羧胺三唑对小鼠实验性结肠炎的疗效评价与作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     炎性肠病(inflammatory bowel diseases,IBD)尤其是溃疡性结肠炎(ulcerativecolitis,UC)在我国的发病率呈逐年上升趋势,但其病因、发病机制目前仍不清楚。糖皮质激素、柳氮磺胺吡啶(salazosulfapyridine,SASP)是治疗IBD的常规药物,但此两类药物长期应用毒副作用大,且对部分病人无效,因此开发毒副作用小而有效的治疗IBD的药物具有重要意义。羧胺三唑(carboxyamidotriazole,CAI)是一种能够抑制细胞外钙内流的化合物,其在体外和体内模型中均表现出一定的抑制肿瘤增殖和转移的作用,此外该化合物还具有抑制血管生成、花生四烯酸释放以及激活NF-κB通路的作用。本课题组通过动物实验已证明该药物对急性、亚急性和慢性炎症具有显著的抗炎作用。为考察该药物对UC的潜在治疗作用,我们通过建立葡聚糖硫酸钠(dextran sulphate sodium salt,DSS)诱导的小鼠结肠炎模型,并施予CAI,观察其疗效,并从组织水平、细胞水平和分子水平探讨CAI对这种结肠炎模型的保护作用及作用机制,为进一步的临床研究奠定基础。
     研究方法
     采用DSS诱导小鼠溃疡性结肠炎模型,观察小鼠的体重和粪便变化,用大便性状改变和有无便血这两项指标评价小鼠的症状。取静脉血并将小鼠处死,制作结肠标本,HE染色观察结肠组织学变化,进行粘膜损害程度评分,采用酶联免疫吸附法(ELISA)测定血清、结肠匀浆和腹腔巨噬细胞培养上清中肿瘤坏死因子(tumornecrosis factor,TNF)-α、白介素(interleukin,IL)-1β、IL-6水平,采用ELISA法测定血清和结肠匀浆中基质金属蛋白酶-2,9(matrix metalloproteinase,MMP-2,9)和转化生长因子β1(transforming growth factor,TGFβ1)的含量。采用免疫组化方法观察小鼠结肠中细胞间粘附分子(intercellular adhesion molecule,ICAM)-1、核转录因子(nuclear factor,NF)-κB和TNF-α的表达或活化情况。检测小鼠结肠匀浆中髓过氧化物酶(myeloperoxidase,MPO)的活性。检测小鼠结肠匀浆中丙二醛(malonaldehyde,MDA)的含量和超氧化物歧化酶(superoxide dismutase,SOD)的活性。采用硝酸还原法测定小鼠结肠匀浆中一氧化氮(NO)的含量。采用Western Blot法测定小鼠腹腔巨噬细胞培养上清中诱导型一氧化氮合酶(iNOS)、IκBα和磷酸化IκBα的表达情况。采用Masson's染色法观察小鼠结肠组织中胶原沉淀的情况。
     研究结果
     1.3%DSS能够成功诱导小鼠溃疡性结肠炎模型,其肠道病理变化类似于人类溃疡性结肠炎的病理改变。溃疡性结肠炎小鼠肠粘膜充血、水肿、糜烂或溃疡形成,粘膜炎症细胞浸润(主要为中性粒细胞)及隐窝脓肿形成。
     2.CAI(20 mg/kg)对3%DSS诱导的小鼠溃疡性结肠炎具有保护作用。连续10天给予小鼠20 mg/kg的CAI后,小鼠的体重、粪便和血便情况均有不同程度的改善。大体见CAI治疗组动物结肠充血、肠壁增厚明显减轻,粘膜缺损区浅小;组织学观察见粘膜损害累及的结肠范围缩小,毛细血管扩张、淋巴滤泡增生、粘膜下层水肿和隐窝结构破坏程度明显减轻。系列浓度的CAI(5、10、20和30 mg/kg)对3%DSS诱导的小鼠溃疡性结肠炎具有剂量依赖性的保护作用。同时CAI(20 mg/kg)对2%DSS诱导的小鼠溃疡性结肠炎也具有治疗作用。
     3.与正常对照组相比,饮用DSS的小鼠血清、结肠匀浆和腹腔巨噬细胞培养上清中TNF-α、IL-1β和IL-6水平升高,经CAI治疗后均降低。小鼠血清中TNF-α、IL-1β和IL-6的含量分别降低了66.75%、20.19%和26.49%,小鼠结肠匀浆中TNF-α、IL-1β和IL-6的含量分别降低了55.00%、74.95%和64.33%,小鼠腹腔巨噬细胞培养上清中TNF-α、IL-1β和IL-6的含量分别降低了80.41%、13.03%和58.58%。
     4.免疫组化的检测结果显示,溃疡性结肠炎小鼠结肠组织中TNF-α、NF-κB p65和ICAM-1表达明显升高,经CAI治疗后,小鼠结肠组织中TNF-α、NF-κBp65和ICAM-1的表达明显下降。
     5.与正常对照组相比,饮用DSS的小鼠结肠匀浆中MPO的活性升高,给予实验动物CAI后,MPO的活性明显降低,下降了13.58%。
     6.给予实验动物CAI后,溃疡性结肠炎小鼠结肠组织中MDA的含量显著降低,而SOD的活性则显著升高。与PEG400组相比,MDA的含量降低19.57%,SOD的活性升高29.14%。
     7.饮用DSS的小鼠腹腔巨噬细胞培养上清中NO水平升高,但经CAI治疗后显著降低,小鼠腹腔巨噬细胞培养上清中NO含量降低了24.53%。经CAI治疗后,小鼠腹腔巨噬细胞中iNOS的表达量下降。
     8.CAI能够显著抑制DSS引起的小鼠腹腔巨噬细胞中IκBα的降解以及磷酸化IκBα含量的升高。
     9.与正常对照组相比,饮用DSS的小鼠血清和结肠匀浆中MMP-2和MMP-9的含量升高,但经CAI治疗后,血清和结肠匀浆中MMP-2的含量分别下降了27.75%和47.14%;然而MMP-9的含量却未发生明显改变。
     10.溃疡性结肠炎小鼠经CAI治疗后,结肠匀浆中TGF-β1含量下降了52.43%。Masson's三色染色的结果显示,CAI能够显著降低小鼠结肠组织中胶原纤维的沉积。
     结论
     CAI对DSS诱导的小鼠实验性结肠炎具有预防和治疗作用,且上述作用呈现出剂量依赖关系。CAI可显著改善结肠炎小鼠的腹泻和便血,减轻肠道充血和水肿及粘膜损害的范围和程度。CAI能够抑制NF-κB的活化,并通过清除粘膜活性氧,抑制TNF-α、IL-1β和NF-κB的激活,阻断相互激活的正反馈通路,阻断IL-6、IL-1β和ICAM-1的产生,最终表现为TNF-α、IL-1β、IL-6和ICAM-1低水平表达,从而减轻肠道炎性损害,改善结肠炎症状。CAI能够降低模型小鼠结肠中TGF-β1的含量,进而减少病变结肠中胶原纤维的含量,最终起到延缓病变结肠纤维化的作用。综上所述,根据我们的研究结果可以推测,CAI作为一种口服有效且副作用较少的药物,对溃疡性结肠炎的临床治疗具有较高的潜在应用价值。
Background
     The worldwide incidence and mortality of inflammatory bowel diseases(IBD) are increasing,especially for ulcerative colitis(UC),while its etiology and mechanism have not been fully understood yet.The routine treatment of IBD involves glucocorticoids and salazosulfapyridine(SASP),which are effective in most case but unsustainable for their toxicities.It is an unmet clinical need that calls for novel anti-IBD agents with favorable efficacy and acceptable safety.Carboxyamidotriazole(CAI) is a compound that inhibits calcium influx and proliferation of tumor cell and endothelial cell.CAI has been proven active against proliferation and metastasis in both in vitro and in vivo models,and being developed as an anti-tumor agent.Its other activities,as reported by literatures,include anti-angiogenesis,inhibition of arachidonic acid release and activation of NF-κB pathway. In our early studies,the potential anti-inflammatory activity of CAI was established in a battery of models that cover acute and chronic inflammation.We hereby investigated the effect of CAI,together with its underlying mechanism,on mouse UC model prepared with dextran sulphate sodium salt(DSS).
     Methods
     The mouse UC model was prepared with DSS on C57/BL strain.The model was evaluated using following criteria:body weight,stool change,and presence of hemafecia. After collection of blood sample,the mice were sacrificed to allow fixing the colon sections.The damage of colon mucous membrane was scored following HE stain of colon sections.ELISA was employed to test a series of cytokines in serum,colon homogenate and conditioned medium of peritoneal macrophage,including:tumor necrosis factor alpha(TNF-α),interleukin 1β(IL-1β) and interleukin 6(IL-6).For measuring matrix metalloproteinase 2 and 9(MMP-2,9) as well as transforming growth factorβ1(TGF-β1),the specimens of serum and colon homogenate were subjected to ELISA.Immunohistochemistry was utilized in determining the expression and/or activation of intercellular adhesion molecule-1(ICAM-1),nuclear factorκB(NF-κB) and TNF-α.The study also quantified the activities of myeloperoxidase(MPO) and superoxide dismutase(SOD) in colon homogenate,the activity of SOD in serum and the content of malonaldehyde(MDA) in both colon homogenate and serum.The nitrogen monoxidum(NO) level in colon homogenate was determined by reduction method.The expression patterns of Inducible nitric oxide synthase,IκBαand phosphorylated IκBα were examined by western blot.The purpose of Masson's stain was to evaluate the extent of fibrosis in colon.
     Results
     1.In C57 mice,DSS in strength of 3%was sufficient to produce pathological changes similar to that seen in human UC,making it an ideal agent for preparation the model through this study.The phenotype of the model was characterized by mucous hyperemia,edema,erosion and ulceration in colon,as well as inflammatory cell (mainly neutrophils) infiltration and crypt abscess.
     2.20 mg/kg CAI(p.o.) was proven to be protective against UC induced by 3%DSS in mice.After 10 days consecutive administration of CAI(20 mg/kg),the symptom of the disease(as indicated by body weight,stool change,and presence of hemafecia) was significantly improved.The mice treated with CAI showed alleviated enteremia and edema in colon and diminished mucous membrane lesions in macroscopic examination.Microscopy results revealed less severe telangiectasis,lymph foilicie hyperplasia,and submucosa edema and crypt disorganization compared with control group.Based on the data from a similar experiment involving an ascending doses of CAI(5,10,20 and 30 mg/kg),the dose dependent protective effect of CAI against UC induced by 3%DSS in mice was established.Therapeutic action of 20 mg/kg CAI(p.o.) was also evident in mouse UC model prepared with 2.5%DSS.
     3.Compared with normal mice,model mice had significant high levels of TNF-α, IL-1βand IL-6 in their serum,colon homogenate and conditioned medium of peritoneal macrophage.CAI treatment can palliate these elevations,with inhibition rates of 66.75%,20.19%and 26.49%in serum,55.00%,74.95%and 4.33%in colon homogenate,80.41%,13.03%and 58.58%in conditioned medium for NF-α,IL-1βand IL-6 respectively.
     4.Immunohistochemistry results indicated a downward trend in expressions of TNF-α, NF-κB p65 and ICAM-1 after treatment with CAI,which were upregulated in UC model mice.
     5.The activity of MPO in colon homogenate prepared from DSS-treated mice was higher than normal control group.CAI was tested to be active in mitigating this disparation by 13.58%.
     6.MDA depression and SOD activation were other 2 activities that can be contributed to CAI,as concluded in this study.In colon homogenate,when compared with PEG400 control group,the MDA level decreased by 19.57%,while SOD activity increased by 29.14%for CAI group.
     7.The conditioned medium of peritoneal macrophage collected from DSS-treated mice was high in NO level.This change was milder in CAI group with a decrease of 24.53%.In consist with its effect on NO level;CAI treatment exerted a negative influence on iNOS expression in peritoneal macrophages.
     8.The degradation of IκBαand elevation of pIκBαinduced by DSS in peritoneal macrophages can be significantly inhibited by CAl.
     9.The levels of MMP-2 and MMP-9 in model mice were relatively higher than normal control.For CAI treatment group,the results shown here suggested a down regulation of MMP-2 by 27.75%and 47.14%in serum and colon homogenate respectively,when compared with PEG400 group.However,no effect of CAI on MMP-9 content was observed so far.
     10.In CAI group,the content of TGF-β1 in colon homogenate was 52.43%lower than PEG400 control group.Results gained from Masson's stain suggested CAI is potent in blocking collagen fiber accumulation.
     Conclusion
     CAI is proven to possess protective action and therapeutic action against UC induced by DSS in mice,and these actions are delivered in a dose dependent manner.CAI can significantly improve the symptoms of diarrhea and hemafecia caused by UC. Necroscopy fidings shows alleviated hyperemia,edema and mucous membrane damages in CAI group.CAI inhibits NF-κB activation,while scavenging active oxygen at colon mucous membrane,thus blocking downstream signal molecules such as TNF-α,IL-1β, IL-6 and ICAM-1 by suppressing their expressions.All these mechanisms collectively protect the colon from inflammation.In addition,CAI is a down regulator of TGF-β1, which is a mediator of collagen fiber accumulation in colon and plays a crucial role in ulcerative colitis fibrosis.In summary,the results we provided herein highlight CAI a promising oral available anti-ulcerative colitis agent with favorable efficacy and safety profile,which is well worth further development.
引文
Akahoshi T, Namai R, Sekiyama N, et al. Rapid induction of neutrophil apoptosis by sulfasalazine: implications of reactive oxygen specises in the apoptotic process [J]. J Leukoc Biol, 1997, 62 (6): 817-826.
    
    Arseneau KO, Pizarro TT, Cominelli F, et al. Discovering the cause of inflammatory bowel disease [J]. Current Opinion in Gastroenterology, 2000; 16: 310-317.
    
    Asleit C. Granulocyte apoptosis and infiatmnatory disease [J]. Br Med Bull, 1997, 53:669-673.
    
    Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights [J]. Annu Rev Immunol, 1996;14:649-683.
    
    Baldwin AS. The transcription factor NF-kB and human disease [J]. J Clin Invest, 2001;107:3-6.
    
    Bauer KS, Figg WD, Hamilton JM, et al. A pharmacokinetically guided Phase II study of carboxyamido-triazole in androgen-independent prostate cancer [J]. Clin Cancer Res. 1999, 5(9):2324-2329.
    
    Bauer KS, Cude KJ, Dixon SC, et al. Carboxyamido-triazole inhibits angiogenesis by blocking the calcium-mediated nitric-oxide synthase-vascular endothelial growth factor pathway[J]. J Pharmacol Exp Ther. 2000 Jan; 292(1):31-7.
    
    Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology [J]. Lancet, 2007,369,1627-1640.
    
    Bamias G, Nyce MR, De La Rue SA, et al. New conception in the pathophysiology of inflammatory bowel disease [J]. Ann Intern Med, 2005,143: 895-904.
    
    Bendjelloul F, Rossmann P, Maly P, et al. Etection of ICAM-1 in experimentally induced colitis of ICAM-1-deficient and wild-type mice: an immunohistochemical study [J]. Histochem J, 2000, 32 (12): 703-709.
    
    Bennett CF, Kornbrust D, Henry S, et al. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulphate sodium-induced colitis in mice [J]. J Pharmacol Exp Ther, 1997; 280: 988-1000.
    
    Bosimenu R, Chen Y, Chou K, et al. Orally administered RDP58 reduces the severity of dextran sodium sulphate induced colitis [J], Ann Rheum Dis, 2002,61 (Suppl II):ii19-ii24.
    Braegger CP, Nichells S, Murch SH, et al.Tunour necrosis factor necrosis alpha in stool as a marker of intestinal inflammation [J]. Lancet, 1992; 339: 89.
    
    Burke JP, Mulsow JJ, O'Keane C, et al. Fibrogenesis in Crohn's disease [J]. Am J Gastroenterol,2007;102:439-448.
    Cooper HS,Murthy SN,Shah RS,et al.Clinicopathologic study ofdextran sulfate sodium experimental murine colitis[J].Lab Invest,1993,69(2):238-249.
    Daig R,Andus T,Aschenbrenner E,et al.Increased interleukin-8 expression in the colon mucosa of patients with inflammatory bowel disease[J].Cut,1996,38:216-220.
    邓长生,夏冰.炎症性肠病[M].北京:人民卫生出版社,1998.124-125.
    Dieleman LA,Ridwan BU,Tennyson GS,et al.Dextran sulphate sodium-induced colitis occurs in severe combined immunodeficient mice[J].Gastroentrology,1994;107:1643-1652.
    Domek MJ,Iwata F,Blackman EI,et al.Anti-neutrophil serum attenuates dextran sulphate sodium-induced colonic damage in the rat[J].Scand J Gastroenterol,1995;30:1089-1094.
    Drucher DJ,Yusta B,Boushey RP,et al.Human[Gly~2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis[J].Am J Physiol,1999;276(1pt1):G79-G91.
    Egger B,Elliott MB,MacDonald TT,et al.Characterisation of acute murine dextran sodium sulphate colitis:cytokine profile and dose dependency[J].Digestion,2000;62:240-248.
    Enfissi A,Prigent S,Colosetti P,et al.The blocking of capacitative calcium entry by 2-aminoethyl diphenylborate(2-APB) and carboxyamidotriazole(CAI) inhibits proliferation in Hep G2 and Huh-7 human hepatoma cells[J].Cell Calcium,2004,36:459-467.
    Felder CC,Ma AL,Liotta LA,and Kohn EC.The antiproliferative and antimetastatic compound L651582 inhibits muscarinic acetylcholine receptorstimulated calcium influx and arachidonic acid release[J].J Pharmacol Exp Ther,1991,257:967-971.
    Forbes E,Murase T,Yang M,et al.Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase[J].J Immunol,2004,172(9):5664-5675.
    Gao Q,Meijer M J,Kubben F J,et al.Expression of matrix metalloproteinases-2 and-9in intestinal tissue of patients with inflammatory bowel diseases[J].Dig Liver Dig,2005,37(8):584-592.
    Gan H,Ouyang Q,Jia D,et al.Activation of nuclear factor-kappa B and its relationship with cytokine gene expression in colonic mucosa of ulcerative colitis patients[J].Zhonghua Neike Zazhi,2002,41:252-255.
    Griffioen AW and Molema G.Angiogenesis:potentials for pharmacologic intervention in the treatment of cancer,cardiovascular diseases,and chronic inflammation[J].Pharmacol Rev,1997,52:237-268.
    Guo L,Ye CY,Chen WY,et al.Anti-inflammatory and analgesic potency of carboxyamidotriazole,a tumorostatic agent[J].J Pharmacol Exp Therap,2008,325:10-16.
    Hahm KB,Im YH,Parks TW et al.Loss of transforming growth factor β singalling in the intestine contributes to tissue injury in inflammatory bowel disease[J].Gut,2001;49:190-198.
    Hanauer SB,Sandborn WJ,Katz S,et al.Etanercept for active Crohn's disease[J].Gastroenterology,2001,120(5):1088-1094.
    Herfarath H,Brand K,Rath HC,et al.Nuclear factor-κB activity and intestinal inflammation in dextran sulphate sodium(DSS)-induced colitis in mice is suppressed by gliotoxin[J].Clin Exp Immunol,2000;120:59-65.
    Hoffmann S,He S,Jin ML,et al.Carboxyamido-triazole modulates retinal pigment epithelial and choroidal endothelial cell attachment,migration,proliferation,and MMP-2secretion of choroidal endothelial cells[J].Curr Eye Res,Feb 2005;30(2):103-13.
    Hussain MM,Kotz H,Minasian L,et al.Phase Ⅱ Trial of Carboxyamidotriazole in Patients With Relapsed Epithelial Ovarian Cancer[J].J.Clin.Oncol.,Dec 2003;21:4356-4363.
    Ina K,Kusugami K,Hosokawa T,et al.Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in inflammatory bowel disease[J].J Gastroenterol Hepatol,1999,14(1):46-50.
    Jacobs W,Mikkelsen T,Smith R,et al.Inhibitory effects of CAI in glioblastoma growth and invasion[J].J Neurooncol.1997 Apr;32(2):93-101.
    江学良,崔慧斐.溃疡性结肠炎[M].中国医药科技出版社.2005.1
    Jones SC,Banks RE,Haider A,et al.Adhesion molecules in inflammatory bowel disease[J].Gut,1995;36:724-730.
    Jobin C,Hellerbrand C,Licato L,et al.Mediation by NF-κB of cytokine induced expression of intercellular adhesion molecule 1(ICAM-1) in an intestinal epithelial cell line,a process blocked by proteasome inhibitors[J].Gut,1998;42:779-787.
    Jurasz P,Sawicki G,Duszyk M,et al.Matrix Metalloproteinase 2 in Tumor Cell-induced Platelet Aggregation:Regulation by Nitric Oxide[J].Cancer Res.,Jan 2001;61:376-382.
    Kanauchi O, Nakamura T, Agata K, et al. Effects of germinated barley foodstuff on dextran sulphate sodium-induced colitis in rats [J]. J Gastroenterol, 1998; 33: 179-188.
    
    Kingsnorth AN. Role of cytokines and their inhibitors in acute pancreatitis [J]. Gut, 1997;40:1-4.
    
    Kitajima S, Takuma S, Morimoto M. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights[J]. Exp Anim, 2000,49 (1): 9-15.
    
    Kohn EC, Alessandro R, Spoonster J, et al. Angiogenesis: role of calcium-mediated signal transduction [J]. Proc Natl Acad Sci USA. 1995, 92:1307-1311.
    
    Krawisz JE, Sharon P, Stenson WF, et al. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models [J]. Gastroenterol, 1984, 87 (6): 1344-1350.
    
    Lambert PA, Somers KD, Kohn EC, et al. Antiproliferative and antiinvasive effects of carboxyamido-triazole on breast cancer cell lines[J]. Surgery. 1997 Aug; 122(2):372-8;discussion 378-9.
    
    Lih-Brody L, Powell SR, Collier KP, et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease [J]. Dig Dis Sci, 1996,41(10): 2078-2080.
    
    Logan MR, Odemuyiwa SO, Moqbel R. Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion [J]. J Allergy Clin Immunol, 2003, 111(5): 923-932.
    
    Lu H, Ouyang W, and Huang C. Inflammation, a key event in cancer development [J]. Mol Cancer Res, 2006,4:221-233.
    
    Luzzi KJ, Varghese HJ, MacDonald IC, et al. Inhibition of angiogenesis in liver metastases by carboxyamidotriazole (CAI): computer assisted analysis [J]. Angiogenesis, 1998,2:373-379.
    
    Lyer S, Kontoyiannis D, Chevrier D, et al. Inhibition of tumor necrosis factor mRNA translation by a rationally designed immunomodulatory peptide [J]. J Biol Chem, 2000,275: 17051-17058.
    
    Machler M, Briatol U, Leiter EH, et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis [J]. Am J Physiol Gastrointest Liver Physiol, 1998, 274 (3 pt 1): 544-551.
    
    Mahida YR, Kurlac L, Gallagher A, et al. High circulating concentrations of interleukin-6 in active Crohn' s disease but not ulcerative colitis [J]. Gut, 1992; 32:1531-1534.
    Massague J, Blain SW, Lo RS. TGF beta signaling in growth control, cancer, and heritable disorders [J]. Cell, 2000, 103: 295-309.
    
    Minami T, Abid MR, Zhang J, et al. Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-delta-NF-kappa B and PKC-zeta-GATA signaling pathway [J]. J Biol Chem, 2003, 278 (9): 6976.
    
    Moriguchi M et al. Therapeutic effects of LK 423, a phthalimido-desmuramyl-dipeptide compound, on dextran sulphate sodium-induced colitis in rodents through restoring their interleukin-10 producing capacity [J]. Arzneimittelforschung,1999; 49:184-192.
    
    Mulder TP, Verspaget HW, Janssens AR, et al. Decrease in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease [J]. Gut, 1991,32(10): 1146-1150.
    
    Neurath MF, Fuss I, Schurmann G, et al. Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease [J]. Ann NY Acad Sci, 1998, 17 (859): 149-159.
    
    Nielsen OH, Gionchetti P, Ainsworth M, et al. Rectal dialysate and fecal concentrations of neutrophil gelatinase-associated lipocalin, interleukin-8, and tumor necrosis factor-alpha in ulcerative colitis [J]. Am J Gastroenterol, 1999,94 (10):2923-2928.
    
    Nielson OH, Vainer B, Madsen SM, et al. Established and emerging biological activity markers of inflammatory bowel disease [J]. Am J Gastroenterol, 2000; 95: 359-367.
    
    Ohkawara T, Nishihira J, Takeda H, et al. Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor anti-body in mice[J]. Gastroenterology, 2002,123 (1): 256-270.
    
    Ohkusa T. Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and changes in intestinal microflora [J]. Nippon Shokakibyo Gakkai Zasshi, 1985, 82(5): 1327-1336.
    
    Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experiment acute and chronic ulcerative colitis in mice [J]. Gastroenterol, 1990, 98 (3): 694-702.
    
    Palanki MS. Inhibitor of AP-1 and NF-kappa B mediated transcriptional activation: therapeutic potential in autoimmune diseases and structural diversity [J]. Curr Med Chem, 2002,9 (2): 219-227.
    
    Perabo FG, Wirger A, Kamp S, et al. Carboxyamido-triazole (CAI), a signal transduction inhibitor induces growth inhibition and apoptosis in bladder cancer cells by modulation of Bcl-2 [J]. Anticancer Res, 2004, 24:2869-2877.
    
    Regan MC, Flavin BM, Fitzpatrick JM, et al. Stricture formation in Crohn's disease: the role of intestinal fibroblasts [J]. Ann Surg, 2000, 231: 46-50.
    
    Rembacken BJ, Snelling AM, Hawkey PM, et al. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomized trial [J]. Lancet, 1999, 354 (9179): 635-639.
    
    Pender SL, MacDonald TT. Matrix metalloproteinases and the gut-new roles for old enzymes [J]. Curr Opin Pharmacol, 2004,4 (6): 546-550.
    
    Reynold PD, Middleton SJ, Hansford GM, et al. Nirtric oxide in ulcerative colitis [J]. Lancet, 1995; 345-448.
    
    Schlottmann K, Wachs FP, Grossmann J, et al. Interferon gamma downregulates IL-8 production in primary human colonic epithelial cells without induction of apoptosis [J]. Int J Colorectal Dis, 2004,19: 421-429.
    
    Shimizu T, Suzuki M, Fujimura J, et al. The relationship between the concentration of dextran sodium sulfate and the degree of induced experimental colitis in weanling rats [J]. J Pediatr Gastroenterol Nutr, 2003, 37 (4): 481-486.
    
    Shingo K, Ryota H, Koji M, et al. Amelioration of murine experimental colitis by inhibition of mucosal addressin cell adhesion molecule-1 [J]. J Pharmacol Exp Therap, 2000,295:183-189.
    
    Silvia M, Agneta K, Erik M. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation [J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288: G1328-G1338.
    
    Simon HU. Neutrophil apoptosis pathways and their modifications in inflammation [J]. Immunol Rev, 2003,193 (1): 101.
    
    Swidsinsk A, Ladhoff A, Pernthaler A, et al. Mucosal in inflammatory bowel disease [J]. Gastroenterology, 2002,122: 44-45.
    
    Tamanini A, Rolfini R, Nicolis E, et al. MAP kinases and NF-kappa B Collaborate to induce ICAM-1 gene expression in the early phase of adenovirus infection [J], Virology, 2003, 307 (2): 228.
    
    Taniguchi T, Tsukada H, Nadamura H, et al. Effects of the anti-ICAM-1 monoclonal antibody on dextran sodium sulphate-induced colitis in rats [J]. J Gastroenterol-Hepatol, 1998; 13:945.
    
    Targen SR, Hanauer SB, van Decenter SJ, et al. A short-time study of chimeric monoclonal antibody cA_2 to tumor necrosis factor alpha pf Crohn's disease [J]. Crohn's disease cA_2 study group.N Engl Med,1997,337:1029-1035.
    Theiss AL,Fruchtman S,Lund PK.Growth factors in inflammatory bowel disease:the actions and interactions of growth hormone and insulin-like growth factor-Ⅰ[J].Inflamm Bowel Dis 2004;10:871-880.
    Tompkins RG.The role of proinflammatory cytokines in inflammatory and metabolic responses[J].Ann Surg,1997;225:243-245
    Van Dyke TE,Serhan CN.Resolution of inflammation:a new paradigm for the pathogenesis of periodontal diseases[J].J Dent Res,2003,82(2):82-90.
    Vowinkel T,Kalogeris TJ,Mori M,et al.Impact of dextran sulfate sodium load on the severity of inflammation in experimental colitis[J].Dig Dis Sci,2004,49(4):556-564.
    Wahl C,Liptay S,Adler G,et al.Sulfasalazine:a potent and specific inhibitor of nuclear factor kappa B[J].J Clin Invest,1998,101(5):1163-1174.
    Wang L,Walia B,Evans J,et al.IL-6 induces NF-kappa B activation in the intestinal epithelia[J].Immunol,2003,171:3194-3201.
    Weber CK,Liptay S,Wirth T,et al.Suppression of NF-kappa B activity by sulfasalazine in mediated by direct inhibition of Ikappa B kinases alpha and beta[J].Gastroenterol,2000,119(5):1209-1210.
    Wong PY,Yue G,Yin K,et al.Antibodies to intercellular adhesion molecule-1ameliorate the inflammatory response in acetic acid-induced inflammatory bowel disease [J].J Pharmacol Exp Ther,1995;274:475-480.
    Woywodt A,Ludwig D,Neustock P,et al.Mucosal cytokine expression cellular markers and adhesion molecules in inflammatory bowel disease[J].Eur J Gastroenterol Hepatol,1999,11:267-276.
    Wu Y,Palad AJ,Wasilenko W J,et al.Inhibition of head and neck squamous cell carcinoma growth and invasion by the calcium influx inhibitor carboxyamido-triazole[J].Clin Cancer Res.1997 Nov;3(11):1915-21.
    Yasui H,Butseher W,Cohen M,et al.Selective inhibition of mitogen-induced transactivation of the HIV Long Terminal Repeat by carboxyamidotriazole[J].J Biol Chem,1997,272:28762-28770.
    郑家驹等.炎症性肠病基础与临床[M].第1版北京:科学出版社,2001:211
    Andoh A, Zhang Z, Inatomi O, et al. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology 2005; 129: 969-984.
    
    Ashwood P, Harvey R, Verjee T, et al. Functional interactions between mucosal IL-1, IL-ra and TGF-beta 1 in ulcerative colitis. Inflamm Res 2004; 53: 53-59.
    
    Atreya R, Mudter J, Finotto S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med 2000; 6: 583-588.
    
    Baert FJ, Rutgeerts PR. Anti-TNF strategies in Crohn's disease: mechanisms, clinical effects, indications. Int J Colorectal Dis 1999; 14: 47-51.
    
    Bamias G, Martin C 3rd, Marini M, et al. Expression, localization, and functional activity of TL1 A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol 2003; 171: 4868-4874.
    
    Baumann H, Gauldie J. The acute phase response. Immunol Today 1994; 15: 74-80.
    
    Begue B, Wajant H, Bambou JC, et al. Implication of TNF-related apoptosisinducing ligand in inflammatory intestinal epithelial lesions. Gastroenterology 2006; 130: 1962-1974.
    
    Boirivant M, Pallone F, Di Giacinto C, et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta 1-mediated suppression of colitis. Gastroenterology 2006; 131: 1786-1798.
    
    Carey R, Jurickova I, Ballard E, et al. Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflamm Bowel Dis 2008; 14: 446-457.
    
    Caruso R, Fina D, Peluso I, et al. A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3alpha, by gut epithelial cells. Gastroenterology 2007; 132: 166-175.
    
    Chen Z, Laurence A, O'Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol 2007; 19: 400-408.
    
    Cho ML, Kang JW, Moon YM, et al. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 2006; 176: 5652-5661.
    
    Corbaz A, ten Hove T, Herren S, et al. IL-18-binding protein expression by endothelial cells and macrophages is up-regulated during active Crohn's disease. J Immunol 2002; 168:3608-3616.
    Creed T J,Probert CS,Norman MN,et al.Basiliximab for the treatment of steroid-resistant ulcerative colitis:further experience in moderate and severe disease.Aliment Pharmacol Ther 2006;23:1435-1442.
    de Rham C,Ferrari-Lacraz S,Jendly S,et al.The proinflammatory cytokines IL-2,IL-15and IL-21 modulate the repertoire of mature human natural killer cell receptors.Arthritis Res Ther 2007;9:R125.
    Del Zotto B,Mumolo G,Pronio AM,et al.TGF-betal production in inflammatory bowel disease:differing production patterns in Crohn's disease and ulcerative colitis.Clin Exp Immunol 2003;134:120-126.
    Dinarello CA.The IL-1 family and inflammatory diseases.Clin Exp Rheumatol 2002;20:S1-S13.
    Dionne S,D'Agata ID,Hiscott J,et al.Colonic explant production of IL-1 and its receptor antagonist is imbalanced in inflammatory bowel disease(IBD).Clin Exp Immunol 1998;112:435-442.
    Dumoutier L,Louahed J,Renauld JC.Cloning and characterization of IL-10-related T cell-derived inducible factor(IL-TIF),a novel cytokine structurally related to IL-10and inducible by IL-9.J Immunol 2000;164:1814-1819.
    Fantini MC,Monteleone G,Macdonald TT.New players in the cytokine orchestra of inflammatory bowel disease.Inflamm Bowel Dis 2007;13:1419-1423.
    Fichtner-Feigl S,Fuss I J,Young CA,et al.Induction of IL-13 triggers TGF-betal-dependent tissue fibrosis in chronic 2,4,6-trinitrobenzene sulfonic acid colitis.J Immunol 2007;178:5859-5870.
    Fichtner-Feigl S,Strober W,Kawakami K,et al.IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-betal production and fibrosis.Nat Med 2006;12:99-106.
    Fina D,Caruso R,Pallone F,et al.Interleukin-21(IL-21) controls inflammatory pathways in the gut.Endocr Metab Immune Disord Drug Targets 2007;7:288-291.Fujino S,Andoh A,Bamba S,et al.Increased expression of interleukin 17 in inflammatory bowel disease.Gut 2003;52:65-70.
    Fuss IJ,Heller F,Boirivant M,et al.Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis.J Clin Invest 2004;113:1490-1497.
    Griga T, Hebler U, Voigt E, et al. Interleukin-4 inhibits the increased production of vascular endothelial growth factor by peripheral blood mononuclear cells in patients with inflammatory bowel disease. Hepatogastroenterology 2000; 47: 1604-1607.
    
    Goetz M, Atreya R, Ghalibafian M, et al. Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm Bowel Dis 2007; 13: 1365-1368.
    
    Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005; 129: 550-564.
    
    Herrlinger KR, Witthoeft T, Raedler A, et al. Randomized, double blind controlled trial of subcutaneous recombinant human interleukin-11 versus prednisolone in active Crohn's disease. Am J Gastroenterol 2006; 101: 793-797.
    
    Hommes DW, Mikhajlova TL, Stoinov S, et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut 2006; 55: 1131-1137.
    
    Iijima H, Takahashi I, Kishi D, et al. Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chaindeficient mice. J Exp Med 1999; 190: 607-615.
    
    Ince MN, Elliott DE. Immunologic and molecular mechanisms in inflammatory bowel disease. Surg Clin North Am 2007; 87: 681-696.
    
    Ito H, Takazoe M, Fukuda Y, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology 2004; 126: 989-996; discussion 947.
    
    Jump RL, Levine AD. Mechanisms of natural tolerance in the intestine: implications for inflammatory bowel disease. Inflamm Bowel Dis 2004; 10: 462-478.
    
    Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. Biochim Biophys Acta 2002; 1592: 323-343.
    
    Kanai T, Watanabe M, Okazawa A, et al. Macrophagederived IL-18-mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenterology 2001; 121:875-888.
    
    Kanazawa S, Tsunoda T, Onuma E, et al. VEGF, basic-FGF, and TGF-beta in Crohn' s disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation. Am J Gastroenterol 2001; 96: 822-828.
    
    Kugathasan S, Saubermann LJ, Smith L, et al. Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease. Gut 2007; 56: 1696-1705.
    Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263-274.
    
    Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201: 233-240.
    
    Latinne D, Fiasse R. New insights into the cellular immunology of the intestine in relation to the pathophysiology of inflammatory bowel diseases. Acta Gastroenterol Belg 2006; 69: 393-405.
    
    Lawrence IC, Maxwell L, Doe W. Inflammation location, but not type, determines the increase in TGF-betal and IGF-1 expression and collagen deposition in IBD intestine. Inflamm Bowel Dis 2001; 7: 16-26.
    
    Leach ST, Messina I, Lemberg DA, et al. Local and systemic interleukin-18 and interleukin-18-binding protein in children with inflammatory bowel disease. Inflamm Bowel Dis 2008; 14: 68-74.
    
    Lebel-Binay S, Berger A, Zinzindohoue F, et al. Interleukin-18: biological properties and clinical implications. Eur Cytokine Netw 2000; 11: 15-26.
    
    Leon F, Smythies LE, Smith PD, Kelsall BL. Involvement of dendritic cells in the pathogenesis of inflammatory bowel disease. Adv Exp Med Biol 2006; 579: 117-132.
    
    Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271-2279.
    
    Maerten P, Shen C, Colpaert S, et al. Involvement of interleukin 18 in Crohn's disease: evidence from in vitro analysis of human gut inflammatory cells and from experimental colitis models. Clin Exp Immunol 2004; 135: 310-317.
    
    Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441: 231-234.
    
    Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med 2004; 351: 2069-2079.
    
    Marek A, Brodzicki J, Liberek A, et al. TGF-beta (transforming growth factor-beta) in chronic inflammatory conditions - a new diagnostic and prognostic marker? Med Sci Monit 2002; 8: RA145-RA151.
    
    McAIindon ME, Hawkey CJ, Mahida YR. Expression of interleukin 1 beta and interleukin 1 beta converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut 1998; 42: 214-219.
    
    Melgar S, Yeung MM, Bas A, et al. Overexpression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis.Clin Exp Immunol 2003;134:127-137.
    Mieallef M J,Tanimoto T,Kohno K,et al.Interleukin 18 induces a synergistic enhancement of interferon gamma production in mixed murine spleen celltumor cell cultures:role of endogenous interleukin 12.Cancer Detect Prey 2000;24:234-243.
    Mitsuyama K,Toyonaga A,Sasaki E,et al.Soluble interleukin-6 receptors in inflammatory bowel disease:relation to circulating interleukin-6.Gut 1995;36:45 -49.
    Mizoguehi A,Bhan AK.A case for regulatory B cells.J Immunol 2006;176:705-710.
    Mizoguehi A,Mizoguehi E,Bhan AK.The critical role of interleukin 4 but not interferon gamma in the pathogenesis of colitis in T-cell receptor alpha mutant mice.Gastroenterology 1999;116:320-326.
    Mizoguchi A,Mizoguchi E,Takedatsu H,et al.Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation.Immunity 2002;16:219-230.
    Mizoguchi E,Hachiya Y,Kawada M,et al.TNF receptor type I-dependent activation of innate responses to reduce intestinal damage-associated mortality.Gastroenterology 2008;134:470-480.
    Monteleone G,Fina D,Caruso R,Pallone F.New mediators of immunity and inflammation in inflammatory bowel disease.Curr Opin Gastroenterol 2006;22:361-364.
    Monteleone G,Kumberova A,Croft NM,et al.Blocking Smad7 restores TGFbetal signaling in chronic inflammatory bowel disease.J Clin Invest 2001;108:601-609.
    Monteleone G,Monteleone I,Finn D,et al.Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease.Gastroenterology 2005;128:687-694.
    Moseley TA,Haudenschild DR,Rose L,et ai.Interleukin-17 family and IL-17receptors.Cytokine Growth Factor Rev 2003;14:155-174.
    Mudter J,Neurath MF.Apoptosis of T cells and the control of inflammatory bowel disease:therapeutic implications.Gut 2007;56:293-303.
    Neuman MG.Immune dysfunction in inflammatory bowel disease.Transl Res 2007;149:173-186.
    Nielsen OH,Kirman I,Rudiger N,et al.Upregulation of interleukin- 12 and - 17 in active inflammatory bowel disease.Scand J Gastroenterol 2003;38:180-185.
    Okamura H, Kashiwamura S, Tsutsui H, et al. Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol 1998; 10: 259-264.
    
    Okazawa A, Kanai T, Nakamaru K, et al. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin Exp Immunol 2004; 136:269-276.
    
    Pages F, Lazar V, Berger A, et al. Analysis of interleukin-18, interleukin-1 converting enzyme (ICE) and interleukin-18-Sanchez-Munoz F et al. Cytokines in IBD 4285 www.wjgnet.com related cytokines in Crohn's disease lesions. Eur Cytokine Netw 2001; 12: 97-104.
    
    Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 2000; 51: 289-298.
    
    Paradowska A, Masliniski W, Grzybowska-Kowalczyk A, et al. The function of interleukin 17 in the pathogenesis of rheumatoid arthritis. Arch Immunol Ther Exp (Warsz) 2007; 55: 329-334.
    
    Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133-1141.
    
    Pizarro TT, Michie MH, Bentz M, et al. IL-18, a novel immunoregulatory cytokine, is upregulated in Crohn's disease: expression and localization in intestinal mucosal cells. J Immunol 1999; 162: 6829-6835.
    
    Reimund JM, Wittersheim C, Dumont S, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn's disease. J Clin Immunol 1996; 16: 144-150.
    
    Reinisch W, Gasche C, Tillinger W, et al. Clinical relevance of serum interleukin-6 in Crohn's disease: single point measurements, therapy monitoring, and prediction of clinical relapse. Am J Gastroenterol 1999; 94: 2156-2164.
    
    Rennick DM, Fort MM. Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10(-/-) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2000; 278: G829-G833.
    
    Rogler G, Andus T. Cytokines in inflammatory bowel disease. World J Surg 1998; 22:382-389.
    
    Ruddy MJ, Wong GC, Liu XK, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem 2004; 279: 2559-2567.
    Schmechel S, Konrad A, Diegelmann J, et al. Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflamm Bowel Dis 2008; 14: 204-212.
    
    Schmidt C, Giese T, Goebel R, et al.Interleukin-18 is increased only in a minority of patients with active Crohn's disease. Int J Colorectal Dis 2007; 22: 1013-1020.
    
    Schmidt C, Giese T, Ludwig B, et al. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin- 27p28 in Crohn's disease but not in ulcerative colitis. Inflamm Bowel Dis 2005; 11: 16-23.
    
    Schreiber S, Heinig T, Thiele HG, et al. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 1995; 108: 1434-1444.
    
    Spoettl T, Hausmann M, Klebl F, et al. Serum soluble TNF receptor I and II levels correlate with disease activity in IBD patients. Inflamm Bowel Dis 2007; 13: 727-732.
    
    St rober W, James SP. The immunologi c bas i s of inflammatory bowel disease. J Clin Immunol 1986; 6: 415-432.
    
    Stucchi A, Reed K, O'Brien M, et al. A new transcription factor that regulates TNF-alpha gene expression, LITAF, is increased in intestinal tissues from patients with CD and UC. Inflamm Bowel Dis 2006; 12: 581-587.
    
    Sugimoto K, Ogawa A, Mizoguchi E, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008; 118: 534-544.
    
    Suzuki A, Hanada T, Mitsuyama K, et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 2001; 193: 471-481.
    
    Trinchieri G Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133-146.
    
    Van Kemseke C, Belaiche J, Louis E. Frequently relapsing Crohn's disease is characterized by persistent elevation in interleukin-6 and soluble interleukin-2 receptor serum levels during remission. Int J Colorectal Dis 2000; 15: 206-210.
    
    Watford WT, Hissong BD, Bream JH, et al. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 2004; 202: 139-156.
    
    Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev 2007; 59: 1073-1083.
    
    Witowski J, Ksiazek K, Jorres A. Interleukin-17: a mediator of inflammatory responses. Cell Mol Life Sci 2004;61:567-579.
    Xavier R J,Podolsky DK.Unravelling the pathogenesis of inflammatory bowel disease.Nature 2007;448:427-434.
    Xie MH,Aggarwal S,Ho WH,et al.Interleukin(IL)-22,a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R.J Biol Chem 2000;275:31335-31339.
    Xu L,Kitani A,Fuss I,et al.Cutting edge:regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta.J Immunol 2007;178:6725-6729.
    Yamamoto-Furusho JK.Innovative therapeutics for inflammatory bowel disease.World J Gastroenterol 2007;13:1893-1896.
    Yamamoto M,Yoshizaki K,Kishimoto T,et al.IL-6 is required for the development of Thl cell-mediated murine colitis.J Immunol 2000;164:4878-4882
    Yen D,Cheung J,Scheerens H,et al.IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6.J Clin Invest 2006;116:1310-1316.
    Zhang Z,Hinrichs D J,Lu H,et al.After interleukin-12p40,are interleukin-23 and interleukin-17 the next therapeutic targets for inflammatory bowel disease? Int Immunopharmacol2007;7:409-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700