氟尿嘧啶磁性丝素/壳聚糖复合微球的构建及其生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性导向给药系统是由高分子材料负载抗癌药物和磁响应性物质构成,在足够强的体外磁场引导下通过血管等选择性地达到并定位于肿瘤靶区释放药物,使药物在肿瘤组织的细胞或亚细胞水平发挥药效作用,而对正常组织无太大影响。它为抗癌药物的靶向性提供了一种新途径。
    本论文研究目的:以生物相容性好的新型可降解天然高分子材料-丝素/壳聚糖(FB/CS)复合物为载体,氟尿嘧啶(5-Fu)为模型药物,探索5-Fu靶向缓释磁微球的制备工艺、工艺参数与微球性能的相关关系。在此基础上研究氟尿嘧啶磁性丝素/壳聚糖复合微球(5-Fu-MFCMs)在模拟人体介质中的药物释放规律、磁微球定位的生物力学机制和对不同肿瘤细胞株的杀伤动力学行为,为其应用提供实验与理论指导。现已获得如下进展:
    (1)以PEG-4000作分散剂,用化学共沉淀-超声法制备水基磁纳米粒子。该磁粒子近似球形,粒径分布范围为25±10nm,饱和磁化强度为36.2×103A/m,属于超顺磁性物质。该磁纳米粒子具有稳定性高、磁响应性强、与亲水性高分子材料有较强亲和力的特点。
    (2)改性丝素合金膜中的FB与CS分子间存在着强烈的氢键相互作用及良好的相容性,其对应等电点的pH值是5.35,而纯FB膜等电点的pH值为4.5。当CS含量为40~60%时,改性丝素合金膜具有最大的抗张强度(71.4~72.7MPa)和拉伸率(3.44~3.82%)。改性丝素合金膜对5-Fu的渗透量与合金膜中CS的含量和渗透时间呈正相关,渗透系数随pH的增大(5→9)先是逐渐减小然后略有增大,在pH=7时最小,该值与人体生理环境相近,可作为pH智能响应膜。
    (3)建立了5-Fu-MFCMs磁微球的消解和5-Fu含量的一阶导数光谱测定方法。分别用酸碱消解微球以释放所包裹的5-Fu,在酸性介质中,最大波谷D对应的波长为280nm,;在碱性介质中,最大波谷D对应的波长为299nm,。二者的线性浓度范围均是3.36~16.8μg/ml,平均回收率为101.83±0.68%,RSD为0.67%。该方法不需分离杂质,具有简单方便、重现性好的特点。
    (4)采用改良的W/O乳化交联技术制备5-Fu-MFCMs微球。通过正交设计、引入“归一化值”OD并利用统计学分析方法,得到了工艺参数与微球各性能指标(如粒径、载药量、包封率、磁响应性、缓释性及“归一化值”OD)之间的多元线性回归或二项式拟合方程(R>0.9),其中对OD有显著性影响的因素(P<0.05)按大小顺序依次是:
    固化时间X7>搅拌速率X2>载体浓度X7>原料配比X5>乳化剂浓度X4>固化
    
    剂浓度X5。
    且各工艺因素之间有一定的交互作用,大小顺序是:
    X5X7>X5X6>X1X6>X1X4>X2X7>X2X6
    除乳化剂浓度与微球的OD呈负相关外,其它因素均与OD呈正相关。即适当减小乳化剂浓度,增大载体浓度、乳化速率、固化时间、原料配比和固化剂用量可得到综合指数OD较高的含药磁微球。
    按优化工艺参数制备微球的实验值与按回归方程的预测值有较好的吻合性。所得5-Fu-MFCMs的载药量与包封率分别为12.11%和60.55%、磁响应性为8s(指在0.4T磁场作用下平行移动10cm所需时间)、在体外模拟介质中释药50%的时间t50为11.72hr、综合指数OD为0.6573。电镜下观察微球表面光滑、圆整、具有良好的分散性,平均粒径为4.36±1.92,分布在1~7的微球占总量的91.04%。经红外、差热和X衍射检测,5-Fu与丝素蛋白/壳聚糖合金物载体之间以很强的分子间相互作用力形成了共沉淀物。
    (5)以该工艺及FB/CS复合物为负载材料制备的5-Fu-MFCMs微球,药物在0.5hr内存在突释现象,随后呈现出缓慢释放的特点。FB/CS复合高分子载体属于可溶胀聚合物系统,对5-Fu的释放遵循Fick扩散机理,具有骨架型微球的释药特征,其体外释药动力学模型符合Higuchi方程,拟合相关系数R均在0.9以上。
    (6)模拟血流环境,建立了磁微球在磁场作用下穿过流体时定位的力学模型,得出影响磁微球定位因素的相互关系。即对粒径和磁性一定的磁微球,产生定位的磁场条件为:
    >
    根据实验结果并结合理论预测,对平均粒径为4.3含磁粒子20%左右的磁性微球,当外磁场强度H≥0.4T、介质流速≤1cm/s、靶区离磁场距离≤3cm时,磁微球在靶区被截留率可达75%以上。
    (7)用MTT比色法测定不同时间剂量的5-Fu-MFCMs微球对人肝癌细胞株SMMC7721与肺腺癌细胞株A549的杀伤活性。结果表明5-Fu-MFCMs磁微球对肿瘤的药理作用与5-Fu相似,而未包裹药物的空白磁微球无抗肿瘤活性。5-Fu-MFCMs对肿瘤杀伤活性与作用时间和释药量呈正相关关系。根据半数抑制剂量IC50,5-Fu-MFCMs对肺腺癌A549较人肝癌SMMC7721更为敏感
Magnetic targeted drugs delivery system consists of polymer carrier, drug and magnetic nanoparaticles. It could be selectively localized to the target-site of tumor by external magnetic field and then the drug would be delivered to cell and sub-cell of tumor tissues. Magnetic microspheres agent loaded antitumor drug is suggested as an efficient method of obtaining high local drug concentration and may reduce many undesirable toxic side effects from unrestricted systemic circulation.
    The aim of the thesis is that biodegradable silk fibroin modified by blending with chitosan as vehicle are prepared target microspheres formulation with a high loading efficiency for the cytotoxic drug 5-fluorouracil (5-Fu) and magnetic nanoparticles. The interrelationships are studied between phy-chemical preparation parameters and technical indexes of microspheres. It is studied that the kinetic release model of 5-Fu from fibroin/chitosan microspheres, influential factors to microspheres localized sites by external magnetic field and its antitumor activities to tumors, respectively. Some achieved progresses have been obtained as follows:
    (1)With a chemical coprecipitation and ultrasonic technology, ferric/ferrous ion salt dispersed in polyethylene glycol-4000(a dispersant agent), and then ammonia water added to pH 10~11 of solutions, magnetic nanoparticles were obtained. Measuring results of scanning tunnel microscope showed that the particles were round with a size range of (25±10nm). Its saturation magnetization was 36.2×103A/s and it belongs to superparamagnetism of ferrofluid. The magnetic nanoparticles exhibited excellent stability, strong magnetic response and well affinity with hydrophilic polymer.
    (2) The Modified fibroin membranes were studied some characters to be found such as there was a strong hydrogen bond and good compatibility between fibroin and chitosan molecules, and its isoelectric point at pH=5.35, but that of fibroin film was around pH 4.5. It was also found that its mechanical properties were much higher than those of fibroin or chitosan film. Its tensile strength and breaking elongation were greatly enhanced with increasing the chitosan content and showed maximum values of 71.4~72.7MPa and 2.96~3.82% respectively at containing chitosan 40~60%. Its coefficient of permeability to 5-fluorouracil was decreased initially and then increased slowly from pH 5 to 9 of solutions with the minimum located at pH=7.
    (3) The first order derivative spectrophotometry method for the determination of
    
    5-Fu content in magnetic fibroin/chitosan blended microspheres was established. Blended magnetic microspheres were digested with HAc and NaOH respectively to release entrapped 5-Fu. The absorption value of amplitude at the wavelength of 280nm in 10%HAc and at 299nm in 0.1 mol/l NaOH was used. The interference of fibroin and chitosan could be ignored. Its regression equations were ,(in HAc) and (in NaOH) respectively. The average recovery was 101.83±0.68% and RSD was 0.67%. This method is simple, rapid and well reproducible.
    (4) A novel W/O emulsion/polymer cross-linking technique was used to prepare magnetic fibroin/chitosan microspheres containing 5-Fu (5-Fu-MFCMs). An orthogonal experimental design and statistical analysis methods were employed to simultaneously optimize and evaluate a variety of formulation factors on a number of response variables. OD value was the overall desirability of multiple response variables, such as mean diameter and dispersity efficiency, drug loading and loading efficiency, magnetic response and 50% release time etc. Second-order polynomial and linear equations were fitted to the data, and the regression equations and their correlation coefficients R>0.9 were obtained. The statistical optimization procedures indicated the sequence of the factors of significantly influence to OD(P<0.05)was below:
    Crosslinking time>Stirring rate>FB/CS concentration>5-Fu /magnet /FB-CS ratio>Emulsifier concentration>Cross-linker concentration.
    Most of these factors above were posit
引文
[1] Lubbe AS, Alexion C, Bergemann C. Clinical application of magnetic drug targeting. J Surg Res, 2001, 95(2): 200-206.
    [2] Embleton MJ. Drug targeting by monoclonal antibodies. Br J Cancer, 1987, 55(3):227-231.
    [3] 陆彬. 药物新剂型与新技术. 北京:人民卫生出版社,1998.
    [4] Torchilin VP. Drug Targeting. Eur J Pharm Sci, 2000, 11(2):80-91.
    [5] Fitzsimmons RJ, Ryaby, JT, Mohan S, et al. Combined magnetic fields increase insulin-like growth factor-Ⅱin TE-85 human osteosarcoma bone cell cultures. Endocrimology, 1995, 136 (7): 3100- 3106.
    [6] 张小云, 张晓鄂. 恒定磁场对Hela细胞生长分裂的影响. 科学通报, 1989,34:1901-1904.
    [7] Hannan CJ, Liang Y, Allison JD, et al. Chemotherapy of human carcinoma xenografts during pulsed magnetic field exposure. Anticancer Res, 1994, 14(4A): 1521-1524.
    [8] Brodesky FM. Monoclonal antibodies as magic bullets. Pharm Res 1988;5(1):1-9.
    [9] Sugibayashi K, Morimoto Y, Nadai T et al. Drug-carrier property of albumin microspheres in chemotherapy. II. Preparation and tissue distribution in mice of microsphere-entrapped 5-fluorouracil. Chem Pharm Bull, 1979; 27(1):204-209.
    [10] Illum L, Davis SS. The targeting of drugs parenterally by use of microspheres. J Parenter Sci. Technol, 1986,36(6):242-248.
    [11] 张景黥,张志荣,谭群友. 磁靶向给药系统的研究进展. 中国医药工业杂志,2001,32(12):564-567.
    [12] Hanes J, Cleland L. New advances in microsphere-based single-dose vaccines. Advanced Drug Delivery Reviews,1998, 28:97-120.
    [13] 邱广明, 孙宗华. 磁性高分子微球及其在生物医学中的应用. 生物医学工程学杂志, 1992,9(2):205-210.
    [14] Mitsumori M, Hiraoke M, Shibata T, et al. targeted hyperthermia using Dextran magnetic complex: A new treatment modality for liver tumor. Hepato Gastroenterology, 1996,43(12): 1431-1437.
    [15] Widder KJ, Senyei AE, Sears B,et al. Experimented methods in cancer therapeutics. J Pharm Sci, 1982,71:379-387.
    [16] 吴传斌,魏树礼.磁性药物微球研究进展.中国药学杂志,1993,28(6):330-334.
    [17] Babincova M. Targeted and controlled release of drugs using magnetoliposomes. Ceska Slov Farm, 1999,48(1):27-29.
    
    
    [18] Pulfer SK, Ciccotto SL, Gallo JM. Distribution of small magnetic particles in brain tumor-bearing rats. J Neurooncol, 1999, 41(2):99-105.
    [19] Widder KJ, Senyei AE. Intravascularly administrable, magneitically localizable biodegradable carrier[P].U.S.1981, No:4247406.
    [20] Lubbe AS, Bergemann C, Riess H, et al. Cinical experiences with magnetic drug targeting: a phaseⅡstudy with 4'-epidoxorubicin in 14 patients with advanced solid tumors.Cancer Res, 1996, 56(20): 4686-4693.
    [21] Lubbe AS, Bergemann C, Huhut W, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer res, 1996,56(20):4694-4701.
    [22] 余艺华,薛博,孙彦等. 壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究.高分子学报,2000,(3):340-344.
    [23] Kausch AP, Owen TP, Narayanswami S, et al. Organelle isolation magnetic immuno absorption .Bio-Techniques, 1999, 26(2):336-343.
    [24] 吴传斌,魏树礼,卢炜, 等. 磁性微球的磁响应性及狗肾动脉栓塞实验研究. 药学学报,1994,29(4):311-315.
    [25] 张仲海,吴少华,王文学,等. 秋水仙碱磁微球靶向治疗乳腺癌的实验研究. 中华物理医学杂志,1997,19(4):193-195.
    [26] Kato T, Nemoto R, Morii H. Cancer et al. Intra-arterial use of microencapsulated mitomycin C in the treatment of advanced carcinoma. 1980, 15(3): 353-361.
    [27] Goodwin SC, Bittner CA, Peterson CL, et al. Single-dose toxicity study of hepatic intra-arrerial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci, 2001,60(1):177-183.
    [28] Minamimura T, Sato H, Kasaoka S, et al. Tumor regression inductive hyperthermia combined with hepatic embolization using dextran magnetite -incorporated microspheres in rats. Int J Oncol, 2000, 16(6): 1156- 1158.
    [29] Devineni D, Gallo JM, Klein Szanto A. Tissue distribution of methotrexate following administration as a solution and as a magnetic microsphere conjugate in rats bearing brain tumors. J Neurooncol,1995,24:143-152.
    [30] 常津,刘海峰,姚康德. 医用纳米控释系统的研究进展. 中国生物医学工程学报, 2000,19(4):423-431.
    [31] 刘晓华,杜文清,邵礼铮,等. 抗癌中药复合5-Fu磁性微球制剂的研制. 中成药,1998,20(6):4-7.
    [32] 陶凯雄,陈道达,王国斌,等. 阿霉素磁性蛋白微球靶向治疗胃癌的实验研究及临床应用. 中华外科杂志, 1999,37(4):205-207.
    
    
    [33] 宋海峰. 磁性药物靶向治疗肿瘤. 国外医学肿瘤学分册,2002,29(3):183-186.
    [34] Kas HS. Chitosan: properties, preparations and application to microparticulate system. J microencapsul, 1997,14(6):689-711.
    [35] 俞耀庭主编.生物医用材料(21世纪新材料丛书).天津:天津大学出版社,2000,12:173-192.
    [36] Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res,1998,15(9):1326-1331.
    [37] 宁丽,薛淼,孙皎. 医用皮肤再生膜等材料在三个水平生物学试验结果的相关性探讨. 特种功能材料学术讨论会论文集,1998,8:217-222.
    [38] Minour.N, Tsukada. M, Nagura M. Physic-chemical properties of silk fibroin membrane as a biomaterical. Biomaterials.1990, 11:430-434.
    [39] Minour N, Aiba S, Higuchi M, et al. Attachment and growth of fibroblast cells on silk fibroin. Biochem. Biophys. Res. Commun., 1995, 208:511-516.
    [40] 陈建勇,刘冠峰,沈之荃. 丝素膜上药物渗透量对溶液pH值的响应. 功能高分子学报,1997,10(3):387-392.
    [41] 陈新,李文俊,钟伟等,壳聚糖-丝心蛋白合金膜的研究(Ⅱ)-半互穿聚合物网络型膜对PH和离子的敏感性.高等学校化学学报,1996,17(6 ):968-972.
    [42] 孔祥东,朱良均,闵思佳.丝素蛋白用于生物材料的研究进展.功能高分子学报,2001,14(3):47-49.
    [43] Wang YM, Sato H, Adachi I, et al. Optimization of the formulation design of chitosan microspheres containing cisplatin. J Pharm Sci, 1996,85(11):1204-1210.
    [44] Helw AA, Angary AA, Mahrous GM, et al. Preparation and evaluation of sustained release cross-linked chitosan microspheres containing phenobarbitone. J Microencapsul, 1998, 15 (3):373-382.
    [45] Jameela SR, Kumary TV, Lal AV, et al. Progesterone-load chitosan microspheres: a long acting biodegradable controlled delivery system. J Controlled Release,1998,52(1-2):17-24.
    [46] Elmi MM, Sarblouki MN. A simple method for preparation of immuno-magetic liposomes. Int J Pharm, 2001,215(1-2): 45-50.
    [47] 李振,许德顺.恶性肿瘤的化学治疗与免疫治疗. 北京:人民卫生出版社,1990:2
    [48] 孟旭,陈兰英,徐晓薇.静脉滴注5-氟脲嘧啶用于滋养细胞肿瘤化疗的药物代谢动力学 研究.中国临床药理学杂志,1988,4(3):135-143.
    [49] 陈江,江纪修,李炜坪.抗癌药物载体--磁流体的制备及其性质研究.中国医院药学杂志,1997,17(4):163-165.
    [50] Chikazumi S, Taketomi S, et al. Physics of magnetic fluids. J Magn. Magn. Mater, 1987, 65: 245-251.
    [51] Lauva M, Auzans E, Levivkis V, et al. Scelective Hgms of Colloidal Magnetite -Binding Cells
    
    from Whole Blood. J Magn. Magn. Mater, 1990, 85: 295-298.
    [52] 贾秀鹏.磁流体在肿瘤学治疗领域的应用进展.国外医学肿瘤学分册,2002,29(3):187-190.
    [53] Yanase M, Shinkai M,Honda H, et al.Intracellular hyperthermia for cancer using magnetite cationtic liposomes: an in vivo study. J cancer Research, 1998, 89(4):463-469.
    [54] 丁小斌,孙宗华,万国祥.磁性高分子微球的制备和应用研究进展.化学通报,1997,1: 1-6.
    [55] 高道江,赖欣,王建华.磁流体制备技术的现状及展望.磁性材料及器件,1998,29(2):20-23.
    [56] 杨仕清,王豪才,张万里等.超细金属和二元合金磁粉的制备及静态和动态磁性研究.应用科学学报,1997, 15(4):436-439.
    [57] 康鸿业,王允军,施展等.影响Fe3O4超微粒子性能因素的研究.高等学校化学学报,1991,12(5):684-685.
    [58] 丁明,曾恒兴. 中和沉淀法Fe3O4的生成研究.无机材料学报,1998,13(4):619-624.
    [59] 朱传征,沈锓,徐超等.钇铁氧体磁流体的制备及表征.华东师范大学学报(自然科学版),2000,1:68-73.
    [60] Carpenter CP, Woodside MD, Kinkead ER,et al. Response of dogs to repeated intravenous injection of PEG-4000 with notes on excretion and sensitization. Toxicol Appl Pharmacol, 1971,18:35-40.
    [61] 罗新,方裕勋. 古埃磁天平法研究磁流体的磁性及稳定性. 华东地质学院学报,1997,2:120-125.
    [62] 丁小斌,孙宗华,万国祥, 等. 热敏性高分子包裹的磁性微球的性质及表征. 高分子化学,1999, (6): 674-679.
    [63] 朱正华,朱良均,闵思佳. 丝素蛋白膜的应用和研究进展. 膜科学与技术,2002;22(3):48-51.
    [64]、赵铁,杜予民,唐汝培. 壳聚糖水杨酸盐-明胶共混膜结构表征及其抗菌性. 分析科学学报,2002;18(2):100-104.
    [65] Freddi G, Romano M., Massafra Maria.R.et al. Silk fibroin/cellulase blend films: prepartion, structure, and physical properties. Journal Applied Polymer Science ,1995, 56(12): 1537~1545.
    [66] 闵思佳,朱良均,姚菊明等. 酰胺化修饰对丝素材料吸附释放性能的影响. 蚕业科学,2000, 26(3):159-164.
    [67] Sidman KR, Steber WD, Schwope AD, etal. Controlled release of macromolecules and pharmaceuticals from synthetic polypeptides based on glutamic acid. Biopolymers, 1983,22(1):547-556.
    [68] Peppas NA, Franson NM. The swelling interface number as a criterion for prediction of
    
    diffusional solute release mechanism in swellable polymers. J Appl Polym Sci, 1983;21: 983-997.
    [69] 马越淳.有机溶剂处理后丝素的热性质.《高分子论文集》,1974.
    [70] 杜春惠,陈建勇. 丝素-壳聚糖共混膜物性的研究. 丝绸,2002,(1):9-11.
    [71] Zhang J, Peppas NA. Synthesis and Characterization of pH- and temperature- sentive poly(methacrylic acid)/poly(n-isopropylacrylamide) interpenetrating polymeric networks[J]. Macromolecules, 2000, 33: 102-107.
    [72] Kweon H, Hyun Chul Ha, In Chul Um, et al. Physical properties of silk fibroin /chitosan blend films. Journal of Applied Polymer Science, 2001, 80(7): 928- 938.
    [73] Yao KD, Liu WG, Liu J. Unique characteristics of water in chitosan-polyether semi-IPN hydrogel. Journal of Applied Polymer Science, 1999, 71(3): 449-453.
    [74] 李正华主编. 药物化学 (第三版). 北京: 人民卫生出版社,1995,9: 454.
    [75] Benvenuto JA, Lu K, Ti Li Loo. High- pressure liquid chromatography analysis of Ftorafur and its metabolites in biological fluids. J Chromatogr, 1977, 134: 219-222.
    [76] Christophidis N, Mihaly G, Vajdu F.Comparison of liquid- and gas-liquid chromatography assays of 5FU in plasma.Clin Chem, 1979, 25(1):83-86.
    [77] 国家药典委员会编.中国药典.二部.1995:500.
    [78] Emad Eldin Hassan, Roy C. Parish, and James M. Gallo. Optimized Formulation of Magnetic Chitosan Microspheres Containing the Anticancer Agent Oxantrazole. Pharmaceutical research,1992, Vol. 9 (3):390-397.
    [79] 吴斗思,卢淑琴,吴献役. 用SDS凝胶电泳法测定水解丝蛋白的分子量. 天津纺织工学院学报,1996,vol.15(4):23-26.
    [80] Pan W S, Hu J. Studies of 5-foluorouracil nanocapsules. Acta Pharm Sin(in Chinese), 1991, 26(4):280-285.
    [81] Muherji G, Murthy RSR, Miglani BD. Preparation and devaluation of cellulose nanospheres containing 5-fluorouracil. Int J Pharm, 1990,65(1):1-5.
    [82] 王剑红,陆彬,胥佩菱,等.肺靶向米托蒽醌明胶微球的研究.药学学报,1995,30(7):549-555.
    [83] 吴伟,周全,张恒弼,等. 尼莫地平胃内滞留漂浮型缓释片地研究. 药学学报,1997,32(10):786-790.
    [84] Liu LS, Thompson AY, Heidaran MA, et al. Anosteo conductive collagen /hyaluronate matrix forbonere generate. Bio-material, 1999,20(12):1097-1108.
    [85] Gallo JM, Hassan EE. Receptor-mediator magnetic carriers: basis for targeting. Pharm Res, 1988,5:300-304.
    
    
    [86] Abu-Izza KA, Carcia-Contreras L, Lu DR. Preparation and evaluation of sustained release AZT-loaded microspheres 2. Optimization of multiple response variables. J Pharm Sci, 1996,85(2):144-149.
    [87] Lin SY, Chen KS, et al. Functionality of protective colloids affecting the formatin ,size uniformaity and morphology of drug-free polylactic acid microspheres.J Microencapsulation, 1998; 15(3):383-390.
    [88] Arai. Preparation of polylactic acid polylipoic acid nanospheres as drug targeting carriers. Drug desing & Delivery, 1987,2:109-120.
    [89] Yapel AF Jr. Albumin microspheres: heat and chemical stabilization. Methods Enzymol, 1985,112:1-18.
    [90] Ishizaka T. Preparatin of egg albumin microcapsules & microspheres . J. Pharm. Sci, 1981, 70: 358-363.
    [91] Hari PR, Chandy T, Sharma CP. Chitosan/calcium-alginate microcapsules for intestinal delivery of mitrofurantoin. J Microencapsul, 1996, 13(3):319-329.
    [92] Sheu MT, Sokoloski TD. Entrapment of bioactive compounds within native albumin beads:Ⅲ. Evaluation of parameters affecting drug release. J Parenter Sci Technol, 1986,40(6):259-265.
    [93] 陈银广 陈坚 王朝晖等,聚β-羟基丁酸戊酸酯为载体的药物缓释微球的制备. 高校化学工程学报,1999,13(2):129-134.
    [94] Mumper RJ, Jay M. Poly (L-lactic acid ) microspheres containing neutron-activatable holmium-165: a study of the physical characteristics of microspheres before and after irrediction in a unclear reactor. Pharm. Res, 1992, 9(1):149-154.
    [95] 吴传斌,何素梅,高文伟等.阿霉素磁性明胶微球的制备及特性研究.中国医药工业杂志,1994,25(2):63-66.
    [96] 吴功柱,梁如槐,熊国军,等. 5-氟尿嘧啶明胶微球化学交联固化研究.中国药房,1998,9(4):154-155.
    [97] Narsimhan B, Peppas NA. Disentanglement and reptation during dissolution of rubber polymers. J Polymer Sci, Part B.1996, 34(8): 947-961.
    [98] Rosman TJ, Higuchi WI. Release of medroxy progester oneacetateromasilicon polymer. J Pharm Sci, 1979,59:353-357.
    [99] Paul DR. Chandrasekaran SK. Dissolution controlled transport from dispersed matrixes. J Pharm Sci, 1982,71(12):1339-1402.
    [100] Ritger PL, Peppas NA. A simple equation for description of solute release.I.Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controlled Release, 1987,5(1):23-36.
    
    
    [101] Doelker E. Cellulose derivatives. Adv Polym Sci, 1992,107(2):225 -265.
    [102] Colombo P, Bettini R, Snti P, et al. Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J Controlled Release, 1996, 39(3): 231-237.
    [103] Siepmann J, Kranz H, Bodmier R, et al. HPMC-matrix for controlled drug delivery: A new model combining diffusion, swelling and dissolution mechanisms and predicting the release kinetics. Pharm Res, 1999,16(11):1748-1756.
    [104] Corre L, Rytting J, etal. In vitro controlled release kinetics of local anaesthetics from poly (D, L-lactide) and poly (lactide-co-glycolide) microspheres. J. Microencapsulation, 1997,14(2): 243-355.
    [105] Gangrade N, Price JC. Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsulation, 1991,8(2): 185-202.
    [106] 石可瑜,李朝兴,何炳林.磁导向阿霉素-羧甲基葡聚糖磁性毫微粒的研究.生物医学工程学杂志,2000,17(1):21-24.
    [107] 姚磊,刘军主编. 医学使用数据手册,北京:中国广播电视出版社1993:182.
    [108] Driscoll CF, Morris RM, Senyei AE, et al.Magnetic targeting of microspheres in blood flow. Microvascular Research, 1984,27(3):353-369.
    [109] Ovadia H, Paterson PY, Hale JR. Magnetic microspheres as drug carriers:factors influencing to calizationat different anatomical sites in rats. J Med Sci, 1983,19:631-637.
    [110] 朱立平,陈学清主编. 免疫学常用实验方法. 北京:人民军医出版社,2000,191-208.
    [111] Hongo T, Nojima S, Setaka M. An in vitro chemosemnsitivity test for the screening of antrcancer drugs in childhood leukemia. Cancer, 1990,65(6):1263-1272.
    [112] 郭春红,殷慧君,周为东.急性白血病MTT法体外药物敏感试验与疗效关系的探讨. 中国实用内科杂志,1997,17(9):546-547.
    [113] 吕焕章,吴德政,顾斌等.5-氟胞嘧啶在体外对转导胞嘧啶脱氨酶基因的肝癌细胞的细胞毒作用.中国药理学与毒理学杂志,1999,13(3):239-240.
    [114] 陆燕蓉,林苹,陆彬等. 5-FU-PLA微球的肺癌杀伤效应研究. 中国肺癌杂志,2000,3(6):432-434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700