新型铜缓蚀剂的缓蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜在含有腐蚀介质的环境中非常容易发生腐蚀,合理使用缓蚀剂是防止金属及其合金发生腐蚀的有效办法。自组装技术的提出与发展为研究者探索开发新型铜缓蚀剂提出了一种新方法,在金属腐蚀和防护领域中具有非常重要的理论价值和应用潜力。
     本文利用自组装技术在铜电极表面分别制备了对羟基苯甲酸和磷酸三丁酯的自组装单分子膜,通过电化学极化曲线和交流阻抗法等方法研究了两种自组装单分子膜在0.1mol/L NaCl电解质溶液中对铜的缓蚀效率,对缓蚀膜在不同界面间的电荷传递电阻、电极的双电层电容、电极表面的腐蚀电位、腐蚀电流密度和膜的表面覆盖度进行了研究,讨论了自组装溶液的浓度、自组装体系的温度以及自组装时间对自组装膜的影响,并与苯并三氮唑对铜的缓蚀效果进行比较。结果发现:对羟基苯甲酸和磷酸三丁酯作为新型铜缓蚀剂,都可以在铜表面形成自组装膜。铜电极表面组装这两种自组装单分子膜后,可以改变电极表面的双电层结构,抑制了铜的阳极氧化和阴极还原过程,电极的双电层电容值减小,电荷传递电阻增大,交流阻抗谱测得对羟基苯甲酸自组装单分子膜在铜表面的覆盖度为70.8%,磷酸三丁酯的覆盖度为62.3%,极化曲线测得对羟基苯甲酸自组装膜对铜的缓蚀效率为73.4%,磷酸三丁酯的缓蚀效率为67.4%,苯并三氮唑自组装膜对铜的缓蚀效率为74.7%。和苯并三氮唑相比,说明对羟基苯甲酸形成的自组装膜膜层排列紧密,有效阻止了腐蚀离子与金属铜电极的接触,抑制了对铜的腐蚀作用,而且缓蚀效果优于磷酸三丁酯。对羟基苯甲酸和磷酸三丁酯在铜表面上的吸附过程为放热过程,其在铜表面上的吸附行为服从Langmuir吸附等温式,属于物理吸附。为了进一步提高缓蚀效率,在铜电极表面分别制备对羟基苯甲酸和苯并三氮唑以及磷酸三丁酯和苯并三氮唑的混合自组装膜,电化学测试结果表明:铜电极表面覆盖混合自组装膜后,电极的电荷传递电阻增大,腐蚀电流密度降低,缓蚀效率分别提高为89.1%和80.2%。
Copper tends to be corroded when it is in the environments with corrosive medium. To use correctly negative corrodent is to the effective method of preventing metal and its alloy from corroding in the corrosive condition. Rise and development of self-assembled monolayers technology puts forward a new method for the researchers to explore new copper inhibitors, and it has the extremely important theory value and the potential widely applications.
     In this paper self-assembly technology was used to prepared self-assembled monolayers (SAMs) of p-hydroxybenzoic acid and tributyl phosphate. The anticorrosion mechanism and adsorption behavior for the self-assembled monolayers (SAMs) on the surface of copper in 0.1 mol·L-1 NaCl solution were investigated by electrochemical polarization curves techniques and impedance spectroscopy. And the charge transfer resistance on surface of layers covered electrodes, double electric layer capacitance, corrosion potential, corrosion current density and the surface coverage of the films were studied. Furthermore the effect of the concentration of self-assembly solution, the temperature and macerating time of self-assembly system were discussed. Then protection efficiency was compared with BTA SAMs. The results indicated that: P-hydroxybenzoic acid and tributyl phosphate as new types of inhibitors, were liable to interact with copper forming SAMs on the surface of copper. The self-assembled monolayers (SAMs) of them changed the structure of the double electric layers and restrained both the processes of anodic oxidation and cathodic reduction. Electrochemical impedance spectroscopy (EIS) measurement results indicated that the charge transfer resistance of the copper electrode with SAMs increased greatly and its double electric layer capacitance decreased significantly. EIS measurement results indicated that the degree of coverage of the p-hydroxybenzoic acid SAMs on the surface of copper was 70.8%, the tributyl phosphate SAMs was 62.3%. Electrochemical polarization curves measurement results indicated that the protection efficiency (PE) of p-hydroxybenzoic acid SAMs was 73.4%, the tributyl phosphate SAMs was 67.4%, and the BTA SAMs was 74.7%. The results indicated the SAMs of p-hydroxybenzoic acid was compact and oriented, and effectively prevented the copper substrate from contacting corrosive ions, inhibiting the copper corrosion to a considerable degree, and the anticorrosive efficiency was better than tributyl phosphate SAMs. The adsorption processes of p-hydroxybenzoic acid and tributyl phosphate were exothermic reaction and belong to physical adsorption, and the adsorption behavior followed Langmuir isotherm. In order to improve the protection efficiency, the modification with p-hydroxybenzoic acid and BTA and tributyl phosphate and BTA were done to form a complex film. An increase in PE for the complex films were observed. EIS measurement results indicated that the charge transfer resistance of the copper electrode with complex film increased greatly and its corrosion current densities decreased significantly. The synergistic effect of p-hydroxybenzoic acid inhibitor and tributyl phosphate with BTA improved the protection efficiency. The PE were 89.1% and 80.2% respectively.
引文
[1]张静.铜及其合金光亮防锈表面处理技术的研究[D].无锡:江南大学,2008
    [2]曾荣昌,韩恩厚.材料的腐蚀与防护[M].北京:化学工业出版社,2009,146-147
    [3]王俊,曾百肇,周性尧.自组装膜技术在电化学分析中的应用[J].分析科学学报,2000,16(3):253-258
    [4]王鹏,梁成浩,张婕.铜及其合金防变色工艺研究现状[J].材料保护,2007,40(3):52-55
    [5]董泉玉,张强,李锐,等.国内铜缓蚀剂的最新发展现状[J].全面腐蚀控制,2003,17(6):19-21
    [6]徐伟平,李光宪.分子自组装研究进展[J].化学通报,1999,2:21-25
    [7]黄建中,左禹.材料的耐蚀性和腐蚀数据[M].北京:化学工业出版社,2003,307-315
    [8]张学群,韦钰.自组装膜[J].东南大学学报,1994,24(5):1-6
    [9]Ruth, William G, Greth, et al. Powder coating with non-crystalline and crystalline epoxy resins and curing agent[P]. US Pat:6616979,2003-09-09
    [10]Zhenlan Quan, Shenhao Chen, Xuegui Cui, et al. Adsorption behaviour of schiff base and corrosion protection of resulting films to copper substrate[J]. Corros. Sci.,2002,47(12):703-715
    [11]全贞兰,吴培强.铜电极上席夫碱自组装膜的电化学阻抗表征[J].青岛科技大学学报,2006,27(4):291-294
    [12]洪誉鹏,刘惊,唐科忠,等.自组装膜技术及其在电化学分析中的应用[J].表面技术,2009,38(3):72-76
    [13]孔令平,全贞兰.植酸和钼酸钠自组装膜对铜表面的缓蚀作用[J].青岛科技大学学报,2010,31(2):133-136
    [14]崔维真,丁克强,霍莉,等.电解质溶液浓度对铜/硫醇自组装膜缓蚀行为的影响[J].河北师范大学学报,2003,27(2):160-162
    [15]徐常龙,曹小华,柳闽生,等.自组装单层膜的研究[J].江西师范大学学报,2009,33(2):170-174
    [16]杨学耕,陈慎豪,马厚义,等.金属表面自组装缓蚀功能分子膜[J].化学进展,2003,15(2):123-128
    [17]崔晓莉,江志裕.自组装膜技术在金属防腐蚀中的应用研究[J].腐蚀与防 护,2001,22(8):335-338
    [18]杨生荣,任嗣利,张俊彦,等.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,22(3):470-476
    [19]马洪芳.钢-铁表面缓蚀功能膜的研究[D].山东:山东大学,2006
    [20]Ma H Y, Chen S H, Niu L, et al. Inhibition of copper corrosion by several Schiff bases in aerated halide solutions[J]. J. Appli. Electrochem.,2002,32(1):65-72
    [21]张学群,韦钰.新的分子组装技术—自组装成膜及其应用[J].东南大学学报:自然科学版,1994,24(5):17
    [22]何天百,胡汉杰.海外高分子科学的新进展[M].北京:化工出版社,1997
    [23]Kane R S, Cohen R E, Silbey R. Synthesis of doped ZnS nanoclusters with block copolymer nanoreactors[J]. Chem Mater,1999,11(1):90-93
    [24]Nuzzo R G, Zegarski B R, Dubois L H. Fundamental studies of the chemisorption organosulfur conpound on Au, implication for molecular self-assembly on gold surface[J]. J. Am. Chem. Soc.,1987,109:733
    [25]Mao Z R, Sagiv J, Degenhardt D, et al. Hydrogen-bonded multilayers of self-assembling silanes:structure elucidation by combined Fourier transform infra-redspect roscopy and X-ray scattering techniques [J]. Supromol Sci,1995, 2(1):924
    [26]吴迪,吴健.金-硫键自组装生物分子膜[J].化学通报,2004,2:132-137
    [27]王宁,丁克强,童汝亭,等.希夫碱自组装单分子膜的电化学行为[J].物理化学学报,2002,18(9):846-849
    [28]Zhenlan Quan, Shenhao Chen, Shulan Li. Protection of copper corrosion by modification of self-assembled films of schiff bases with alkanethiol[J]. Corms.Sci.,2001,43:1071-1080
    [29]全贞兰,陈慎豪,华兰,等.希夫碱在铜表面上的自组装膜的STM和XPS研究[J].科学通报,2001,46(19):1618-1621
    [30]孔德生,万立骏,陈慎豪,等.金属表面缓蚀剂自组装单分子膜的STM研究进展[J].腐蚀与防护,2003,24(10):415-420
    [31]周晓谦.环氧树脂涂层的耐冲蚀磨损性能[J].合成树脂及材料,2004,21(3):66-68
    [32]Reinhard G. Application of corrosion inhibitors in water-borne coatings[J]. Prog. Org. Coat.,1992,20:383
    [33]Funke W, Zatloukal H. Studies on a mechanism of action of amine and fatty acid salts used as inhibitor in protective coatings[J]. Ochrona Prezed Korozja, 1999,57:1345
    [34]顾桂松.船底漆涂层缓蚀剂的研究[J].腐蚀与保护,1992,13(2):65
    [35]张树永,孔燕,丁遗福,等.自由体积与亲水性对环氧涂层防护性能的影响[J].物理化学学报,2004,20(4):360-363
    [36]顾宁,付德刚,张海黔,等.纳米技术与应用[M].北京:人民邮电出版社,2002
    [37]杨生荣,任嗣利,张俊彦,等.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,22(3):470-476
    [38]印仁和,万宗跃,徐群杰,等.植酸自组装单分子膜对白铜B30缓蚀作用的研究[J].功能材料,2007,4(38):562-564
    [39]张思亭,张笑一.分子自组装技术及表征方法[J].贵州师范大学学报,2008,26(1):106-112
    [40]吴荫顺,郑家桑.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,513-515
    [41]周国定,Kamkin A N,廖强强.铜镍和铜钴合金电极在碱性介质中的光电化学[J].物理化学学报,2001,17(7):614-617
    [42]孔德生,陈慎豪,万立骏,等Schiff碱N-aete-N在Au(111)上自组装单分子膜的电化学及STM研究[J].高等学校化学学报,2003,24(10):184-187
    [43]于澍燕,张忠兴,李慧,等.由功能化穴醚核与六个双金(Ⅰ)配位单元构筑的金属基树形超分子的自组装及发光性质[J].高等学校化学学报,2005,26(2):376-378
    [44]徐群杰,周国定,陆柱,等.不同pH条件下几种铜缓蚀剂的比较研究[J].腐蚀与防护,1999,20(4):160-161
    [45]Percec V, Cho W D, Ungar G, et al. Synthesis and NaOTf mediated self-assembly of monodendritic crown ethers[J]. Chem Eur J,2002,8(9): 2011-2025
    [46]Chang H J, Ha N Y, Kim A, et al. Characterization of electro-optic properties of self-assembled monolayer by attenuated total reflection[J]. Optical Material, 2003,21(13):413-416
    [47]Mikawa T, Masui R, Ogawa H, et al. N-terminal 33 amino acid residues of Escherichia coli RecA protein contribute to its self-assembly[J]. Mol Biol,1995, 250(4):471-483
    [48]Choi J U, Lim C B, Kim J H, et al. Self-assembly of nonlinear optical chromophoric layers through the ionic interaction[J]. Synthetic Metals,1995, 71(1-3):1729-1730
    [49]Pang S F, Zhu D B. Pronounced hydrogel formation by the self-assembled aggregate of semifluorinated fattyacid[J]. Chemical Physics Letters,2002, 358(5,6):479-483
    [50]方程,周性尧.自组装膜研究进展及其在传感器技术中的应用[J].分析科学学报,2003,19(1):81-85
    [51]王宁,丁克强,童汝亭,等.希夫碱自组装单分子膜的电化学行为[J].物理化学学报,2002,18(9):846-849
    [52]崔晓莉,江志裕.膜电阻对自组装膜修饰电极电化学行为的影响[J].电化学,2001,7(3):270-275
    [53]李俊新,崔晓丽,童汝亭.金上硫醇自组装膜研究进展[J].河北师范大学学报,2000,24(2):234-239
    [54]张天胜.缓蚀剂[M].北京:化学工业出版社,2002,56-67
    [55]方景礼,叶向荣,李莹.缓蚀剂的作用机理[J].化学通报,1992,6:5-13
    [56]全贞兰.铜表面上希夫碱自组装膜的电化学性能研究[D].济南:山东大学,2001
    [57]王春涛,陈慎豪,赵世勇,等.烯丙基硫脲和十二烷基硫醇对铜的缓蚀作用[J].化学学报,2003,61(2):151-155
    [58]Laibinis P E, Whitesides G E, Allara D L. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au[J]. J, Am. Chem. Soc.,1991,113: 7152-7167
    [59]Paul E L, George M W. Self-assembled monolayer of n-alkanethiols on copper are barrier films that protect the metal against oxidation by air[J]. J. Am. Chem. Soc.,1992,114:9022-9028
    [60]Sunder Ramachandran, Bao-Liang Tsai, Mario Blanco, et al. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines[J]. Langmuir,1996,12:6419-6428
    [61]Kane R S, Cohen R E, Silbey R. Synthesis of PbS nanoclusters with block copolymernano reactors [J]. Chem Mater,1996,8(8):1919-1924
    [62]Underhill R S, Liu G J. Triblock nanopheres and their use as template for inorganic nanoparticle preparation[J]. Chem Mater,2001(2):97-101
    [63]徐常龙,曹小华,柳闽生,等.自组装单层膜的研究[J].江西师范大学学报,2009,33(2):170-174
    [64]杨爱丽,卢志云,李龙章,等.非共价键自组装有机功能材料[J].化学研究与应用,2003,15(16):298-302
    [65]马洪芳.铜表面自组装缓蚀功能膜的电化学研究[J].山东建筑大学学报, 2009,24(4):299-302
    [66]Saoudi N, Bellaouchou A, Guenbour A, et al. Aromatic quinoxaline as corrosion inhibitor for bronze in aqueous chloride solution[J]. India Academy of Science, 2010,33(3):313-318
    [67]V Ramesh Saliyan, Airody Vasudeva Adhikari. Inhibition of corrosion of mild steel in acid media by N'-benzylidene-3-(quinolin-4-ylthio)propanohydrazide[J]. India Academy of Science,2008,31(4):699-711
    [68]Varsha Srivastava, Singh M M. Corrosion inhibition of mild steel in acidic medium by poly(aniline-co-0-toluidine) doped with p-toluene sulphonic acid[J]. J Appl Electrochem,2010,40:2135-2143
    [69]Lazarova E, Petkova G, Iankova T, et al. Inhibiting properties and adsorption of some thioamides on mild steel in sulphuric acid solutions[J]. J Appl Electrochem,2008,38:1392-1399
    [70]Wei-hua Li, Qiao He, Shen-tao Zhang. Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium[J]. J Appl Electrochem, 2008,38:289-295
    [71]胡海龙,张琨,王振兴,等.硫醇自组装分子膜末端基团对其电荷输运特性的影响[J].物理学报,2007,56(3):1674-1679
    [72]王怡红,葛存旺,徐丽娜,等.N-烷基-2-巯基乙酰胺自组装膜阻隔溶液离子跨膜运输能力[J].东南大学学报,2003,33(3):296-299
    [73]郭彦,赵健伟.自组装体系中分子间相互作用对其电化学行为的影响[J].化学通报,2007,12:894-899
    [74]庄丽宏,吕振波,田彦文,等.铜腐蚀及其缓蚀技术应用研究现状[J].腐蚀科学与防护技术,2005,17(6):418-421
    [75]Su-II Pyun, Sung-Jai Lee. Current status and advances in corrosion researches[J]. J Solid State Electrochem,2009,13:1637-1638
    [76]Fei Kuang, Taihe Shi, Jia Wang, etal. Microencapsulation technology for thiourea corrosion inhibitor[J]. J Solid State Electrochem,2009,13:1729-1735
    [77]陈玉红,王庆飞,丁克强,等.B-et-B自组装膜对铜的缓蚀作用[J].河北师范大学学报,2003,27(4):377-379
    [78]Chenghao Liang, Peng Wang, Bo wu, etal. Inhibition of copper corrosion by self-assembled monolayers of triazole derivative in chloride-containing solution[J]. J Solid State Electrochem,2010,14:1391-1399
    [79]D-Q Zhang, L-XGao, Q-R Cai, etal. Inhibition of copper corrosion by modifying cysteine self-assembled film with alkylamine/alkylacid compounds[J]. Materials and Corrosion,2010,61(1):17-21
    [80]王俊,曾百肇,周性尧.自组装膜技术在电分析化学中的应用[J].分析科学学报,2006,16(6):253-258
    [81]王献群,刘瑞泉,朱丽琴,等.碱性介质中BIT, BIOHT和BIMMT对铜的缓蚀性能和吸附行为[J].物理化学学报,2007,23(1):21-26
    [82]Taton K S, Guire PE. Photo active self-assembling polythers for biomedical coatings[J]. Sio interfaces,2002,24(2):123
    [83]于海峰,白鹤,连彦青,等.液晶光定向层材料[J].化学通报,2002,65(9):584-593
    [84]黄文章,童耀斌,罗红群,等.含氯低pH值溶液中BDT自组装膜对铜电极的缓蚀行为[J].中国有色金属学报,2009,19(9):1695-1699
    [85]Rehzad Rezaei, Elaheh Havakeshian, Abdol R.Hajipour. Influence of acidic ionic liquids as an electrolyte additive on the electrochemical and corrosion behaviors of lead-acid battery[J]. J Solid State Electrochem,2011,15:421-430
    [86]Madjid Abdeli, Naghi Parvini Ahmadi, Rasoul Azari Khosroshahi. Nile Blue and Indigo Carmine organic dyes as corrosion inhibitor of mild steel in hydrochloric acid[J]. J Solid State Electrochem,2010,14:1317-1324
    [87]Fouad Bentiss, Mounim Lebrini, Michel Traisnel. Synergistic effect of iodide ions on inhibitive performance of 2,5-bis(4-methoxyphenyl)-1,3,4-thiadiazole during corrosion of mild steel in 0.5 M sulfuric acid solution[J]. J Appl Electrochem,2009,39:1399-1407
    [88]Udkins C M, Bohannan E W, Herbig A K, et al. Self-assembly and catalytic properties of 1,1'-bridged-2,2'-dipyridinium amphiphiles[J]. Eletroanalytical Chemistry,1998,451:39-47
    [89]Cords C M, Viana A S, Leupold S, et al. Self-assembled monolayer of an iron (Ⅲ) prophyrin disulphide derivative on gold[J]. Electrochemistry Communications,2003,5(1):36-41
    [90]马勇,王建国,惠飞,等.表面活性剂对硫醇单层膜修饰金电极电化学行为的影响[J].化学学报,2006,64(13):1309-1313
    [91]刘冬生,张榕本.新型自组装二阶非线性光学NLO高分子膜的制备[J].中国科学(B辑),1997,27:315
    [92]Schreiber F. Structure and growth of self-assembling monolayres[J]. Progress in Surface Science,2000,65:151-256
    [93]张希,沈家骢.“浮萍”与“倒浮萍”聚合物超薄膜结构与功能组装[J].高分子学报,1997,4:469-473
    [94]Russel V A, Evans C C, Li W, et al. Nanoporous molecular sandwiches pillared two-dimension hydrogenbonded networks with adjustable porosity[J]. Science, 1997,276:575-579
    [95]陈颖.分子自组装膜在电分析化学中的应用进展[J].福建分析测试,2006,15(1):45-49
    [96]Hai-Feng, Yang-Jie Feng, Yan-Li Liu, et al. Electrochemical and surface enhanced Raman scattering spectroelectrochemical study of phytic acid on the silver electrode[J]. J.Phys.Chem.B,2004,108:17412-17417
    [97]廖强强,岳忠文,朱忠伟,等.吡咯烷二硫代氨基甲酸铵自组装膜对铜的缓蚀作用[J].物理化学学报,2009,25(8):1655-1661
    [98]Chen Hao, Ren-He Yin, Zong-Yue Wan, etal. Electrochemical and photoelectrochemical study of the self-assembled monolayer phytic acid on cupronickel B30[J]. Corrosion Science,2008,50:3527-3533
    [99]Telegdi J, Rigo T, Kalman E. Molecular layers of hydroxamic acids in copper corrosion inhibition[J]. Journal of Electroanalytical Chemistry,2005,582: 191-201
    [100]刘铮铮,王琦,刘鑫,等.自组装单分子膜的末端基团对化学气相沉积铜薄膜的影响[J].材料科学与工程学报,2008,26(4):545-549
    [101]李志林,张巧云,陈泽民,等.用于金属表面预处理的自组装成膜技术研究[J].材料保护,2008,41(4):36-43
    [102]曹楚男,张鉴清.电化学阻抗谱导论[M].北京:科技出版社,2002
    [103]潘冰,董申,闫永达,等.原子力显微镜在分子自组装研究中的应用[J].机械工程师,2005,5:68-70
    [104]Ramachandran S, Tsai B L, Blanco M, et al. Self-assembled monolayers mechanism for corrosion inhibition of iron by imidazolines[J]. Langmuir,1996, 12:123-127
    [105]Lis, Ma H Y, Lei S B, et al. Inhibition of copper corrosion with schiff base derived from 3-methoxysalaldehyde and 0-phenyldiamine in chloride media[J]. Corrosion,1998,54(12):988-992
    [106]徐群杰,万宗跃,印仁和,等.3-氨基-1,2,4-三氮唑自组装膜对黄铜的缓蚀作用[J].物理化学学报,2008,24(1):115-120
    [107]赵建章,赵冰,徐蔚青,等.Schiff碱N,N'-双水杨醛缩-1,6-己二胺的光致变色光谱研究[J].高等学校化学学报,2001,22(6):971-976
    [108]Ollander H, May R C. The chemistry of azole copper corrosion inhibitors in cooling water[J]. Corrosion,1985,41(1):39-45
    [109]Fox P G, Lewist G, Boden PJ. Some chemical aspects of the corrosion inhibitor of copper by benztriazole[J]. Corrosion Science,1997,19(7):457-468
    [110]Babic R, Metikos-Hukovic M. Spectroelectrochemical studies of protective surface films against copper corrosion[J], Thin Solid Films.2000,359:88-94
    [111]Hong H G, Park W. Influence of copper interconnect characteristics on chemical mechanical planarization[J]. Electrochimica Acta,2005,51(4): 579-582
    [112]徐群杰,周国定,陆柱,等.苯并三氮唑及其衍生物在NaCl溶液中对铜缓蚀作用的表面增强拉曼光谱[J].应用化学,2002,19(4):390-392
    [113]Hai-Bo Shao, Xiao-Yan Wang, Jian-Ming Wang, etal. The cooperative inhibition effects of alkaline earth metal ions and EDTA on the corrosion of pure aluminum in an alkaline solution[J]. Acta Phys.-chim.Sin.,2006,22(3): 312-315
    [114]董泉玉,张强,李自托,等.羧酸类铜缓蚀剂与苯并三氮唑在海水中协同效应的研究[J].腐蚀与保护,2004,25(10):426-428
    [115]徐群杰,周国定,陆柱,等.苯并三氮唑和4-羧基苯并三氮唑对铜缓蚀作用的光电化学比较[J].华东理工大学学报,2000,26(2):172-176
    [116]李德刚,于先进,董云会.希夫碱在铜及氧化铜表面的自组装[J].中国稀土学报,2006,24:361-364
    [117]周建华,李景宁,罗志勇.1-羟甲基苯并三氮唑对铜的缓蚀性能研究[J].华南师范大学学报,2009,3:70-73
    [118]Tang L N, Wang F P. Electrochemical evaluation of allyl thiourea layers on copper surface[J]. Corrosion Science,2008,50:1156-1160
    [119]王冰,周国定.BTA衍生物对铜缓蚀作用的光电化学研究[J].太阳能学报,2000,21(1):50-56
    [120]王春涛,陈慎豪.分子结构对硫脲类化合物在铜表面自组装能力的影响[J].化学学报,2007,65(5):390-394
    [121]Villamil R F V, Corio P, Rubim J C, et al. Inhibition action of bridelia retusa leaves extract on corrosion of mild steel in acidic media[J]. Electroanal. Chem., 2002,53:75-83
    [122]Bentiss F, Lebrini M. The effect of sodium benzoate and sodium 4-(phenylamino) benzenesulfonate on the corrosion behavior of low carbon steel[J]. Corros.Sci.2005,47:2916-2923
    [123]廖冬梅,于萍,罗运柏,等.苯并三氮唑及其甲基衍生物在去离子水中对铜的缓蚀作用[J].中国腐蚀与防护学报,2002,22(6):359-362
    [124]张胜涛,薛茗月,王艳波,等.苯并三氮唑缓蚀剂在铜表面覆盖行为的研究[J].腐蚀科学与防护技术,2006,18(5):313-316
    [125]徐群杰,周国定,陆柱,等.苯并三氮唑与4-羧基苯并三氮唑在氯化钠溶液中对铜的缓蚀作用[J].中国有色金属学报,2001,11(1):135-139
    [126]徐国梅,谢红璐,刘云.苯并三氮唑在金属清洗剂中缓蚀性研究[J].皖西学院学报,2007,23(2):72-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700