
     Taking the typical 0-1 knapsack problem as the research objective, this thesis put forwards a new virus co-evolutionary particle swarm algorithm for single objective combination problem based on bio-virus mechanism and infection based operation between host and virus. This algorithm utilizes the virus horizontal infection and vertical propagation ability to enhance its performance. Experiments show that the virus infection operation strengthens the local search ability in the solution space and the solving precision obviously outperforms several other algorithms.
     Taking the partner selection problem in virtual enterprise as the application background, this thesis discuss to apply discrete particle swarm algorithm into multi-objective combination optimization field. A new speed threshold adjustable discrete particle swarm algorithm is put forward based changing particle speed. By means of an adaptively adjustable speed threshold parameter to decrease with the iteration process, this algorithm can balance the contradiction between global search and local search, so it can heighten the computing performance.
引文
1 R. C. Eberhart, J. Kennedy. A New Optimizer Using Particle Swarm Theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995: 39~43
    2 J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. Proceeding of IEEE International Conference on Neural Networks. Piscataway, 1995: 1942~1948
    3 J. Kennedy, R. C. Eberhart. Swarm Intelligence. USA: Academic Press, 2001
    4 X. H. Shi, Y. C. Liang, H.P. Lee, C. Lu, L. M. Wang. An Improved GA and a Novel PSO-GA-based Hybrid Algorithm. Information Processing Letters. 2005, 93(5): 255~261
    5 X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, Q. X. Wang. Particle swarm optimization-based algorithms for TSP and generalized TSP. Information Processing Letters. 2007, 103(5): 169~176
    6 B. Jiao, Z. Lian, X. Gu. A Dynamic Inertia Weight Particle Swarm Optimization Algorithm. Chaos, Solitons & Fractals. 2008, 37(3): 698~705
    7 Q. K. Pan, M. F. Tasgetiren, Y. C. Liang. A Discrete Particle Swarm Optimization Algorithm for the No-wait Flowshop Scheduling Problem. Computers & Operations Research. 2008(35): 2807~2839
    8 A. Chatterjee, P. Siarry. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization. Computers and Operations Research. 2006, 33(3): 59~871
    9 R. Brits, A. P. Engelbrecht, F. van den Bergh. Locating Multiple Optima Using Particle Swarm Optimization. Applied Mathematics and Computation. 2007, 189(2): 1859~1883
    10 X. Hu, Y. H. Shi, R. C. Eberhart. Recent Advance in Particle Swarm. In: The 2004 Congress on Evolutionary Computation. Piscataway, 2004: 90~97
    11 C. K. Zhang, Y. Li, H. H. Shao. A New Evolved Artificial Neural Network and Its Application,Proceedings of the 3RD World Congress on Intelligent Control and Automation. Hefei, 2000: 1065~1068
    12 M. Kong, P. Tian, Y. C. Kao. A New Ant Colony Optimization Algorithm for the Multidimensional Knapsack Problem. Computers & Operations Research. 2008, 35(8): 2672~2683
    13 J. Alami, A. E. Imrani, A. Bouroumi. A Multipopulation Cultural Algorithm Using Fuzzy Clustering. Applied Soft Computing. 2007, 7(2): 506~519
    14李晓磊,薛云灿,路飞等.基于人工鱼群的参数估计方法.山东大学学报. 2004, 34(3): 84~87
    15周晖,李丹美,邵世煌,袁从明.一种新的群集智能算法-自由搜索.东华大学学报. 2007, 33(5): 579~583
    16 Y. H. Shi, R. C. Eberhart. A Modified Particle Swarm Optimizer. IEEEInternational Conference on Evolutionary Computation. Anchorage, 1998: 69~73
    17 Y. H. Shi, R. C. Eberhart. Parameter Selection in Particle Swarm Optimization. Evolutionary Programming VII. Lecture Notes in Computer Science. Berlin, 1998, (1447): 591~600
    18 Y. H. Shi, R. C. Eberhart. Empirical Study of Particle Swarm Optimization. Proceedings of Congress on Evolutionary Computation. Washinton D. C. ,1999: 1945~1950
    19 Y. Shi, R. C. Eberhart. Modified Particle Swarm Optimizer. Proceeding of the IEEE International Conference on Evolutionary Computation. Piscataway NJ, 1998: 69~73
    20 Y. H. Shi, R. C. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. Proceedings of Congress on Evolutionary Computation. Seoul, 2005: 445~450
    21 P. C. Fourie, A. A. Groenwold. The Particle Swarm Optimization Algorithm in Size and Shape Optimization. Structural and Multidisciplinary Optimization. 2002, 23(4): 259~267
    22 M. Clerc, J. E. Kennedy. The Particle Swarm–Explosion, Stability in a Multidimensional Complex Space. IEEE Transaction on Evolutionary Computation. 2002, 6(1): 259~267
    23 J. F. Schutte, A. A. Groenwold. A Study of Global Optimization Using Partilce Swarms. Journal of Global Optimization. 2005, 31(1): 93~108
    24 A, Carlisle, G. Dozier. Adapting Particle Swarm Optimization to Dynamic Environments. International Conference on Artificial Intelligence. Nevada, 2000: 429~433
    25 A. Carlisle, G. Dozier. Tracking Changing Extrema with Adaptive Particle Swarm Optimizer. 5th Biannual World Automation Congress. Florida, 2002, (13): 265~270
    26 P. J. Angeline. Using Selection to Improve Particle Swarm Optimization. IEEE International Conference on Evolutionary Computation. Alaska, 1998: 84~89
    27 Y. T. Kao, E. Zahara. A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions. Applied Soft Computing. 2008, 8(2): 849~857
    28 P. N. Suganthan. Particle Swarm Optimizer with Neighborhood Operator. Proceedings of Congress on Evolutionary Computation, 1999: 1958~1962
    29 K. E. Parsopoulos, et al. Stretching Technique for Obtaining Global Minimizers through Particle Swarm Optimization. Proceedings of the Workshop on PSO, 2001: 1~8
    30 M. Clerc. TRIBES-A Parameter Free Particle Swarm Optimizer. http://clerc. maurice.free.fr/PSO 2002-08-10/2003-10-08
    31 X. H. Hu, R. C. Eberhart. Adaptive Particle Swarm Optimization: Detection and Response to Dynamic Systems. IEEE Congress on Evolutionary Computation, Hawaii, 2002: 1666~1670
    32吕艳萍,李绍滋,陈水利等.自适应扩散混合变异机制微粒群算法.软件学报. 2007, 18(11): 2740~2751
    33胡旺,李志蜀.一种更简化而高效的粒子群优化算法.软件学报. 2007, 18(4): 861~868
    34赫然,王永吉,王青等.一种改进的自适应逃逸微粒群算法及实验分析.软件学报. 2005, 16(12): 2036~2044
    35高海兵,周驰,高亮.广义粒子群优化模型.计算机学报. 2005, 28(12): 1980~1987
    36 P. Liu, P. Abraham, M. Clerc. Chaotic Ddynamic Characteristics in Swarm Intelligence. Applied Soft Computing. 2007, 7(3): 1019~1026
    37 L. S. Coelho. A Quantum Particle Swarm Optimizer with Chaotic Mutation Operator. Chaos, Solitons & Fractals. 2008, 37(5): 1409~1418
    38 T. H. Kim, I. Maruta, T. Sugie. Robust PID Controller Tuning Based on the Constrained Particle Swarm Optimization. Automatica. 2008, 44(4): 1104~1110
    39 V. Mukherjee, S. P. Ghoshal. Intelligent Particle Swarm Optimized Fuzzy PID Controller for AVR System. Electric Power Systems Research. 2007, 77(12): 1689~1698
    40 C. Karakuzu. Fuzzy Controller Training Using Particle Swarm Optimization for Nonlinear System Control. ISA Transactions. 2008, 47(2): 229~239
    41 Q. Zhao, S. Z. Yan. Collision-free Path Planning for Mobile Robot Using Chaos PSO Algorithm. Lecture Notes in Computer Science. Advances in Natural Computation. 2005, (3612): 632~635
    42 A. A. Abou El-Ela, T. Fetouh, M. A. Bishr, R. A. F. Saleh. Power Systems Operation Using Particle Swarm Optimization Technique. Electric Power Systems Research. 2008, doi:10.1016/j.epsr.2008.03.021
    43 M. Schwaab, E. C. Biscaia, J. L. Monteiro, J. C. Pinto. Nonlinear Parameter Estimation Through Particle Swarm Optimization. Chemical Engineering Science. 2008, 63(6): 1542~1552
    44 Q. He, L. Wang, B. Liu. Parameter Estimation for Chaotic Systems by Particle Swarm Optimization. Chaos, Solitons & Fractals. 2007, 34(2): 654~661
    45 Z. J. Lee. A Novel Hybrid Algorithm for Function Approximation. Expert Systems with Applications. 2008, 34(1): 384~390
    46 S. K. S. Fan, E. Zahara. A Hybrid Simplex Search and Particle Swarm Optimization for Unconstrained Optimization. European Journal of Operational Research. 2007, 181(2): 527~548
    47 T. Kao, E. Zahara. A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions. Applied Soft Computing. 2008, 8(2): 849~857
    48 R. Kathiravan, R. Ganguli. Strength Design of Composite Beam Using Gradient and Particle Swarm Optimization. Composite Structures. 2007, 81(4): 471~479
    49 X. Y. Liu, H. Liu, H. C. Duan. Particle Swarm Optimization Based on Dynamic Niche Technology with Applications to Conceptual Design. Advances in Engineering Software. 2007, 38(10): 668~676
    50 A. Salman, I. Ahmad, S. Al-Madani. Particle Swarm Optimization for TaskAssignment Problem. Microprocessors and Microsystems. 2002, (26): 363~371
    51 B. Wu, Y. W. Zhao, Y. L. Ma, et al. Particle Swarm Optimization Method for Vehicle Routing Problem. In: The 5th World Congress on Intelligent Control and Automation. Piscataway, 2004: 2219~2221
    52 X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, Q. X. Wang. Particle Swarm Optimization-based Algorithms for TSP and Generalized TSP. Information Processing Letters. 2007, (103): 169~176
    53 A. W. Mohemmed, N. C. Sahoo, T. K. Geok. Solving Shortest Path Problem Using Particle Swarm Optimization. Applied Soft Computing. 2008, doi: 10.1016/j.asoc.2008.01.002
    54 G. Z. Cui, L. M. Qin, S. Liu, et al. Modified PSO Algorithm for Solving Planar Graph Coloring Problem. Progress in Natural Science. 2008, 18(3): 353~357
    55 D. Y. Sha, C.Y. Hsu. A New Particle Swarm Optimization for the Open Shop Scheduling Problem. Computers & Operations Research. 2008, 35(10): 3243~3261
    56 C. J. Liao, C. T. Tseng, P. Luarn. A Discrete Version of Particle Swarm Optimization for Flowshop Scheduling Problems.Computers & Operations Research. 2007, 34(10): 3099~3111
    57 Z.G. Lian, X.S. Gu, B. Jiao. A Novel Particle Swarm Optimization Algorithm for Permutation Flow-shop Scheduling to Minimize Makespan. Chaos, Solitons & Fractals. 2008, 35(5): 851~861
    58 J. R. Zhang, J. Zhang, T. M. Lok, M. R. Lyu. A Hybrid Particle Swarm Optimization–back-propagation Algorithm for Feedforward Neural Network Training. Applied Mathematics and Computation. 2007, 185(2): 1026~1037
    59 C. J. Lin, S. J. Hong. The Design of Neuro-fuzzy Networks Using Particle Swarm Optimization and Recursive Singular Value Decomposition. Neurocomputing. 2007, 71(1-3): 297~310
    60 T. Souda, A. Silva, A. Neves. Particle Swarm based Data Mining Algorithms for classification task. Parallel Computing. 2004, (30): 767~783
    61 Y. T. Kao, E. Zahara, I. W. Kao. A Hybridized Approach to Data Clustering. Expert Systems with Applications. 2008, 34(3): 1754~1762
    62 H. Zahiri, S. A. Seyedin. Swarm intelligence Based Classifiers. Journal of the Franklin Institute. 2007, 344(5): 362~376
    63 F. Sahin, M. ?. Yavuz, Z. Arnavut, ?. Uluyol. Fault Diagnosis for Airplane Engines Using Bayesian Networks and Distributed Particle Swarm Optimization. Parallel Computing. 2007, 33(2): 124~143
    64 J. E. Kennedy, R. C. Eberhart. A Discrete Binary Version of the Particle Swarm Algorithm. IEEE International Conference on Systems. Man and Cybernetics. 1997: 4104~4109
    65 R. Rastegar, M. R. Meybodi, K. A. Badie. New Discrete Binary Particle Swarm Optimization Based on Learning Automata. Proceeding of Machine Learning and Applications. 2004: 456~462
    66 M. Clerc. Discrete Particle Swarm Optimization: A Fuzzy Combinatorial BlackBox,http://clerc.maurice.free.fr/PSO/Fuzzy_Discrete_PSO /Fuzzy_ DPSO.htm. 2000-04-01/2003-10-08
    67 J. Kennedy. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. Proceedings of IEEE Congress on Evolutionary Computation. Piscataway, NJ, 1999: 1931~1938
    68 D. Y. Sha, Y. H. Cheng. A New Particle Swarm Optimization for the Open Shop Scheduling Problem. Computers & Operations Research. 2008, (35):3243~3261
    69 C. T. Tseng, J. L. Ching, A Discrete Particle Swarm Optimization for Lot-streaming Flowshop Scheduling Problem. European Journal of Operational Research. 2008, (191): 360~373
    70 H. G. Lian, X. S. Gu, B. Jiao. A Novel Particle Swarm Optimization Algorithm for Permutation Flow-shop Scheduling to Minimize Makespan. Chaos, Solitons & Fractals. 2008, 35(5): 851~861
    71 P. N. Suganthan. Particle Swarm Optimizer with Neighborhood Operator. Proceedings of Congress on Evolutionary Computation. 1999: 1958~1962
    72 S. He, Q. H. Wu, J. Y. Wen, et al. A Particle Swarm Optimizer with Passive Congregation. Biosystems. 2004, (78): 135~147
    73 J. Kennedy, R. Mendes. Population Structure and Particle Swarm Performance. Proceedings of the IEEE Congress on Evolutionary Computation. Honolulu. Hawaii Usa, 2002: 1671~1676
    74 M. Clerc, J. Kennedy. The Particle Swarm: Explosion, Stability, and Convergence in a Multi-Dimensional Complex Space. IEEE Transactions on Evolutionary Computation. 2002, 6(1): 58~73
    75 F. Van den Bergh. An Analysis of Particle Swarm Optimizers: Department of Computer Science. University of Pretoria. Doctor Dissertation. 2002
    76窦全胜,周春光,马铭,刘全.群核进化粒子群优化方法.计算机科学. 2005, 32(8): 134~137
    77李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析.计算机学报. 2006, 29(11): 2052~2061
    78刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法.控制与决策. 2006, 21(6): 636~645
    79 M. Fu, X. Chen, X. Q. Wang, D. Song, L. Wan. Multi-population Adaptive Evolutional Algorithm Based on Immune Theory. The 6th World Congress on Intelligent Control and Automation. Dalian, China. 2006: 3047~3051
    80 F.Van den Bergh, A. P. Engelbrecht. A Study of Particle Swarm Optimization Particle Trajectories. Information Sciences. 2006, (176): 937~971
    81 W. Y. Lin, T. P. Hong, S. M. Liu. On Adapting Migration Parameters for Multi-Population Genetic Algorithms. The IEEE International Conference on Systems. Man and Cybernetics. 2004: 5731~5735
    82刘守生,于盛林,丁勇,钟洁.基于均匀分割的多种群并行遗传算法.数据采集与处理. 2003, 18(2): 143~145
    83吴浩扬,常炳国,朱长纯,刘君华.基于模拟退火机制的多种群并行遗传算法.软件学报. 2000, 11(3): 416~420
    84 E. Alba, F. Luna, A. J. Nebro, J. M. Troya. Parallel Heterogeneous Genetic Algorithms for Continuous Optimization. Parallel Computing, 2004 (30): 699~719
    85司书宾,孙树栋,徐娅萍.求解Job-Shop调度问题的多种群双倍体免疫算法研究.西北工业大学学报. 2007, 25(1): 27~31
    86路飞,田国会,姜健,李晓磊.用基于模拟退火机制的多种群并行遗传算法解Job-Shop调度问题.山东工业大学学报. 2001, 31(4): 362~364
    87黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社, 1996: 114~122
    88赵强,李洪人,张铁柱.基于遗传算法的六自由度舰船运动模拟器的参数优化.船舶工程. 2004, 26(2): 58~61
    89赵强.六自由度船舶运动模拟器的优化设计和性能分析.哈尔滨工业大学博士论文. 2003
    90 Zhao Qiang, Yan Shaoze. Collision-free Path Planning for Mobile Robot Using Chaos PSO Algorithm. Lecture Notes in Computer Science. 2005,3612: 632~635
    91周蒲城,洪炳镕,杨静辉.基于混沌遗传算法的移动机器人路径规划方法.船舶工程. 2004, 36(7): 880~883
    92郑金华.多目标优化算法及其应用.科学出版社, 2007
    93 D. Kalyanmoy, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, Evolutionary Computation. 2002, 6(2): 182~197
    94 E. Zitzler, L. Thiele. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. Parallel Problem Solving From Nature. 1998: 292~301
    95 Efrén Mezura-Montes, C. A. Carlos. A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems. Evolutionary Computation. 2005, 9(1): 1~17
    96 C. A. Coello, M. S. Lechuga. MOPSO: A Proposal for Multiobjective Particle Swarm Optimization. The IEEE Congress on Evolutionary Computation. Honolulu. Hawii, 2002: 1051~1056
    97王勇,蔡自兴,曾威,刘慧.求解多目标优化问题的一种新的进化算法.中南大学学报. 2006, (37): 119~123
    98黄海燕,顾幸生,刘漫丹.求解约束优化问题的文化算法研究.自动化学报. 2007, (33): 1115~1120
    99 S. Koziel, Z. Michalewicz. Evolutionary Algorithm, Homomorphous Mappingsand Const Rained Parameter Optimization. Evolutionary Computation. 1999, 7(1): 19~44
    100 C. A. C. Coello, G. T. Pulido, M. S. Lechuga. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation. 2004, 18(3): 256~279
    101 D. Kalyanmoy, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Evolutionary Computation. 2002, 6(2): 182~197
    102 R. G. Reynolds. An Introduction to Cultural Algorithms. Proceedings of the Third Annual Conference on Evolutionary Programming. California. 1994: 131~139
    103 N. B. Ho, J. C. Tay. GENACE: An Efficient Cultural Algorithm for Solving the Flexible Job-Shop Problem. The Congress on Evolutionary Computation. 2004, (2): 1759~1766
    104 X. H. Yuan, Y. B.Yuan. Application of Cultural Algorithm to Generation Scheduling of Hydrothermal Systems. Energy Conversion and Management. 2006, (47): 2192~2201
    105 R. G. Reynolds, Z. Michalewicz, J. C. Michael. Using Cultural Algorithms for Constraint Handling in GENOCOP. Evolutionary Programming. 1995: 289~305
    106 X. D. Jin, R. G. Reynolds. Using Knowledge-Based Evolutionary Computation to Solve Nonlinear Constraint Optimization Problems: a Cultural Algorithm Approach. The Congress on Evolutionary Computation. Washington.1999: 1672~1678
    107 X.D. Jin, R. G. Reynolds. Mining Knowledge in Large Scale Databases Using Cultural Algorithms with Constraint Handling Mechanisms. The Congress on Evolutionary Computation. IEEE, 2000(1): 498~1506
    108窦全胜.求解优化问题的演化计算方法研究.吉林大学博士论文. 2005
    109浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景. 2005, 24(2): 132~136
    110苏富强.汽车悬架磁流变减振器的优化设计及仿真.机电工程,2007,24(7):22~25
    111李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论与应用.科学出版社, 2001
    112 N. B. Ho, J. C. Tay. GENACE: An Efficient Cultural Algorithm for Solving the Flexible Job-Shop Problem, The Congress on Evolutionary Computation. 2004 (2): 1759~1766
    113玄光男,程润伟.遗传算法与工程应用.清华大学出版社, 2004
    114 M. Q. Li, J. Z. Kou, D. Lin, S. Q. Li. Based Theory and Application of Genetic Algorithm. 3rd edition. Science Press. 2004
    115 Q. He, L.Wang. A Hybrid Particle Swarm Optimization with a Feasibility-basedRule for Constrained Optimization. Applied Mathematics and Computation. 2007, 186(2): 1407~1422
    116 L. Cagnina, S. Esquivel, R. Gallard. Particle Swarm Optimization for Sequencing Problems: a Case Study. The Congress on Evolutionary Computation. IEEE, 2004, (1): 536~541
    117雷德明,吴智铭.基于粒子群的多目标作业车间调度.上海交通大学学报. 2007, 41(11): 1796~1800
    118金慧敏,马良.遗传退火进化算法在背包问题中的应用.上海理工大学学报. 2004, 26(6): 561~564
    119钟一文,蔡荣英.求解二次分配问题的离散粒子群优化算法.自动化学报. 2007, (33): 871~874
    120 N. Kubotan, S. Koji, T. Fukuda. The Role of Virus Infection in Virus -evolutionary Genetic Algorithm. The IEEE International Conference on Evolutionary Computation. Nagoya, 1996: 182~187
    121 N. Kubota, T. Arakawa, T. Fukuda, K. Shimojima. Fuzzy Manufacturing Scheduling by Virus-evolutionary Genetic Algorithm in Self-organizing Manufacturing System. The IEEE International Conference. on Fuzzy Systems. Barcelona, 1997: 1283~1288
    122 N. Kubotan, T. Arakawa, et. Trajectory Generation for Redundant Manipulator Using Virus Evolutionary Genetic Algorithm. Proceedings of the IEEE Conference on Robotics and Automation. 1997: 205~210
    123 N. Kubotan, T. Fukuda. Schema Representation in Virus-evolutionary Genetic Algorithm for Knapsack Problem. The IEEE World Congress on Computational Intelligence. Anchorage, 1998: 834~839
    124李娟,方平,周明.一种求解背包问题的混合遗传算法.南昌航空下业学院学报. 1998, 12(3): 31~35
    125马慧民,叶春明,张爽.二进制改进粒子群算法在背包问题中的应用.上海理工大学学报. 2006, 28(1): 31~34
    126 M. Penny, A. Judy, C. Susan. Measuring the Performance of Suppliers: An Analysis of Evaluation Process. The Journal of Supply chain Management. 2002: 29~41
    127李莉,薛劲松,朱云龙.虚拟企业伙伴选择中的多目标决策问题.计算机集成制造系统. 2002(2): 91~94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700