白藜芦醇改善高脂喂养小鼠胰岛素抵抗和脂肪肝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立高脂喂养的肥胖胰岛素抵抗(insulin resistance,IR)2型糖尿病C57BL/6J小鼠模型。
     方法:雄性C57BL/6J小鼠30只,随机选择15只小鼠为正常对照(normal control,NC)组,饲以基础饲料。其余15只小鼠喂以高脂饲料,给予单纯高脂饲料,为单纯高脂饮食(high fat diet,HF)组。第24w末时结束动物模型。第8w末和第24w末测定小鼠血糖、血游离脂肪酸(FFA)、血甘油三酯(TG)、血胆固醇(Chol)及血胰岛素,行腹腔葡萄糖注射耐量试验,并根据血糖和血胰岛素值计算ISI和HOMAIR指数(HOMA-IR)。通过以上指标最终确定肥胖的2型DM小鼠模型有无建立及其代谢特点。
     结果:高脂喂养第8w末时,HF组体重较NC组有明显增加(分别为25.5±0.9g和26.8±1.0g),差异具有显著意义(P<0.01),空腹血糖HF组较NC组明显增加(P<0.01),IPGTT HF组小鼠0min,30min,60min和120min的血糖分别为NC组小鼠对应时点血糖的1.26倍、1.43倍、1.40倍和1.21倍,且差异均具有显著性(P<0.01);第24w末时,HF组小鼠血糖进一步升高,IPGTT HF组小鼠0min,30min,60min和120min的血糖分别为NC组小鼠对应时点血糖的1.67倍、1.71倍、1.92倍和2.20倍,且差异均具有显著性(P均<0.01);同时血FFA,TG和Chol也明显增加,和NC组相比差异具有显著性(P<0.01)。第8wHF组小鼠空腹胰岛素为NC组小鼠的1.8倍(P<0.01),第24w末HF组小鼠空腹胰岛素为NC组小鼠的2.18倍(P<0.01)并且胰岛素敏感性指数ISI下降,IR指数HOMA-IR增高,与NC组相比,差异具有显著性(P<0.01、P<0.01)。
     结论:高脂饮食诱导的C57BL/6J小鼠具备肥胖、高血糖、脂代谢紊乱、IR和高胰岛素血症的特点。高脂饮食成功的诱导了肥胖、IR的2型糖尿病模型。
     目的:探讨白藜芦醇改善IR的作用及机制。
     方法:45只雄性C57BL/6J小鼠随机分为3组(每组15只):正常对照组(标准饲料喂养,NC组),高脂饲料喂养组(高脂饲料喂养,HF组),和白藜芦醇治疗组(HR组),其中白藜芦醇组全程高脂饲料喂养,并从第9周开始用白藜芦醇干预治疗(400mg/kg.day),各组均继续喂养16周,共喂养24周。24周末检测体重、血糖、胰岛素,处死动物,检测皮下脂肪和内脏脂肪含量。留取内脏脂肪组织石蜡切片HE染色观察形态学改变。检测内脏脂肪组织ATGL、PGC-1αmRNA和ATGL蛋白的表达,肝脏组织糖异生相关基因PEPCK、G-6-Pase和FoxOlmRNA的表达水平。
     结果:与NC组相比,HF组小鼠体重、脂肪含量尤其是内脏脂肪含量明显增高(P<0.01),光镜下内脏脂肪细胞形态变大,ATGL mRNA和蛋白表达减少但无统计学意义,HR组小鼠体重、内脏脂肪含量明显降低(P<0.01),光镜下内脏脂肪细胞形态变小,ATGL mRNA和蛋白表达增加(P<0.05)。与NC组相比,内脏脂肪组织HF组PGC-1αmRNA表达下降,为NC组的56.3%(P<0.01);HR组PGC-1αmRNA达到NC组的90.8%,和HF组相比差异有显著性(P<0.01)。HF组肝脏FoxO1、PEPCK和G-6-P mRNA表达为NC组135.6%,154.8%和164.7%(P<0.05),HR组肝脏FoxO1、PEPCK、G-6-P mRNA表达较HF组降低到NC组的108.4%,105.5%,110.3%(P<0.05)。
     结论:1.白藜芦醇通过减轻腹型肥胖减轻高脂喂养诱导的IR,内脏脂肪ATGL的表达上调是白藜芦醇减轻内脏肥胖的机制之一;2.白藜芦醇通过促进PGC-1α的表达增加内脏脂肪组织对脂肪的氧化利用;3.长期高脂饮食促进肝脏FoxO1,PEPCK,G-6-Pase基因表达,糖异生增加,导致空腹血糖增加;白藜芦醇能有效降低FoxO1,PEPCK,G-6-Pase基因表达,增强胰岛素信号传导,抑制肝脏糖异生,改善IR和糖代谢。
     目的:观察白藜芦醇对高脂饮食诱导的小鼠NAFLD的改善作用及其机制。
     方法:雄性C57BL/6J小鼠45只,随机选择15只小鼠为正常对照(normal control,NC)组,饲以基础饲料。其余30只小鼠喂以高脂饲料,8w末将其随机分为2组:继续给予单纯高脂饲料,为单纯高脂饮食(high fat diet,HF)组;高脂饮食喂养同时给予白藜芦醇400mg/kg/day灌胃,为白藜芦醇干预(HR)组。第24w末时结束动物模型,处死动物,观察肝脏形态学变化。RT-PCR检测肝脏内ATGL和PGC-1αmRNA基因表达,WesternBlot免疫印迹检测肝脏内ATGL蛋白表达水平。
     结果:HF组出现显著的IR,HR组IR明显减轻。HF组肝脏出现明显脂肪变性,肝组织内ATGL蛋白水平降低到对照组的70.2%(P<0.01)。HR组镜下脂肪变性明显好转,与HF组相比,HR组肝组织内ATGL和PGC-1αmRNA及ATGL蛋白表达增加(P<0.05)。
     结论:1.白藜芦醇通过减轻IR间接改善NAFLD;2.白藜芦醇可以上调肝脏ATGL的表达和PGC-1αmRNA的表达促进脂解和脂肪的氧化利用而直接改善NAFLD。
Objective:To explore the establishment of diabetic mice model.
     Methods:30 male C57BL/6J mice were randomly divided into normal control group(NC, n=15) and high fat diet(HF,n=15) group.HF group were fed with high fat diet,while the NC group were fed with standard chow diet.All mice received IPGTT in the end of 8 weeks and 24 weeks to evaluate it glucose metabolism.And the plasma free fatty acid (FFA),plasma triglyceride(TG),plasma cholesterol(Chol) and plasma insulin of HF mice were measured.ISI and insulin resistance index were calculated according to the plasma glucose and plasma insulin.
     Results:24 weeks later,The plasma glucose at Omin,30min,60min and 120min of HF mice were 1.3 times,1.4 times,1.4 times and 1.2 times those of NC group(P<0.01), respectively.Compared with NC group,plasma FFA,TG and Chol of HF mice were also increased and the differences between them had the statistical significance(P<0.01). Compared with NC group,ISI of HF mice were decreased(P<0.01) while the insulin resistance index were increased(P<0.01).
     Conclusions:The high-fat diet-fed C57BL/6J mouse model is a robust model for type 2 diabetes.The diabetic model that induced by the high fat diet have the characteristics of obesity,hyperglycemia,dyslipidemia,insulin resistance(IR) and hyperinsulinemia.
     Obojective:To observe the effects of resveratrol on insulin resistance(IR) and explore its related mechanisms.
     Method:45 male C57BL/6J mice were randomly allocated to three groups(15 mice for each group):normal control group(NC group,fed with standard chow),high fat feeding group(HF group,fed with high fat diet) and resveratrol treated group(HR group).The resveratrol-treated group was fed with high fat diet all the time and received resveratrol administration(400mg/kg.day) except the first 8 weeks.Each group mice were kept 24 weeks before killed.At the end of animal experiment,mice were sacrificed and adipose tissue and liver collected.Weight,blood glucose,insulin were measured,and visceral fat were weighted.Hematoxylin and eosin(HE) staining was used to evaluate pathology changes in visceral fat.ATGL,PGC-1αmRNA and ATGL protein were measured in visceral fat.And also PEPCK,G-6-Pase and FoxOlmRNA expression,involved in gluconeogenesis,were measured.
     ResultsCompared to NC group,weight and visceral fat index were increased in HF group. Fasting serum insulin(FINS) was elevated and fasting blood glucose was increased in HF group.ATGL protein levels in WAT in HF group equaled to NC group.However, resveratrol administration greatly improved the visceral fat index,FBG,FINS compared with HF group.Compare with NC group,ATGL protein levels in HR group were elevated to 126.9%with the up-regulation of ATGL mRNA expressions in WAT.Compared with NC group,the levels of FoxO1,PEPCK,G-6-Pase in the liver were increased to 135.6%, 154.8%,and 164.7%,respectively(P<0.05) in HF group and decreased to 108.4%, 105.5%,110.3%(P<0.05).
     Conclusions:Resveratrol administration markedly improved high-fat feeding induced insulin resistance.Administration of resveratrol can result in weight and blood glucose reduction.Elevated expression of ATGL may contribute to the improvement of obesity. Elevated expression of PGC-la can increase fat oxidation.High fat diet induced liver expressions of FoxOl,PEPCK,G-6-Pase,thus promote gluconeogenesis,resulting in higher FBG.Resveratrol can reduce liver expressions of FoxOl,PEPCK,G-6-Pase, strengthen insulin signal conduction,suppress gluconeogenesis and thus regulate glycometabolism.
     Obojective:To explore the improvement effects of resveratrol on nonalcoholic fatty liver induced by high fat diet,and related mechanisms.
     Method:45 male C57BL/6J mice were randomly allocated to three groups(15 mice for each group):normal control group(NC group,fed with standard chow),high fat feeding group(HF group,fed with high fat diet) and resveratrol treated group(HR group).The resveratrol-treated group was fed with high fat diet all the time and received resveratrol administration(400mg/kg.day) except the first 8 weeks.Each group mice were kept 24 weeks before killed.At the end of animal experiment,mice were sacrificed and liver pathology changes were measured.RT-PCR was used to detect ATGL and PGC-1αmRNA expressions.WesternBlot was used to measure ATGL protein expression.
     Results Compared to NC group,Pathology of liver steatosis was observed in light microscope in HF group.ATGL protein levels in HR group were elevated to 135.8%with the up-regulation of ATGL mRNA expressions in liver.The mRNA expression of PGC-1αwere significantly lower in HF group than those in HR group(P<0.01).
     Conclusions:Administration of resveratrol can promote ATGL expression in fatty liver. Elevated expression of ATGL may contribute to the improvement of fatty liver. Upregulation expression of PGC-la in the liver by resveratrol can result in elevation of lipolysis and fat oxidation.
引文
1 World Health Organization.Prevention of diabetes mellitus:Technical Report Series no.844.WHO,Geneva,1994.
    2 Intemational Diabetes Federation.Diabetes Atlas.3rd edn.2006.Brussels:Intemational Diabetes Federation.
    3 Manuel DG,schultz SE.Health-related quality of life and health-adjusted life expectancy of people with diabetes in Ontario,Canada,1996-1997.Diabetes Care 2004;27(2):407-14.
    4 Saad MF,Knowler WC,Pettitt DJ,Nelson RG Mott DM,Bennett PH.Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes.Lancet 1989;1(8651):1356-9.
    5 李光伟,张景玲.IR是糖耐量正常人群糖耐量恶化的重要危险因素.中华内分泌代谢杂志 2000;16(2):74-77.
    6 Ziminet P,Alberti KG,Shaw J.Global and societal implications of the diabetes epidemic.Nature 2001;414(6865):782-7.
    7 Alberti KG Zimmet P,Shaw J.Intemational Diabetes Federation:a consensus on Type 2diabetes prevention.Diabet Med 2007;24(5):451-63.
    8 Surwit RS,Kuhn CM,Cochrane C,McCubbin JA,Feinglos MN.Diet-induced type Ⅱdiabetes in C57BL/6J mice.Diabetes 1988;37(9):1163-7.
    9 Rebufie-Scrive M,Surwit R,Feinglos M,Kuhn C,Rodin J.Regioilal fat distribution and metabolism in a new mouse model(C57BL/6J) of non-insulin-dependent diabetes mellitus.Metabolism 1993;42(11):1405-9.
    10 Noonan WT,Banks RO.Renal function and glucose transport in male and female mice with diet-induced type Ⅱ diabetes mellitus.Proc Soc Exp Biol Med 2000;225(3):221-30.
    11 Mills E,Kuhn CM,Feinglos MN,Surwit R.Hypertellsion in CB57BL/6J mouse model ofnon-insulin-dependent diabetes mellitus.Am J Physiol 1993;264(1 Pt 2):R73-8.
    12 Lee SK,Opara EC,Sunwit RS,Feinglos MN,Akwari OE.DefectiVe glucose-stimulated insulin release from perifused islets of C57BL/6J mice.Pancreas 1995;11(2):206-11.
    13 Wencel HE,Smothers C,Opara EC,Kuhn CM,Feinglos MN,Surwit RS.Impaired second phase insulin response of diabetes-prone C57BL/6J mouse islets.Physiol Behav 1995;57(6):1215-20.
    14 Surwit RS,Feinglos MN,Rodin J,Sutherland A,Petro AE,Opara EC,Kuhn CM,Rebuffe-Scrive M.Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice.Metabolism 1995;44(5):645-51.
    15 West DB,Boozer CN,Moody DL,Atkinson RL.Dietary obesity in nine inbred mouse strains.Am J Physiol 1992;262(6 Pt 2):R1025-32.
    16 Ahren B,Scheurink AJ.Marked hyperleptinemia after high-fat diet associated with severe glucose intolerance in mice.Eur J Endocrinol 1998;139(4):461-7.
    17 Eldar-Finkelman H,Schreyer SA,Shinohara MM,LeBoeuf RC,Krebs EG.Increased glycogen synthase kinase-3 activity in diabetes-and obesity-prone C57BL/6J mice.Diabetes 1999;48(8):1662-6.
    18 Ikemoto S,Takahashi M,Tsunoda N,Maruyama K,Itakura H,Ezaki O.High-fat diet-induced hyperglycemia and obesity in mice:differential effects of dietary oils.Metabolism 1996;45(12):1539-46.
    19 Winzell MS,Ahren B.The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes.Diabetes 2004;53 Suppl3:S215-9.
    20 Burcelin R,Crivelli V,Dacosta A,Roy-Tirelli A,Thorens B.Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet.Am J Physiol Endocrinol Metab 2002;282(4):E834-42.
    21 List EO,Berryman DE,Palmer AJ,Qiu L,Sankaran S,Kohn DT,Kelder B,Okada S,Kopchick JJ.Analysis of mouse skin reveals proteins that are altered in a diet-induced diabetic state:a new method for detection of type 2 diabetes.Proteomics 2007;7(7):1140-9.
    22 Surwit RS,Seldin MF,Kuhn CM,Cochrane C,Feinglos MN.Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice.Diabetes 1991;40(1):82-7.
    23 Petro AE,Cotter J,Cooper DA,Peters JC,Surwit SJ,Surwit RS.Fat,carbohydrate,and calories in the development of diabetes and obesity in the C57BL/6J mouse. Metabolism 2004;53(4):454-7.
    24 Parekh PⅠ,Petro AE,Tiller JM,Feinglos MN,Surwit RS.Reversal of diet-induced obesity and diabetes in C57BL/6J mice.Metabolism 1998;47(9):1089-96.
    1 Hossain P,Kawar B,E1 Nahas M.Obesity and diabetes in the developing world--a growing challenge.N Engl J Med 2007;356(3):213-5.
    2 Leroith D.Dyslipidemia and glucose dysregulation in overweight and obese patients.Clin Cornerstone 2007;8(3):38-52.
    3 Baur JA,Sinclair DA.Therapeutic potential of resveratrol:the in vivo evidence.Nat Rev Drug Discov 2006;5(6):493-506.
    4 Das S,Das DK.Anti-inflammatory responses of resveratrol.Inflamm Allergy Drug Targets 2007;6(3):168-73.
    5 Cucciolla V,Bordello A,Oliva A,Galletti P,Zappia V,Della Ragione F.Resveratrol:from basic science to the clinic.Cell Cycle 2007;6(20):2495-510.
    6 Stewart JR,Artime MC,0'Brian CA.Resveratrol:a candidate nutritional substance for prostate cancer prevention.J Nutr 2003;133(7 Suppl):2440S-2443S.
    7 Baur JA,Pearson KJ,Price NL,Jamieson HA,Lerin C,Kalra A,Prabhu VV,Allard JS,Lopez-Lluch Q Lewis K,Pistell PJ,Poosala S,Becker KG,Boss O,Gwinn D,Wang M,Ramaswamy S,Fishbein KW,Spencer RQ Lakatta EG,Le Couteur D,Shaw RJ,Navas P,Puigserver P,Ingram DK,de Cabo R,Sinclair DA.Resveratrol improves health and survival of mice on a high-calorie diet.Nature 2006;444(7117):337-42.
    8 Lagouge M,Argmann C,Gerhart-Hines Z,Meziane H,Lerin C,Daussin F,Messadeq N,Milne J,Lambert P,Elliott P,Geny B,Laakso M,Puigserver P,Auwerx J.Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha.Cell 2006;127(6):1109-22.
    9 McCarty MF Potential utility of natural polyphenols for reversing fat-induced insulin resistance.Med Hypotheses 2005;64(3):628-35.
    10 Sun C,Zhang F,Ge X,Yan T,Chen X,Shi X,Zhai Q.SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B.Cell Metab 2007;6(4):307-19.
    11 Chi TC,Chen WP,Chi TL,Kuo TF,Lee SS,Cheng JT,Su MJ.Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats.Life Sci 2007;80(18):1713-20.
    12 Skurk T,Alberti-Huber C,Herder C,Hauner H.Relationship between adipocyte size and adipokine exprossion and socretion.J Clin Endocrinol Metab 2007;92(3):1023-33.
    13 Tchoukalova YD,Koutsari C,Karpyak MV,Votruba SB,Wendland E,Jensen MD.Subcutaneous adipocyte size and body fat distribution.Am J Clin Nutr 2008;87(1):56-63.
    14 Winzell MS,Ahren B.The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes.Diabetes 2004;53Suppl 3:S215-9.
    15 赵维纲,Vague,P.减肥对内脏脂肪及胰岛素敏感性参数的影响.中国医学科学院学报2000;22(3):269-272.
    16 Hadyashi T Boyko EJ,Leonetti DL,McNeely MJ,Newell-Morris L,Kahn SE,Fujimoto WY.visceral adiposity and the risk of impaired glucose tolerance:a prospective study among Japanese Americans.Diabetes Care 2003;26(3):650-5.
    17 Wagenknecht LE,Langefeld CD,Scherzinger AL,Norris JM,Haffner SM,Saad MF,Bergman RN.Insulin sensitivity.insulin secretion,and abdominal fat:the Insulin Resistance Atherosclerosis Study(IRAS)Family Study Diabetes 2003;52(10):2490-6.
    18 刘军[1],查英[1],盛励[1],陈灶萍[1],陈钦达[2],廖晓寰[3],吴强[4],孟令平[4].腹型肥胖患者胰岛β细胞功能和胰岛素敏感性的变化.复旦学报:医学版2006:33(3):393-396.
    19 Pietilainen KH,Rissanen A,Kaprio J,Makimattila S,Hakkinon AM,Westerhacka J,Sutinen J,Vehkavaara S,Yki-Jarvinon H.Acquired obesity is associated with increased liver fat,intra-abdominal fat,and insulin resistance in young adult monozygotic twins.Am J Physiol Endocrinol Metab 2005;288(4):E768-74.
    20 Riserus U,Arnlov J,Brismar K,Zethelius B,Berglund L,Vessby B.Sagittal abdominal diameter is a strong anthropometric marker of insulin resistance and hyperproinsulinemia in obese men.Diabetes care 2004;27(8):2041-6.
    21 项坤三,贾伟平.中国上海地区40岁以上成人中肥胖与代谢综合征的关系.中华内科杂志2000;39(4):224-228.
    22 Villona JA,Roy S,Sarkadi-Nagy E,Kim KH,Sul HS.Desnutrin,an adipocyte gene encoding a novel patatin domain-containing protein,is induced by fasting and glucocorticoids:ectopic expression of desnutrin increases triglyceride hydrolysis.J Biol Chem 2004;279(45):47066-75.
    23 Zimmermann R,Strauss JQ Haemmerle G,Schoiswohl Q Birner-Gruenberger R,Riederer M,Lass A,Neuberger G,Eisenhaber F,Hermetter A,Zechner R.Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.Science 2004;306(5700):1383-6.
    24 Jenkins CM,Mancuso DJ,Yan W,Sims HF,Gibson B,Gross RW.Identification,cloning,expression,and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities.J Biol Chem 2004;279(47):48968-75.
    25 Fredrikson G,Tornqvist H,Belfrage P.Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol.Biochim Biophys Acta 1986;876(2):288-93.
    26 Schweiger M,Schreiber R,Haemmerle G,Lass A,Fledelius C,Jacobsen P,Tornqvist H,Zechner R,Zimmermann R.Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.J Biol Chem 2006;281(52):40236-41.
    27 Haemmerle G,Lass A,Zimmermann R,Gorkiewicz G,Meyer C,Rozman J,Heldmaier G,Maier R,Theussl C,Eder S,Kratky D,Wagner EF,Klingenspor M,Hoefler G,Zechner R.Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase.Science 2006;312(5774):734-7.
    28 Picard F,Kurtev M,Chung N,Topark-Ngarm A,Senawong T,Machado De Oliveira R,Leid M,McBurney MW,Guarente L.Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma.Nature 2004;429(6993):771-6.
    29 Shan T,Wang Y,Wu T,Guo J,Liu J,Feng J,Xu Z.Porcine adipose triglyseride lipase gene clone,expression pattern and regulation by resveratrol.J Anim Sci 2008.
    30 Kim JY,Tillison K,Lee JH,Rearick DA,Smas CM.The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 3T3-L1 adipocytes and is a target for transactivation by PPARgamma.Am J Physiol Endocrinol Metab 2006;291(1):E115-27.
    31 Finck BN,Kelly DP PGC-l coactivators:inducible regulators of eriergy metabolism in health and disease.J Clin Invest 2006;116(3):615-22.
    32 Kim SP,EⅡmerer M,Van Citters GW,Bergman RN.Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by all isocaloric moderate-fat diet in the dog.Diabetes 2003;52(10):2453-60.
    33 赵文惠,萧建中,杨文英,王娜,王昕,陈晓平,卜石.肝脏胰岛素抵抗与肝糖输出调控基因表达的关系.中华肝脏病杂志2006;14(1):45-48.
    34 Hundal RS,Krssak M,Dufor S,Laurent D,Lebon V Chandramouli V,Inzycchi SE,Schumann WC,Petersen KF,Landau BR,Shulman GI.Mechanism by which metfbrmin reduces glucose production in type 2 diabetes.Diabetes 2000;49(12):2063-9.
    35 Gerich JE,Meyer C,Woerle HJ,Stumvoll M.Rellal glUCOlleogesis:its importallce in human glucose homeostasis.Diabetes Care 2001;24(2):382-91.
    36 Meyer C,Stumvoll M,Nadkarni V.Dostou J,Mitrakou A,Gerich J.Abnonnal renal and hepatic glucose metabolism in type 2 diabetes mellitus.J Clin Invest l998;102(3):619-24.
    37 Kabir M,Catalano KJ,Ananthnarayan S,Kim SP.Van Citters GW,Dea MK,Berginall RN.Molecular evidence supporting the portal theory:a causative link between visceral adiposity and hepatic insulin resistailce.Am J Physiol Endocrinol Metab 2005;288(2):E454-61.
    38 Qu S,Altomonte J,Perdomo G He J,Fan Y,Kamagate A,Meseck M,Dong HH.Aberrant Forkhead box Ol function is associated with impaired hepatic metabolism.Endocrinology 2006;147(12):5641-52.
    39 Nakae J,Biggs WH 3rd,Kitamura T,Cavenee WK,Wright CV,Arden KC,Accili D.Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxol.Nat Genet 2002;32(2):245-53.
    40 Samuel VL Choi CS,Phillips TG Romanelli AJ,Geisler JG Bhanot S,McKay R,Monia B,Shutter JR,Lindberg RA,Shulmall GI,Veniant MM.Targeting foxol in mice using antisense oligonucleotide improves hepatic and peripheral insulin action.Diabetes 2006;55(7):2042-50.
    1 Zimmermann R,Strauss JG,Haemmerle G,Schoiswohl G,Birner-Gruenberger R,Riederer M,Lass A,Neuberger G,Eisenhaber F,Hermetter A,Zechner R.Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.Science 2004;306(5700):1383-6.
    2 Chung C,Doll JA,Gattu AK,Shugrue C,Cornwell M,Fitchev P.Crawford SE.Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase(ATGL).J Hepatol 2008;48(3):471-8.
    3 Reid BN,Ables GP,Otlivanchik OA,Schoiswohl G,Zechner R,Blaner WS,Goldberg IJ,Schwabe R,Chua SC Jr,Huang LS.Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation,stimulates direct release of free fatty acids and ameliorates steatosis.J Biol Chem 2008.
    4 倪鸿昌,李俊,金涌,臧红梅,彭磊.大鼠实验性高脂血症和高脂血症性脂肪肝模型研究.中国药理学通报 2004;20(6):703-706.
    5 Anstee QM,Goldin RD.Mouse models in non-alcoholic fatty liver disease and steatohepatitis research.Int J Exp Pathol 2006;87(1):1-16.
    6 Kirsch R,Clarkson V,Shephard EG,Marais DA,Jaffer MA,Woodburne VE,Kirsch RE,Hall Pde L.Rodent nutritional model of non-alcoholic steatohepatitis:species,strain and sex difference studies.J Gastroenterol Hepatol 2003;18(11):1272-82.
    7 Savransky V,Bevans S,Nanayakkara A,Li J,Smith PL,Torbenson MS,Polotsky VY.Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver.Am J Physiol Gastrointest Liver Physiol 2007;293(4):G871-7.
    8 Yki-Jarvinen H.Fat in the liver and insulin resistance.Ann Med 2005;37(5):347-56.
    9 Utzschneider KM,Kahn SE.Review:The role of insulin resistance in nonalcoholic fatty liver disease.J Clin Endocrinol Metab 2006;91(12):4753-61.
    10 Akbar DH,Kawther AH.Non-alcoholic fatty liver disease and metabolic syndrome:what we know and what we don't know.Med Sci Monit 2006;12(1):RA23-6.
    11 Kotronen A,Yki-Jarvinen H.Fatty liver:a novel component of the metabolic syndrome.Arterioscler Thromb Vasc Biol 2008;28(1):27-38.
    12 Bugianesi E.Nonalcoholic fatty liver disease(NAFLD) and cardiac lipotoxicity: Another piece of the puzzle.Hepatology 2008;47(1):2-4.
    13 Day CP,James OF.Steatohepatitis:a tale of two "hits"?.Gastroenterology 1998;114(4):842-5.
    14 Mishra P,Younossi ZM.Current treatment strategies for non-alcoholic fatty liver disease(NAFLD).Curr Drug Discov Technol 2007;4(2):133-40.
    15 Villena JA,Roy S,Sarkadi-Nagy E,Kim KH,Sul HS.Desnutrin,an adipocyte gene encoding a novel patatin domain-containing protein,is induced by fasting and glucocorticoids:ectopic expression of desnutrin increases triglyceride hydrolysis.J Biol Chem 2004;279(45):47066-75.
    16 Haemmerle G,Lass A,Zimmermann R,Gorkiewicz G,Meyer C,Rozman J,Heldmaier G,Maier R,Theussl C,Eder S,Kratky D,Wagner EF,Klingenspor M,Hoefler G,Zechner R.Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase.Science 2006;312(5774):734-7.
    17 Finck BN,Kelly DP.PGC-1 coactivators:inducible regulators of energy metabolism in health and disease.J Clin Invest 2006;116(3):615-22.
    18 Samuel VT,Liu ZX,Qu X,Elder BD,Bilz S,Befroy D,Romanelli AJ,Shulman GI.Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease.J Biol Chem 2004;279(31):32345-53.
    1 Kraemer FB,Shen WJ.Hormone-sensitive lipase:control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis.J Lipid Res,2002,43:1585-94.
    2 Haemmerle G,Zimmermann R,Hayn M,et al.Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue,muscle,and testis.J Biol Chem,2002,277:4806-15.
    3 Fredrikson G,Stralfors P,Nilsson NO,et al.Hormone-sensitive lipase of rat adipose tissue.Purification and some properties.J Biol Chem,1981,256:6311-20.
    4 Zimmermann R,Strauss JG,Haemmerle G,et al.Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.Science,2004,306:1383-6.
    5 Villena JA,Roy S,Sarkadi-Nagy E,et al.Desnutrin,an adipocyte gene encoding a novel patatin domain-containing protein,is induced by fasting and glucocorticoids:ectopic expression of desnutrin increases triglyceride hydrolysis.J Biol Chem,2004,279:47066-75.
    6 Jenkins CM,Mancuso DJ,Yan W,et al.Identification,cloning,expression,and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities.J Biol Chem,2004,279:48968-75.
    7 Zechner R,Strauss JG,Haemmerle G,et al.Lipolysis:pathway under construction.Curr Opin Lipidol,2005,16:333-40.
    8 Kurat CF,Natter K,Petschnigg J,et al.Obese yeast:triglyceride lipolysis is functionally conserved from mammals to yeast.J Biol Chem,2006,281:491-500.
    9 Haemmerle G,Lass A,Zimmermann R,et al.Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase.Science,2006,312:734-7.
    10 Kershaw EE,Hamm JK,Verhagen LA,et al.Adipose triglyceride lipase:function,regulation by insulin,and comparison with adiponutrin.Diabetes,2006,55:148-57.
    11 Smimova E,Goldberg EB,Makarova KS,et al.ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells.EMBO Rep,2006,7:106-13.
    12 Langin D,Dicker A,Tavernier G,et al.Adipocyte lipases and defect of lipolysis in human obesity.Diabetes,2005,54:3190-7.
    13 Schoenborn V,Heid IM,Vollmert C,et al.The ATGL gene is associated with free fatty acids,triglycerides,and type 2 diabetes.Diabetes,2006,55:1270-5.
    14 Kralisch S,Klein J,Lossner U,et al.Isoproterenol,TNFalpha,and insulin downregulate adipose triglyceride lipase in 3T3-L1 adipocytes.Mol Cell Endocrinol,2005,240:43-9.
    15 Chen H,Hansen MJ,Jones JE,et al.Cigarette smoke exposure reprograms the hypothalamic neuropeptide Y axis to promote weight loss.Am J Respir Crit Care Med,2006,173:1248-54.
    16 Schweiger M,Schreiber R,Haemmerle G,et al.Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.J Biol Chem,2006,281:40236-41.
    17 Lass A,Zimmermann R,Haemmerle G,et al.Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome.Cell Metab,2006,3:309-19.
    18 Fischer J,Lefevre C,Morava E,et al.The gene encoding adipose triglyceride lipase(PNPLA2)is mutated in neutral lipid storage disease with myopathy.Nat Genet,2007,39:28-30.
    19 Yamaguchi T,Omatsu N,Morimoto E,et al.CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation.J Lipid Res,2007,48:1078-89.
    20 Kershaw EE,Schupp M,Guan HP,et al.PPAR{gamma} REGULATES ADIPOSE TRIGLYCERIDE LIPASE IN ADIPOCYTES IN VITRO AND IN VIVO.Am J Physiol Endocrinol Metab,2007.
    21 Festuccia WT,Laplante M,Berthiaume M,et al.PPARgamma agonism increases rat adipose tissue lipolysis,expression of glyceride lipases,and the response of lipolysis to hormonal control.Diabetologia,2006,49:2427-36.
    22 Miyoshi H,Perfield JW 2nd,Souza SC,et al.Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes.J Biol Chem,2007,282:996-1002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700