四氢嘧啶类化合物ZL-5010抗炎免疫药理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     以丁炔二酸二乙酯、环己胺及甲醛为原料,合成四氢嘧啶类化合物ZL-5010,探讨其抗炎免疫药理活性。
     方法:
     以丁炔二酸二乙酯、环己胺及甲醛为原料,醋酸为催化剂,在乙醇溶剂中经氨基化作用、Mannich反应、亲核加成反应和脱氢环化反应等一步法合成多取代四氢嘧啶类化合物ZL-5010(1,3-二环己基-1,2,3,6-四氢嘧啶-4,5-二甲酸二乙酯),经制备型硅胶薄层色谱分离纯化。MTT法检测正常小鼠脾细胞的代谢活力;ELISA法检测肿瘤坏死因子α(TNF-α)、白细胞介素1(IL-1 beta)的含量。采用角叉菜胶诱导的大鼠足趾肿胀模型及二甲苯诱导的小鼠耳廓肿胀模型评价化合物ZL-5010对急性炎症的抑制作用。采用醋酸诱导的小鼠扭体实验和小鼠热水浴甩尾模型观察其镇痛活性。
     结果:
     合成的四氢嘧啶类化合物ZL-5010为无色透明油状物质,化学式为:1,3-二环己基-1,2,3,6-四氢嘧啶-4,5-二甲酸二乙酯,产率为82.7%,其结构通过'H-NMR和MS得到确证,与文献报道相符。化合物ZL-5010在20、10、5μg/ml浓度下均能抑制正常小鼠脾细胞的代谢活力,平均抑制率分别为64.5%、52.1%、18.9%,与空白对照组比较有统计学差异(P=0.000, P=0.000, P=0.036), IC50为11.95μg/ml;化合物ZL-5010 (25,12.5,6.25μg/ml)均能显著抑制正常小鼠脾细胞分泌细胞因子TNF-a,与对照组比较有统计学差异(P值均为0.000);化合物ZL-5010在25、12.5、6.25μg/ml下均能显著抑制LPS刺激的小鼠脾细胞分泌细胞因子IL-1beta,与细菌脂多糖(LPS)组比较有统计学差异(P=0.000,P=0.000,P=0.001);且有一定的浓度依赖趋势。化合物ZL-5010中、高剂量(100、200 mg/kg.b.w)均能明显抑制二甲苯诱导的小鼠耳廓肿胀,平均耳廓肿胀抑制率分别为42.0%、50.4%,与溶媒对照组比较有显著差异(P=0.000,P=0.000)。化合物ZL-5010高、中(200,100mg/kg)剂量组及Aspirin (200mg/kg)组大鼠平均足趾肿胀度分别为0.044ml、0.069ml、0.090ml,均低于溶媒对照组大鼠足趾肿胀度,与溶媒对照组比较有统计学意义(P=0.000,P=0.002,P=0.009);化合物ZL-5010低剂量组大鼠平均足趾肿胀度为0.119,低于溶媒对照组,但与溶媒对照组比较无统计学差异(P=0.071);化合物ZL-5010高剂量(200mg/kg)组在给药后3h时对大鼠足趾肿胀度的抑制率最大,最大平均抑制率为93.2%,化合物ZL-5010中剂量(100mg/kg)组在给药后3h时对大鼠足趾肿胀度抑制率最大,平均抑制率为75.0%,阿司匹林(200mg/kg)组在给药后5h时对大鼠足趾肿胀度抑制率最大,平均抑制率为64.5%。化合物ZL-5010在100、200mg/kg.b.w剂量下和阿司匹林在200 mg/kg.b.w剂量下能均可显著减少正常小鼠扭体反应次数,平均扭体反应抑制率分别为46.3%、53.5%、33.5%,与空白对照组比较有显著性差异(P=0.000,P=0.000,P=0.004)。
     结论:
     1.以丁炔二酸二乙酯、环己胺及甲醛为原料,经氨基化作用、Mannich反应、亲核加成反应和脱氢环化反应等多组分反应法合成了四氢嘧啶类化合物ZL-5010(1,3-二环己基-1,2,3,6-四氢嘧啶-4,5-二甲酸二乙酯),方法具有操作简单,原料易得,反应条件温和,反应收率高等优点。
     2.反应粗产物经制备型硅胶薄层色谱板,以正己烷、乙酸乙酯(V/V为8:1)为展开剂分离纯化,方法操作简单、易行。
     3.化合物ZL-5010对正常小鼠脾细胞代谢有抑制作用,可以显著抑制正常小鼠脾细胞的代谢活力及细胞因子TNF-α的分泌,并且能够抑制LPS刺激的小鼠脾细胞分泌细胞因子IL-1beta。
     4.化合物ZL-5010可以显著减少醋酸所致小鼠扭体次数,提示其具有一定的镇痛活性。
     5.化合物ZL-5010可以抑制角叉菜胶诱导的大鼠足趾肿胀度及二甲苯所致的正常小鼠耳廓肿胀,提示其具有良好的抗炎作用。
     6.初步证明化合物ZL-5010具有良好的抗炎镇痛活性,有待进一步开发。
Objective:
     It was aimed to synthesize the tetrahydropyrimidine derivative ZL-5010 with diethyl but-2-ynedioate, cyclohexanamine and formaldehyde as starting materials and to explore anti-inflammatory and immunopharmacological activities of the compound.
     Methods:
     ZL-5010 (diethyl1,3- dicyclohexyl- 1,2,3,6- tetrahydropyrimidine-4,5-dicarboxylate) was synthesized from diethyl but-2-ynedioate, cyclohexanamine and formaldehyde through a domino process of one-pot multicomponent reaction, followed by hydroamination, Mannich-type reaction, nucleophilic addition, and dehydration-cyclization. This reaction was catalyzed by acetic acid in the solvent of ethanol. ZL-5010 was separated and purified by preparative thin-layer chromatography(PTLC). The metabolic activities of normal muose splenocytes cells were determined by methylthiazolyl tetrazolium(MTT) colorimetry assay. The amounts of tumor necrosis factorα(TNF-α) and interleukin 1 (IL-1 beta) were measured with ELISA assay. Anti-inflammatory activity was estimated with two acute inflammation models, including carrageenan-induced rat-paw edema and dimethylbenzene-induced ear edema in mice. Acetic acid-induced abdominal-writhing response in mice and hot water mouse tail-flick response were used to evaluate its analgesic activity.
     Results:
     ZL-5010 (diethyl 1,3-dicyclohexyl-1,2,3,6-tetrahydropyrimidine -4,5-dicarboxylate) appeared to be a colourless oil substance with a yield about 82.7%. The chemical structure of ZL-5010 was characterized by 1H-NMR and MS, which was in accord with the literature data. ZL-5010 (20,10,5μg/ml) inhibited the metabolic activity of normal mouse splenocytes, and their average inhibitive rates were 64.5%,52.1% and 18.9%, respectively, with statistically significant differences(P=0.000, P=0.000, P-0.036) as compared with control group. The half maximal inhibitory concentration (IC50) was about 11.95μg/ml. ZL-5010 (25,12.5, 6.25μg/ml) significantly decreased the production of TNF-a (P=0.000, P=0.000, P=0.000) in normal mouse splenocytes in vitro, compared with control group, and inhibited the secretion of IL-1 beta in mouse splenocytes induced by lipopolysaccharide (LPS) (P=0.000, P=0.000, P=0.001, vs LPS group). Effects of ZL-5010 on the production of IL-1 beta and TNF-a in mouse splenocytes were dose-dependent within a certain concentration range. Compared with control group, ZL-5010(100,200mg/kg.b.w)significantly reduced the dimethylbenzen-induced ear edema in normal mice(P=0.000, P=0.000), and their average inhibitive rates were 42.0% and 50.4%, respectively. ZL-5010 (100,200mg/kg) and aspirin group could significantly reduce the paw edema induced by carrageenan in rats (P=0.000, P=0.002, P=0.009 vs control group), and their average paw edema were 0.044ml、0.069ml、0.090ml, respectively. The average paw edema of ZL-5010 (50mg/kg) group was a little lower than that of control group, but there was not significance between them (P=0.071). ZL-5010 (200, 100mg/kg) reached the maximum inhibition at 3 hours after rats were administered ZL-5010, and aspirin group reached the maximum inhibition at 5 hours, their maximum inhibition rates were 75.0%,93.2% and 64.5%, respectively. ZL-5010(100,200/kg.b.w) and aspirin group significantly reduced the frequency of writhing induced by acetic acid in normal mice (P=0.000, P=0.000, P=0.001, vs control group), and their average rates of inhibition were 46.3%,53.5% and 33.5%, respectively.
     Conclusions:
     1.ZL-5010(diethyl 1,3-dicyclohexyl-1,2,3,6-tetrahydropyrimidine -4,5-dicarboxylate) was successfully synthesized from diethyl but-2-ynedioate, cyclohexanamine and formaldehyde through a domino process of one-pot multicomponent reaction, followed by hydroamination, Mannich-type reaction, nucleophilic addition, and dehydration-cyclization, which is a simple and feasible method with excellent yields.
     2. ZL-5010 was purified by preparative thin-layer chromatography with N-hexane and acetoacetate (v/v=8/1) as developing solvent. The method is simple and easy to carry out.
     3. ZL-5010 can significantly inhibit metabolic activity and production of TNF-a in normal mouse splenocytes, and can inhibit the secretion of IL-1 beta in mouse splenocytes induced by LPS.
     4. ZL-5010 can reduce the frequency of writhing induced by acetic acid in normal mice, suggesting analgesic capacity.
     5. ZL-5010 can decrease the paw edema induced by carrageenan in rats and the dimethylbenzene-niduced ear edema in normal mice, implying good anti-inflammatory activity.
     6. The preliminarily experimental results demonstrate that ZL-5010 has good anti-inflammatory and analgesic activities.
引文
[1]Aviva L, Edna B.A, Miriam E. Tetrahydropyrimidine derivatives inhibit binding of a Tat-like, arginine-containing peptide, to HIV TAR RNA in vitro [J]. FEBS Letters,1995,367(1):33-38.
    [2]Ensinger H.A, Mendla K.D, Speck G, et al. Wal 2014FU:Affinity for Muscarinic Receptors from RAT Tissue and for human muscarinic receptors expressd in CHO cells and functional efficacy in vitro [J]. Life Sciences,1997, 60(13/14):1163-1207.
    [3]Jung M.H, Park J.G, Park W.K. Synthesis of 5-(4-Alkylsulfanyl-[1,2,5]Thiadiazol-3-yl)-3-Methyl-1,2,3,4-Tetrahydropyrimidine Oxalate Salts and their Evaluation as Muscarinic Receptor agonists [J]. Arch. Pharm. Pharm, 2003,336(4-5):230-235.
    [4]William S. Messer Jr W.S, Rajeswaran W.G, et al. Design and development of selective muscarinic agonists for the treatment of Alzheimer's disease: characterization of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M receptors [J]. Pharm Acta Helv,2000,74(2-3):135-140.
    [5]Chikhale R.V, Bhole R. P, Khedekar P. B, et al. Synthesis and pharmacological investigation of 3-(substituted l-phenylethanone)-4-(substituted phenyl)-1,2, 3,4-tetrahydropyrimidine-5-carboxylates [J]. Eur J Med Chem,2009,44(9): 3645-3653.
    [6]Sara C, Andrea S, Angelo R, et al.6-Amino-4-oxo-1,3-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonyl derivatives as a new class of potent inhibitors of Interleukin-8-induced neutrophil chemotaxis [J]. Bioorg Med Chem,2009,17(10):3580-3587.
    [7]Mahmoud M.B, Amany S.M, Mogeda E.H, et al. Synthesis of New-4-Oxo-2-Thioxo-1,2,3,4-Tetrahydropyrimidine Derivatives with an Incorporated Thiazolidinone Moiety and Testing Their Possible Serine Protease and Cercarial Elastase Inhibitory Effects with a Possible Prospective to Block Penetration of Schistosoma mansoni Cercariae into the Mice Skin[J]. Arch Pharm Res,2005,28(9):1002-1012.
    [8]Vitolinya R.O, Kimenis A.A. Effect of tetrahydropyrimidine derivatives on the cardiovascular system [J]. Translated from Khimiko-farmatsevtieheskii Zhurnal,1989,23(3):285-287.
    [9]Vijay V, Raghuvir R.S. P, Dinesh M, et al. Synthesis, screening for antitubercular activity and 3D-QSAR studies of substituted N-phenyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxamides [J]. Eur J Med Chem,2008,43 (10):2103-2115.
    [10]Vane JR. Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-Like Drugs [J]. Nat New Biol,1971,231(25):232-235.
    [11]Smith JB. Willis AL. Aspirin Selectively Inhibits Prostaglandin Production in Human Platelets [J]. Nat New Biol,1971,231(25):235-237.
    [12]Chandrasekharan NV, Simmons DL. The cyclooxygenases [J]. Genome Biol, 2004,5(9):241-247.
    [13]Patrignani P, Tacconelli S, Sciulli MG, et al.New insights into COX2 biology and inhibition [J]. Brain Res Brain Res Rev,2005,48(2):352-359.
    [14]Picot D, Loll PJ; Garaavito RM. The X-ray Crystal Structure of the Membrane Protein Prostaglandin H2 synthase-1 [J]. Nature,1994,367(6460):215-216.
    [15]O'Connor JP, Lysz T. Celecoxib, NSAIDs and the skeleton [J]. Drugs Today, 2008,44(9):693-709.
    [16]Walmesley AJ, Zweiri J, Christmas SE, et al. Rofecoxib has different effects on chemokine production in colorectal cancer cells and tumor immune splenocytes [J]. J Immunother,2007,30(6):614-23.
    [17]Frampton JE, Keating GM. Celecoxib:a review of its use in the management of arthritis and acute pain [J]. Drugs,2007,67(16):2433-72.
    [18]Fujimura T, Ohta T, Oyama K, et al. Cyclooxygenase-2 (COX-2) in Carcinogenesis and Selective COX-2 Inhibitors for Chemoprevention in Gastrointestinal Cancers [J]. J Gastrointest Cancer,2007,38(2-4):78-82.
    [19]Daniels S, Gitton X, Zhou W, et al. Efficacy and tolerability of lumiracoxib 200 mg once daily for treatment of primary dysmenorrhea:results from two randomized controlled trials [J]. J Womens Health (Larchmt),2008, 17(3):423-437.
    [20]Nivsarkar M, Banerjee A, Padh H. Cyclooxygenase inhibitors:a novel direction for Alzheimer's management [J]. Pharmacol Rep,2008,60(5):692-698
    [21]Dajani EZ, Islam K. Cardiovascular and gastrointestinal toxicity of selective cyclo-oxygenase-2 inhibitors in man [J]. J Physiol Pharmacol,2008,59 (Suppl 2):117-133
    [22]Chegaev K, Lazzarato L, Tosco P, et al. NO-Donor COX-2 Inhibitors. New Nitrooxy Substituted 1,5-Diarylimidazoles Endowed with COX-2 Inhibitory and Vasodilator Properties [J]. J Med Chem,2007,50(7):1449-157.
    [23]Dannhardt G, Kiefer W. Cyclooxygenase Inhibitors:Current Status and Future Prospects [J]. Eur J Med Chem,2001,36 (2):109-126.
    [24]Falcao EP, de Melo SJ, Srivastava RM. Synthesis and Anti-inflammatory Activity of 4-Amino-2-aryl-5-cyano-6-{3- and 4-(N-phthalimidophenyl)} pyrimidines [J]. Eur J Med Chem,2006,41(2):276-282.
    [25]Zhu QH, Jiang HF, Li JH, et al. Practical synthesis and mechanistic study of polysubstituted tetrahydropyrimidines with use of domino multicomponent reactions [J]. Tetrahedron,2009,65(23):4604-4613.
    [26]Zhang M, Jiang HF, Liu HL, et al. Convenient one-pot synthesis of multisubstituted tetrahydropyrimidines via catalyst-free multicomponent [J]. Organic Letters,2007,9 (21):4111-4113.
    [27]程德军,梁冰,董海英等.两次制备薄层色谱分离纯化杜仲叶中的绿原酸[J].西南民族大学学报(自然科学版),2007,33(3):542-545.
    [28]刘元瑞,葛海生,赵康虎等.制备薄层色谱联合FTIR检测中药制剂中添加化学药品方法的研究[J].中国要学杂志,2009,44(24):1924-1927.
    [29]何焕基,关婕.制备薄层色谱上样技术的改进[J].中国公共卫生,2000,16(10):63-64.
    [30]薛娜,陈也伟,吕秀阳等.一步合成1,3,4-三芳基取代3,4,5,6-四氢嘧啶-2(1H)-酮衍生物[J].有机化学,2008,28(2):325-329.
    [31]靳通收,赵莹,刘利宾等.研磨法合成1,2,3,6-四氢嘧-2-酮衍生物[J].有机化学,2006,26(7):975-978.
    [32]陈维一,陆军.高氯酸镁催化合成1,2,3,4-四氢嘧啶-2-酮[J].有机化学,2004,24(9):1111-1113.
    [33][33] Chikhale R.V, Bhole R. P, Khedekar P. B, et al. Synthesis and pharmacological investigation of 3-(substituted 1-phenylethanone)-4-(substituted phenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylates [J]. European Journal of Medicinal Chemistry,2009,44(9):3645-3653.
    [34]谭日红,孙佩霞.2-硫代四氢嘧啶-5-羧酸酯的合成及生物活性[J].中国药物化学杂志,1997,7(4):283-284.
    [35]熊缨,余华荣,杨菊等.外源性给予喹啉酸对急性和亚急性炎症动物模型的作用[J].重庆医科大学学报,2006,31(6):845-847.
    [36]Sangraula H, Dewan S. D, Kumar V. L. Evaluation of anti-inflammatory activity of latex of Calotropis procera in different models of inflammation[J]. Inflammopharmacology,2002,9(3):257-264.
    [37]郭磊,李娟,叶华等.抗肿瘤药物羧胺三唑的抗炎镇痛作用[J].中国医学科学院学报,2009,31(3):315-321.
    [38]白丽,新华·那比,邬利娅·伊明等.赤土苻苓苷的抗炎作用研究[J].2002,2(3):14-15.
    [39]鄂裘恺,谢焕松,周鸣鸣.芹菜素镇痛消炎作用研究[J].辽宁中医药大学学报,2008,10(7):145-146.
    [40]黄利权,伍义行.火绒草的抗炎活性研究[J].中兽医学杂志,2004,2:10-12.
    [41]冯紫薇,罗才贵,常德贵等.颈康灵胶囊抗炎镇痛作用的实验研究[J].浙江中医药大学学报,2009,33(4):583-560.
    [42]曾华武,李医明,贺祥等.玄参提取物的抗炎和抗氧活性[J].第二军医大学学报,1999,20(9):614-616.
    [43]Alexander N, Shikov O.N, Valery G, et al. Anti-inflammatory effect of Pinus sibirica oil extract in animal models [J]. J Nat Med,2008,62(4):436-440.
    [44]刘和莉,李月玲,薛永志.不同温度和醋酸浓度对小鼠扭体疼痛模型的影响[J].包头医学院学报,2006,22(2):137-138.
    [45]苏畅,吕俊华,罗基花.氟哌啶醇与吗啡合用对醋酸导致小鼠扭体反应的影响[J].北华大学学报(自然科学版),2001,2(1):37-38.
    [46]徐淑云,卞如濂,陈修等.药理实验方法学[M].第二版,北京:人民卫生出版社,1994:713-726.
    [47]臧培培,夏海燕,刘莹等.鞘内注射育亨宾拮抗氯胺酮的镇痛作用[J]。徐州医学院学报,2009,29(5):287-289.
    [48]崔建关,马树祥,孙娜等.针刺小鼠后三里对热水、冰水甩尾痛阈的影响[J].时珍国医国药,2009,20(7):1666-1667.
    [49]张俊,朱正纲,刘风华等.MTT法检测94癌体外药敏[J].上海医学,2002,25(4):241-243.
    [50]李明春,雷林生,梁东升等.灵芝多糖对小鼠巨噬细胞白介素1α和肿瘤坏死因子-alpha mRNA表达的影响[J].中国药理学于毒理学杂志,2000,14(3):237-240.
    [51]谭兵,李瑜元,聂玉强.抗肿瘤坏死因子-α治疗的研究进展[J].国际内科学杂志,2007,34(3):143-148.
    [52]钟良军,张源明.白细胞介素-1生物学效应的基础研究[J].新疆医科大学学报,2004,27(3):210-212.
    [53]郭甫坤,吴曙光.白介素1信号转导研究进展[J].国外医学分子生物学分册,200,23(1):12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700