热喷涂球磨法制备超细铜锌粉及其分散性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将热喷涂法与机械球磨法相结合,提出一种新的超细铜锌粉末的制备方法。在采用常规热喷涂工艺参数进行粉末制备的基础上,讨论了球磨时间、球磨助剂、热处理条件对粉末性质的影响,得出最佳的制备方案。该方法可以制备出粒度分布均匀、性质稳定,粒度为200~500nm的超细铜锌粉末。针对超细铜锌粉在液体介质中团聚严重的实际,采用沉降法及分光光度法研究了该粉末在不同的分散剂作用下的分散效果。采用正交试验方法优化了分散剂配方,分析了影响分散性能的各种因素,讨论了各种分散剂的作用机理,找到了不同分散剂的最佳作用条件,从而提高了超细铜锌粉的分散稳定性,为得到性质稳定的超细粉体提供了有效途径。
     采用筛分法、重力沉降法、分光光度法、扫描电镜法、透射电镜法和X射线衍射法对不同阶段的铜锌粉末的粒度、形貌、成分等性质进行了分析,结果表明:球磨工艺及热处理参数对铜锌粉的性能有重要影响。在初始阶段随球磨时间的增加,粉末粒度变大,继续球磨,粉末粒度变小,细化到一定程度后粉末粒度不再随球磨时间的延长显著变化。球磨助剂的加入提高了球磨效率,改善了球磨效果,并且使粉末的分散性得到明显改观。热处理后粉末的粒度增大,微细颗粒的比例减小,表面出现裂纹,降低了粉末的硬度,同时粉末团聚作用减弱。因此,采用球磨与热处理交替进行的工艺处理后,可得到粒度为200~500nm的铜锌粉末。
    
    西安理工大学硕士学位论文
     通过对热喷涂球磨法制备的超细铜锌粉的分散性进行预试验和优化试验,发现
    分散剂浓度、分散时间、pH值、温度和外加离子浓度对分散作用效果有重要影响。
    在单一分散剂中,表面活性剂类分散剂作用效果较好。在复合分散剂中,不同类型
    分散剂的混合物具有良好的分散效果,这是由不同类型分散剂的协同效应所致。只
    有在分散剂浓度、分散时间、pH值、温度和外加离子浓度的最佳组合条件下,才
    能得到稳定的分散体系。在大量试验的基础上,研究出两种较好的超细铜锌粉的分
    散剂配方:(l)硬脂酸(0.75%),硅酸钠(2.5%),氯化钠(1%),分散时间二5h,
    pH沟,温度二70℃;(2)吐温一80(4%),月桂酸钠(2 .5%),氯化钠(1%),分散时
    间二Zh,pH二5,温度=25℃。这两种分散剂可改善铜锌粉的分散状态,较好地解决
    制备过程中的团聚问题,这为超细铜锌粉的应用提供了条件,为超细粉末分散剂的
    研究提供了重要依据。
The methods of thermal spray and mechanical ball milling are combined in this paper and a new method of preparation of Cu-Zn ultrafine powders is brought forward. On the basis of preparing powders with usual technological parameters of thermal spray, the influences on powders properties of ball milling time, assistant reagents of ball milling and conditions of heat treatments are discussed, and then it comes to the optimal preparation project. The Cu-Zn ultrafine powders of 200~500nm can be prepared by this technic. In allusion to agglomerates of Cu-Zn ultrafine powders in liquid media, dispersing effects of the powders under the action of different dispersants are studied by the methods of sedimentation and spectrophotometery. By the method of orthogonal experiment, this paper optimizes the formulae of dispersants and analyzed kinds of factors that affect dispersing properties. The action mechanism of different dispersants is discussed and the best action conditions of these dispersants are presented. This
    improves the dispersing stability of Cu-Zn ultrafine powders and provides with effective methods for the preparation of ultrafine powders with steady properties.
    Powders properties of different phases such as the granularity, the
    
    
    shape and the component have been analyzed by the methods of sieving, gravity sedimentation, spectrophotometry, scan electronic microscope (SEM), transmission electronic microscope (TEM) and X-Ray diffraction (XRD). The results show that technic of ball milling and parameters of heat treatments are important influencing factors to properties of Cu-Zn powders. At the first stage of ball milling, the granularity of powders increases with prolonging the time. But if ball milling continues, the granularity will minish. When minishing to a certain extent, the granularity of powders don' t change greatly along with prolonging the time of ball milling. Assistant reagents can improve efficiency and ameliorated effects of ball milling. The dispersing of powders changes for the better obviously. After heat treatments, the granularity of powders increases and ultraf ine grains decreases. Cracks appear on the surface of powders. So the rigidity of powders descends. At the same time agglomeration of powders weakens. Consequently, adopting the alternation technic of ball milling and heat treatments, Cu~Zn powders of 200?00nm can be available.
    Through preparative experiments and optimized experiments on Cu~Zn ultrafine powders that are prepared by the method of thermal spray and ball milling, the author finds that dispersants concentration, dispersing time, pH, temperature and adscititious ions have significant influences on dispersing effects. Among single dispersant, there are better action effects for surfactant. Among compound dispersants, there are favorable dispersing effects for the admixture of different kinds of dispersants. This results from cooperation function of different kinds of dispersants. So only with the best combination of dispersants concentration, dispersing time, pH, temperature and adscititious ions, steady dispersing system can be obtained. Two optimum formulae of compound dispersants for Cu-Zn ultrafine
    
    powders are obtained on the basis of multitude experiments. They are as follows: (1) Stearic Acid (0.75%), Sodium Silicate (2.5%), Sodium Chloride (1%), Dispersing Time (5h), pH(9), Temperature (70C), (2) Tween-80 (4%), Sodium Laurate (2.5%), Sodium Chloride (1%), Dispersing Time (2h), pH (5), Temperature (25癈). These two dispersants can ameliorate dispersing state of Cu-Zn powders and solve the problem of agglomeration reasonably in the process of preparation. This provides with foundation for application of Cu-Zn ultrafine powders and study on dispersant for ultrafine powders.
引文
1 Moo_Chin Wang. Effect of process parameters on synthesis of aluminum nitride powder prepared by chemical vapor deposition. Journal of Materials Science, 2001(36):3283-3289.
    2 F. H. (Sam) Froes, O. N. Senkov, E. G. Baburaj. Synthesis of nanocrystalline materials—an overview. Materials Science and Engineering,2001(A301):44-53.
    3 J. Karthikeyan, C. C. Berndt, et al. Preparation of nanophase materials by thermal spray process of liquid precursors. NanoStructured Materials, 1997,9:137-140.
    4 P. Luo, T. G. Nieh, A. J. Schwartz, T. J. Lenk. Surface characterization of nanostructured metal and ceramic particles. Materials Science and Engineering, 1995(A204):59-64.
    5 朱勇,李宗全,吴希俊.金属毫微粉的制备.科学通报,1989,17:1302-1303.
    6 郑国梁.等离子体法制取纳米粉末.纳米材料和技术应用进展(全国第二届纳米材料和技术应用会议论文集)(上卷),2001:B6-B10.
    7 崔作林,董立峰.电弧等离子体制备纳米ZnO的气敏特性.材料研究学报,1998,4:407-420.
    8 周锦鑫,马紫峰,等.超细铜金粉生产制造工艺优化及改造研究.新技术新工艺,2000,3:31-33.
    9 汪国忠,张立德.化学共沉淀法制备尺寸可控纳米级钛酸盐化合物.’96中国材料研讨会.功能材料,1996,Ⅰ-2:79-81.
    10 夏长泰,施尔泰等.超细BaTiO_3晶粒的水热法制备.‘94秋季中国材料研讨会Ⅱ低维材料,1995:397-403.
    11 Huang Z R, Liang B, Jiang D L, et al. Proceeding 5th International
    
    Symposium on Ceramic Materials Components for Engines. Shanghai, China, May 1994.
    12 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    13 Lackey W. J. Nuclear Technology, 1980,49: 321-326.
    14 Fumio Hatakeyama et al. Synthesis of monodispersed spherical β-silicon carbide powder by a Sol-Gel process. Journal of American Ceramic Society, 1990,73(7):2107-2110.
    15 许强龄.现代表面处理新技术.上海:上海科技大学出版社,1994.
    16 柳玉波.表面处理工艺大全.北京:中国计量出版社,1996.
    17 阎洪.金属表面处理新技术.北京:冶金工业出版社,1996.
    18 Mitchell Dorfman. Thermal spray basics. Advanced Materials & Processes, 2002,160(7):47-50.
    19 J. Karthikeyan, C. C. Berndt, et al. Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors. NanoStructured Materials, 1997,8(1):61-74.
    20 J. Karthikeyan, C. C. Berndt, et al. Plasma spray synthesis of nanomaterial powders and deposits. Materials Science and Engineering,1997(A238):275-286.
    21 大野长太郎 著,单文昌 译.除尘、收尘理论与实践.北京:科学技术文献出版社,1982.
    22 Barbara Freudig, Stefan Hogekamp, Helmar Schubert. Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing, 1999(38):525-532.
    23 李勇,路跃华,叶勇东.球磨粉碎技术研究现状.化工矿物与加工,2000,9:16-19.
    24 李凤生等.超细粉体技术.北京:国防工业出版社,2000.
    25 J. Subero, Z. Ning, M. Ghadiri, C. Thornton. Effect of interface energy on the impact strength of agglomerates. Powder Technology, 1999(105):66-73.
    
    
    26 A. Singhal, G. Skandan et al. On nanoparticle Aggregation during vapor phase synthesis. NanoStructured Materials, 1999,11(4):545-552.
    27 R. C. Cammarata. Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering, 1997(A237):180-184.
    28 卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.
    29 张世伟,杨乃恒.纳米粒子在气体流动中的团聚过程研究.真空科学与技术,2001,21(3):87-90.
    30 Roosen A, hausner H. Techniques for agglomeration control during wet-chemical powder synthesis. Advanced Ceramic Materials, 1988,3(2):131-139.
    31 Alok Maskra, Douglas M. Smith. Agglomeration during the drying of fine silica powders, part Ⅱ :The role of particle solubility. Journal of American Ceramic Society, 1997, 80:1715-1722.
    32 Zimon A. D. Adhesion of dust dan powder. New York:Plenum Press, 1969.
    33 Seongtae Kwon, G. L. Messing. The effect of particle solubility on the strength of nanocrystalline agglomerate: boehmite. NanoStructured Materials, 1997,8(4):399-418.
    34 李葵英.界面与胶体的物理化学.哈尔滨:哈尔滨工业大学出版社,1998.
    35 任俊,卢寿慈.固体颗粒的分散.粉体技术,1998,4(1):25-33.
    36 Richard C. Flagan, Melissa M. Lunden. Particle control in nanoparticle synthesis from the vapor phase. Materials Science and Engineering, 1995(A204):113-124.
    37 汪瑾,许煜汾.超细粉体在液相中分散稳定性研究.合肥工业大学学报(自然科学版),2002,25(1):123-126.
    38 鲍重光.静电技术原理.北京:北京理工大学出版社,1993.
    39 任俊,卢寿慈等.超吸颗粒的静电抗团聚分散.科学通
    
    报,2001,45(21):2289-2292.
    40 许珂敬,杨新春等.高分子表面活性剂对氧化物陶瓷超微颗粒的分散作用.中国陶瓷,1999,5:15-18.
    41 梁治齐,宗惠娟,李金华.功能性表面活性剂.北京:中国轻工业出版社,2002.
    42 刘志强,李小斌等.湿化学法制备超细粉末过程中的团聚机理及消除方法.化学通报,1999,7:54-57.
    43 杨基础,沈忠耀.超临界流体技术与超细颗粒的制备.化工进展,1995,3:28-31.
    44 马池明,陈诵英.超细粒子氧化铝的制备.粉体技术,1995,1(4):21-25
    45 李春喜,王子镐.超声技术在纳米材料制备中的应用.化学通报,2001,5:268-271.
    46 Chaumont D, Craievich A, Zarzycki A. Effect of ultrasound on the formation of ZrO_2 sols and wet gels. Journal of Non-Crystalline Solids, 1992,147-148:41-49.
    47 Zarzycki J, Prassas M, Phalippou J. Synthesis of glasses from gels: the problem of monolithic gels. Journal of Materials Science, 1982,17:3371-33882.
    48 周锦鑫等.超细铜金粉生产制造工艺优化及改造研究.新技术新工艺,2000,3:31-33.
    49 赵麦群,郑修麟.湿磨铜锌合金粉干燥光亮退火方法的研究.粉末冶金技术,2000,18(3):178—181.
    50 刘江南.金属表面工程学.北京:兵器工业出版社,1995
    51 T·艾伦著,喇华璞 等译.颗粒大小的测定.北京:中国建筑工业出版社,1984.
    52 王志魁.化工原理.北京:化学工业出版,1987.
    53 顾庆超,楼书聪等.化学用表.南京:江苏科学技术出版社,1979.
    54 吕苏琴,张春荣,揭念芹.基础化学实验Ⅰ.北京:科学出版社,2000.
    55 左演声,陈文哲,梁伟.材料现代分析方法.北京:北京工业大学出版社,2000.
    56 Wei-ling Luan,Lian Gao,and Jing—kun Guo.Study on drying stage of
    
    nanoscale powder preparation. NanoStructured Materials, 1998,10(7):1119-1125.
    57 梁国宪,王尔德.球磨条件对机械合金化粉末粒度的影响.粉末冶金技术,1993,11(1):28-31.
    58 张彩霞,刘维平.球磨过程中纲球运动规律的研究.南方冶金学院学报,2000,21(2):99-103.
    59 J. Karthikeyan, C.C. Berdt, J. Tikkanen, J.Y. Wang, A.H. Kingand H. Herman. Nanomaterial powders and deposits prepared by flame processing of liquid precursors. NanoStructured Materials, 1997,8(1):61-74.
    60 朱晓云,敖已忠等.球磨助剂对凹印金粉性能的影响.云南冶金,1999,3:44-46.
    61 Russ Steimle. Benefits of color communication in metal finishing. Metal Finishing, 1990,9:19-21.
    62 J. Subero, Z. Ning, M. Ghadiri, C. Thornton. Effect of interface energy on the impact strength of agglomerates. Powder Technology, 1999(105):66-73.
    63 徐群杰,周国定,陆柱.苯并三氮唑和5-羧基苯并三氮唑对铜缓蚀作用的光电化学比较.中国有色金属学报,2001,11(5):925-929.
    64 毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994.
    65 胡庚祥.金属学.上海:上海科学技术出版社,1983.
    66 谢壮德,沈军等.超音速气雾化高硅铝合金粉末高温加热组织及性能演变.粉末冶金技术,2002,20(4):205-208.
    67 Qun Wang, Haibin Yang, Jianlin Shi, Guangtian Zou. Preparation and characterization of nanocrystalline powders of Cu-Zn alloy by wire electrical explosion method. Materials Science and Engineering, 2001,(A307):190-194.
    68 杨于兴,漆睿.X射线衍射分析.上海:上海交通大学出版社,1989.
    69 夏辉,吴润等.纳米Zn粉的抗氧化性能.中国有色金属学报,2000,4:502-505
    
    
    70 魏彤.白光君,魏淑杰.水性体系中炭黑的分散.涂料工业,2001,5:18-22.
    71 Heijman S G, Stein H N. Preparation of oxide dispersions which are stabilized both sterically and electrostaticallly. Chemical Engineering Science, 48(2):313-322.
    72 胡圣飞,郦华兴等.纳米粒子的分散与表征技术.化工新型材料,2002,30(11):41-42.
    73 顾志明,姬广斌,李凤生.超细无机粉体的水中分散研究综述.南京理工大学,1999,23(5):470-473.
    74 孟朝辉,关晓凤.有机颜料研磨分散工艺的确定.涂料工业,2003,33(1):19-21.
    75 孙静,高濂,郭景坤.分散剂用量对几种纳米氧化锆粉体尺寸表征的影响.无机材料学报,1999,16(3):465-469.
    76 姜兆华,孙德智,邵光杰.应用表面化学与技术.哈尔滨:哈尔滨工业大学出版社,2000.
    77 梁文平.表面活性剂及其在分散体系中的应用.日用化学工业,1999.
    78 崔爱莉,王亭杰等.超细二氧化钛粉末在水溶液中的分散.过程工程学报,2001,1(1):99-101.
    79 顾惕人,朱步瑶等.表面化学.北京:科学出版社,1994.
    80 Lee B I et al. Dispersion of Alumina powders in nonaqueous media. Colloids and Surface, 1991,56:25-29.
    81 王相田,胡黎明.超细颗粒分散过程分析.‘94秋季中国材料研讨会Ⅱ低维材料,1995521-526.
    82 陈魁.试验设计与分析.北京:清华大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700