芳香羧酸和柔性含氮配体构筑的配位聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以芳香羧酸和柔性含氮配体与过渡金属离子在水热条件下自组装合成了一系列配位聚合物。我们采用X射线单晶衍射技术确定这些化合物的结构,并用元素分析、红外光谱(IR)、X射线粉末衍射(PXRD)及热重分析(TGA)技术进一步对其进行表征;探索这类化合物的合成条件;从拓扑学的角度着手研究化合物的晶体结构;考察有机配体的结构特点对产物结构的影响。此外,对一些化合物的发光及漫反射光谱做了初步研究。
     1.利用8种结构相关的水杨酸类配体(H2L1=salicylic acid、H2L2=3-methylsalicylic acid、H2L3=4-methylsalicylic acid、H2L4=4-chlorosalicylic acid、H2L5=5-chlorosalicylic acid、H2L6=5-bromosalicylic acid、H2L7=5-nitrosalicylicacid和H3L8=5-sulfosalicylic acid)和柔性含氮配体1,1’-(1,4-butanediyl)bis(imidazole)(biim-4)与Zn(II)和Cd(II)在水热条件下合成了13个配合物:[Zn2(L1)2(biim-4)(H2O)](1)、[Cd(HL1)2(biim-4)](2)、[Cd(HL2)2(biim-4)](3)、[Cd(HL3)2(biim-4)](4)、[Zn2(L4)2(biim-4)(H2O)](5)、[Cd(HL4)2(biim-4)](6)、[Zn2(L5)2(biim-4)(H2O)](7)、[Cd2(HL5)4(biim-4)3]2H2O(8)、[Zn2(L6)2(biim-4)(H2O)](9)、[Cd(HL6)2(biim-4)](10)、[Zn2(L7)2(biim-4)2]·H2O(11)、[Cd2(L7)2(biim-4)2(H2O)]·H2O (12)和[Zn(HL8)(biim-4)]·0.5H2O (13)。化合物1和5是同构的,展示了相同的三维3-连接的103-ths网络。化合物2具有一维内消旋链状结构。化合物3呈现零维二聚体结构,该结构进而被π-π堆积扩展为二维超分子层。化合物4和6具有相似的1D链。这些链进而被化合物中的C–H···O和C–H···Cl氢键扩展为二维超分子层。化合物7和9是同构的,为典型的三维diamond网络。化合物8呈现2D→3D多聚穿套结构。化合物10呈现了一个由C–H···Br氢键形成的二维44-sql超分子层。化合物11和12具有双节点(4,4)-连接的三维(4·53·72)(4·52·83)和(42·62·82)(42·6·82·10)拓扑。化合物13为三维四重互穿的diamond网络。重点讨论了有机阴离子和中心金属离子对产物结构的影响。此外,我们对这些化合物的发光行为做了初步研究。
     2.选用3,5-二硝基水杨酸(H2dns)和九种结构相关的柔性双三氮唑配体(L1=1,2-bis(1,2,4-triazol-1-yl)ethane、 L2=1,3-bis(1,2,4-triazol-1-yl)propane、 L3=1,4-bis(1,2,4-triazol-1-yl)butane、 L4=1,5-bis(1,2,4-triazol-1-yl)pentane、 L5=1,5-bis(1,3,4-triazol-1-yl)pentane、 L6=1,6-bis(1,2,4-triazol-1-yl)hexane、 L7=1,10-bis(1,2,4-triazol-1-yl)decan、L8=1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene和L9=1,1'-(2,2'-oxybis(ethane-2,1-diyl))bis(1H-1,2,4-triazole))与Cu(II)和Cd(II)在水热条件下合成了11个配合物:[Cu4(dns)4(L1)2(H2O)]·2H2O (14)、[Cu4(dns)4(L2)2(H2O)](15)、[Cu2(dns)2(L3)(H2O)](16)、[Cu2(dns)2(L4)(H2O)](17)、[Cu5(dns)4(OH)2(L5)2(H2O)3]·H2O (18)、[Cu(dns)(L6)](19)、[Cu2(dns)2(L7)](20)、[Cu(dns)(L8)]·0.5H2O (21)、[Cd2(dns)2(L1)(H2O)2](22)、[Cd2(dns)2(L7)3](23)和[Cd4(dns)4(L9)4](24)。化合物14和17为一维双链结构。化合物15、16和18为二维44网格。化合物19展示了一个三维单节点8-连接的自穿(42068)网络。化合物20具有二维两重互穿的44-sql网格。化合物21和22为二维波浪状层。化合物23为一维链状结构。化合物24具有零维四核簇结构。重点讨论了双三氮唑配体对化合物结构的影响。此外,我们对室温下化合物的漫反射光谱做了初步研究。
     3.以芳香多羧酸(o-H2BDC=phthalic acid、m-H2BDC=isophthalic acid、p-H2BDC=terephthalic acid和H4BTEC=pyromellitic acid)和三种4-取代双(1,2,4-三氮唑)配体(L10=1,2-bis(2-(4H-1,2,4-triazol-4-yl)phenoxy)ethane、 L11=1,2-bis(3-(4H-1,2,4-triazol-4-yl)phenoxy)ethane和L12=1,2-bis(4-(4H-1,2,4-triazol-4-yl)phenoxy)ethane)与Zn(II)和Cd(II)在水热条件下反应得到11个配合物:[Zn(L1)(o-BDC)]·1.5H2O (25)、[Zn(L1)(m-BDC)](26)、[Cd2(L1)(BTEC)]·H2O (27)、[Zn(L2)(m-BDC)]·1.25H2O (28)、[Zn(L2)(p-BDC)]·4H2O (29)、[Cd(L2)(p-BDC)]·H2O (30)、[Zn2(L2)(BTEC)](31)、[Zn(L3)(m-BDC)]·3.5H2O (32)、[Zn2(L3)(p-BDC)2]·2H2O (33)、[Zn2(L3)2(BTEC)]·2H2O (34)和[Cd2(L3)2(BTEC)](35)。化合物25为二维层状结构。化合物26具有一维链状结构,该链进而被π π堆积扩展为二维超分子层。化合物27展示了三维(4,8)-连接的(32·42·52)(34·48·512·64)网络。化合物28包含两个互锁的单壁金属-有机纳米管(single-wall metal-organic nanotube, SWMONTs),该结构兼具多聚轮烷和多聚索烃的特征。化合物29为三维五重互穿的diamond网络。化合物30为三维α-Po网络。化合物31为三维(4,6)-连接的(43·63)(46·66·83)网络。化合物32为二维4-连接的(65·8)网格。化合物33为三维三重互穿的α-Po网络。化合物34和35展示了相同的三维(4,4)-连接的(64·7·8)(62·84)网络。着重讨论了4-取代双(1,2,4-三氮唑)配体、芳香多羧酸阴离子和金属离子对自组装过程的影响。此外,我们还研究了室温下化合物25-35的发光行为和化合物2831在不同溶剂中的悬浊液的荧光性质。
In this work, a series of coordination polymers (CPs) constructed from aromaticcarboxylic acids, flexible N-donor ligands and transition metal ions have beensynthesized under hydrothermal conditions and characterized by the single crystalX-ray diffraction, elemental analyses, infrared spectra (IR), powder X-ray diffractionspectra (PXRD) and thermogravimetric analysis (TGA). The synthesis conditions,topologies of crystal structures, influences of structural features of organic ligands onthe structures of final products have been investigated in detail. In addition, theluminescent properties and diffuse reflectivity spectra have also been studiedpreliminarily.
     1. Eight structurally related salicylate ligands (H2L1=salicylic acid, H2L2=3-methylsalicylic acid, H2L3=4-methylsalicylic acid, H2L4=4-chlorosalicylic acid,H2L5=5-chlorosalicylic acid, H2L6=5-bromosalicylic acid, H2L7=5-nitrosalicylicacid and H3L8=5-sulfosalicylic acid) and the flexible N-donor ligand (biim-4=1,1’-(1,4-butanediyl)bis(imidazole)) were used as organic ligands, and thirteen newZn(II)/Cd(II)-containing complexes, namely,[Zn2(L1)2(biim-4)(H2O)](1),[Cd(HL1)2(biim-4)](2),[Cd(HL2)2(biim-4)](3),[Cd(HL3)2(biim-4)](4),[Zn2(L4)2(biim-4)(H2O)](5),[Cd(HL4)2(biim-4)](6),[Zn2(L5)2(biim-4)(H2O)](7),[Cd2(HL5)4(biim-4)3]2H2O (8),[Zn2(L6)2(biim-4)(H2O)](9),[Cd(HL6)2(biim-4)](10),[Zn2(L7)2(biim-4)2]·H2O (11),[Cd2(L7)2(biim-4)2(H2O)]·H2O (12), and[Zn(HL8)(biim-4)]·0.5H2O (13), have been synthesized under hydrothermalconditions. Compounds1and5are isomorphous, and show the same3-connected103-ths net. Compound2possesses a meso-helical chain structure. Compound3shows a zero-dimensional (0D) dimeric molecular structure, which is linked by π–πinteractions into a two-dimensional (2D) supramolecular assembly. Compounds4and6exhibit similar one-dimensional (1D) chains, which are extended into different2Dsupramolecular layers via C–H···O and C–H···Cl hydrogen-bonding interactions,respectively. Compound9is isomorphous with7, and displays a typicalthree-dimensional (3D) diamond framework. Compound8shows an unusual2D→3Dpolythreading array. Compound10furnishes a2D supramolecular44-sql networkformed by C–H···Br hydrogen-bonding interactions. Compounds11and12exhibitbinodal (4,4)-connected3D frameworks with (4·53·72)(4·52·83) and(42·62·82)(42·6·82·10) topologies, respectively. Compound13has a3D4-fold interpenetrating diamond framework. The effects of the organic anions and centralmetal ions on the structures of products have been discussed in detail. Moreover, theluminescent behaviors of1-13have also been investigated.
     2. The combination of3,5-dinitrosalicylic acid (H2dns) and nine flexiblebis(triazole) ligands (L1=1,2-bis(1,2,4-triazol-1-yl)ethane, L2=1,3-bis(1,2,4-triazol-1-yl)propane, L3=1,4-bis(1,2,4-triazol-1-yl)butane, L4=1,5-bis(1,2,4-triazol-1-yl)pentane, L5=1,5-bis(1,3,4-triazol-1-yl)pentane, L6=1,6-bis(1,2,4-triazol-1-yl)hexane, L7=1,10-bis(1,2,4-triazol-1-yl)decane, L8=1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene and L9=1,1'-(2,2'-oxybis(ethane-2,1-diyl))bis(1H-1,2,4-triazole)) in the presence of Cu(II) andCd(II) ions provides eleven complexes, which are formulated as[Cu4(dns)4(L1)2(H2O)]·2H2O (14),[Cu4(dns)4(L2)2(H2O)](15),[Cu2(dns)2(L3)(H2O)](16),[Cu2(dns)2(L4)(H2O)](17),[Cu5(dns)4(OH)2(L5)2(H2O)3]·H2O (18),[Cu(dns)(L6)](19),[Cu2(dns)2(L7)](20),[Cu(dns)(L8)]·0.5H2O (21),[Cd2(dns)2(L1)(H2O)2](22),[Cd2(dns)2(L7)3](23) and [Cd4(dns)4(L9)4](24).Compounds14and17possess one-dimensional (1D) double chains. Compounds15,16and18show2D44networks. Compound19furnishes a3D uninodaleight-connected self-penetrating framework with (42068) topology. Compound20reveals a2D2-fold interpenetrating44-sql network. Compounds21and22feature2Dundulated layers. Compound23shows a1D chain. Compound24furnishes a discretetetranuclear cluster. The influence of the bis(triazole) ligands on the structures ofcompounds are discussed in detail. Furthermore, the diffuse reflectivity spectra ofcompounds have also been studied at room temperature.
     3. Eleven Zn(II)/Cd(II)-containing coordination polymers incorporating bothflexible4-substituted bis(1,2,4-triazole) ligands (L10=1,2-bis(2-(4H-1,2,4-triazol-4-yl)phenoxy)ethane, L11=1,2-bis(3-(4H-1,2,4-triazol-4-yl)phenoxy)ethane and L12=1,2-bis(4-(4H-1,2,4-triazol-4-yl)phenoxy)ethane) and polycarboxylate anions(o-H2BDC=phthalic acid, m-H2BDC=isophthalic acid, p-H2BDC=terephthalicacid, and H4BTEC=pyromellitic acid), namely,[Zn(L1)(o-BDC)]·1.5H2O (25),[Zn(L1)(m-BDC)](26),[Cd2(L1)(BTEC)]·H2O (27),[Zn(L2)(m-BDC)]·1.25H2O (28),[Zn(L2)(p-BDC)]·4H2O (29),[Cd(L2)(p-BDC)]·H2O (30),[Zn2(L2)(BTEC)](31),[Zn(L3)(m-BDC)]·3.5H2O (32),[Zn2(L3)(p-BDC)2]·2H2O (33),[Zn2(L3)2(BTEC)]·2H2O (34) and [Cd2(L3)2(BTEC)](35), have been prepared andidentified by physical measurements. Compound25possesses a layered structure.Compound26shows1D chains. Weak π-π intermolecular stackings further join thesechains into a2D supramolecular layered structure. Compound27displays a3D(4,8)-connected (32·42·52)(34·48·512·64) net. Compound28consists of two interlocked single-wall metal-organic nanotubes (SWMONTs) with both polyrotaxane andpolycatenane characters. Compound29exhibits a3D5-fold interpenetrating diamondmotif. Compound30furnishes a3D α-Po net. Compound31reveals a3D(4,6)-connected net with (43·63)(46·66·83) topology. Compound32features a2D4-connected network with (65·8) topology. Compound33shows a3D3-foldinterpenetrating α-Po net. Compounds34and35display3D (4,4)-connected nets withthe same (64·7·8)(62·84) topology. The effects of the4-substituted bis(1,2,4-triazole)ligands, aromatic polycarboxylate anions, and metals ions on the frameworkassemblies have been discussed. Besides, the solid-state luminescent of compounds25-35and fluorescent properties of compounds2831in various solvent suspensionswere investigated at room temperature.
引文
[1]中国化学会,无机化合物命名原则[S].1980,42.
    [2] Saha, B K, Jetti R K R, Reddy L S, et al. Halogen Trimer-Mediated HexagonalHost Framework of2,4,6-Tris(4-halophenoxy)-1,3,5-triazine. SupramolecularIsomerism from Hexagonal Channel (X=Cl, Br) to Cage Structure (X=I)[J].Cryst Growth Des,2005,5:887-899.
    [3] Chandran S K, Nath N K, Roy S, et al. Polymorphism in Fuchsones[J]. CrystGrowth Des,2008,8:140-154.
    [4] Thallapally P K, Nangia A A. Cambridge Structural Database analysis of theC-H···Cl-interaction: C-H···Cl-and C-H···Cl-M often behave as hydrogenbondsbut C-H···Cl-C is generally a vander Waals interaction[J]. CrystEngComm,2001,27:1-6.
    [5] Steiner T. The hydrogen bond in the solid state[J]. Angew Chem Int Ed,2002,41:48-76.
    [6] Hunter C A, Sanders J K M. The nature of π-π interactions[J]. J Am Chem Soc,1990,112:5525-5534.
    [7] Cozzi F, Cinquini M, Annuziata R, et al. Dominance of polar/π overcharge-transfer effects in stacked phenyl interactions[J]. J Am Chem Soc,1993,115:5330-5331.
    [8] Adams H, Carver F J, Hunter C A, et al. Chemical double-mutant cycles for themeasurement of weak intermolecular interactions: Edge-to-Face AromaticInteractions[J]. Angew Chem Int Ed,1996,35:1542-1544.
    [9] Noroa S, Kitagawa S, Akutagawa T, et al. Coordination polymers constructedfrom transition metal ions and organic N-containing heterocyclic ligands: Crystalstructures and microporous properties[J]. Prog Polym Sci,2009,34:240-279.
    [10] Perry IV J J, Perman J A, Zaworotko M J. Design and synthesis of metal-organicframeworks using metal-organic polyhedra as supermolecular building blocks[J].Chem Soc Rev,2009,38:1400-1417.
    [11] Tranchemontagne D J, Mendoza-Cortés J L, O’Keeffe M, et al. Secondarybuilding units, nets and bonding in the chemistry of metal-organic frameworks[J].Chem Soc Rev,2009,38:1257-1283.
    [12] Hu M L, Morsali A, Aboutorabi L. Lead(II) carboxylate supramolecularcompounds: Coordination modes, structures and nano-structures aspects[J].Coord Chem Rev,2011,255:2821-2859.
    [13] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionallystable and highly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [14] Yang J, Ma J F, Liu Y Y, et al. A Series of Cu(II) Complexes Based on DifferentBis(imidazole) Ligands and Organic Acids: Formation of Water Clusters andFixation of Atmospheric Carbon Dioxide[J]. Cryst Growth Des,2008,8:4383-4393.
    [15] Zhang W L, Liu Y Y, Ma J F, et al. Fine Tuning of the Cu(II)-Bis(imidazole)Networks by Changing Sulfonate Anions[J]. Cryst Growth Des,2008,8:1250-1256.
    [16] Bai H Y, Ma J F, Yang J, et al. Effect of Anions on the Self-assembly ofCd(II)-Containing Coordination Polymers Based on a Novel FlexibleTetrakis(imidazole) Ligand, Cryst Growth Des,2010,10:995-1016.
    [17] Zhang Z, Ma J F, Liu Y Y, et al.2D and3D coordination polymers constructed bya novel hexakis(1,2,4-triazol-ylmethy1)benzene ligand and different carboxylateanions: syntheses, structures, and luminescent properties[J]. CrystEngComm,2013,15:2009-2018.
    [18] Wang X L, Luan J, Sui F F, et al. Structural Diversities and Fluorescent andPhotocatalytic Properties of a Series of CuIICoordination Polymers Constructedfrom Flexible Bis-pyridyl-bis-amide Ligands with Different Spacer Lengths andDifferent Aromatic Carboxylates[J]. Cryst Growth Des,2013,13:3561-3576.
    [19] Dau P V, Cohen S M. The influence of nitro groups on the topology and gassorption property of extended Zn(II)-paddlewheel MOFs[J]. CrystEngComm,2013,15:9304-9307.
    [20] Mitra A, Hubley C T, Panda D K, et al. Anion-directed assembly of anon-interpenetrated square-grid metal-organic framework with nanoscaleporosity[J]. Chem Commun,2013,49:6629-6631.
    [21] Li C P, Du M. Role of solvents in coordination supramolecular systems[J]. ChemCommun,2011,47:5958-5972.
    [22] Yang Q, Chen X, Chen Z, et al. Metal-organic frameworks constructed fromflexible V-shaped ligands: adjustment of the topology, interpenetration andporosityviaa solvent system[J]. Chem Commun,2012,48:10016-10018.
    [23] Ling Y, Zhang L, Li J. et al. A robust porous PtS-type Cu(II) metal-organicframework: single-crystal-to-single-crystal transformation with reversible guestintercalation accompanied by colour change[J]. CrystEngComm,2011,13:768-770.
    [24] Chen C, Sun J K, Li W, et al. Structural interconversion between a chain polymerand a two-dimensional network accompanied by tunable magnetic propertiesChem Commun,2011,47:6683-6685.
    [25] Chen D S, Sun L B, Liang Z Q, et al. Conformational Supramolecular Isomerismin Two-Dimensional Fluorescent Coordination Polymers Based on FlexibleTetracarboxylate Ligand[J]. Cryst Growth Des,2013,13:4092-4099.
    [26] Luo L, Lv G C, Wang P, et al. pH-Dependent cobalt(II) frameworks with mixed3,3’,5,5’-tetra(1H-imidazol-1-yl)-1,1’-biphenyl and1,3,5-benzenetricarboxylateligands: synthesis,structure and sorption property[J]. CrystEngComm,2013,15:9537-9543.
    [27] Leong W L, Vittal J J, One-Dimensional Coordination Polymers: Complexity andDiversity in Structures, Properties, and Applications[J]. Chem Rev2011,111:688-764.
    [28] Zhang J P, Qi X L, He C T, et al. Interweaving isomerism and isomerization ofmolecular chains[J]. Chem Commun,2011,47:4156-4158.
    [29] Withersby M A, Blake A J, ChamPness N R, et al. Parallel interpenetration innovel herringbone sheets formed by Co(II) and Cd(II) complexes withtrans-4,4′-azobis(pyridine)[J]. New J Chem,1999,23:573-575.
    [30] Wang H D, He H Y, Wang Y J, et al. Poly[[(1,10-phenanthroline)-lead(II)]-μ5-1,3-benzenedicarboxylato][J]. Acta Crystallogr. Sect. E: Struct. Rep.Online,2005,61: m531-m532.
    [31] Dai F, He H, Sun D A, Metal-Organic Nanotube Exhibiting ReversibleAdsorption of (H2O)12Cluster[J]. J Am Chem Soc,2008,130:14064-14065.
    [32] Kong G Q, Ou S, Zou C, et al. Assembly and Post-Modification of aMetal-Organic Nanotube for Highly Efficient Catalysis[J]. J Am Chem Soc,2012,134:19851-19857.
    [33] MitinaT G, Blatov V A. Topology of2-Periodic Coordination Networks: TowardExpert Systems in Crystal Design[J]. Cryst Growth Des,2013,13:1655-1664.
    [34] O'Keeffe M, Peskov M A, Ramsden S J, Yaghi O M. The Reticular ChemistryStructure Resource (RCSR) Database of, and Symbols for, Crystal Nets [DB].Accts Chem Res,2008,41:1782-1789.
    [35] Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading andpolyknotting in coordination network chemistry[J]. Coord Chem Rev,2003,246:247-289.
    [36] Rao K P, Higuchi M, Duan J, et al. pH-Dependent Interpenetrated, Polymorphic,Cd2+-and BTB-based Porous Coordination Polymers with Open Metal Sites[J].Cryst Growth Des,2013,13:981-985.
    [37] Wu H, Yang J, Su Z M, et al. An Exceptional54-Fold InterpenetratedCoordination Polymer with103-srs Network Topology[J]. J Am Chem Soc,2011,133:11406-11409.
    [38] Zhang M D, Qin L, Yang H T, et al. Series of Metal-Organic FrameworksIncluding Novel Architectural Features Based on a Star-likeTri(4-pyridylphenyl)amine Ligand[J].2013,13:1961-1969.
    [39] Li D S, Zhang P, Zhao J, et al. Two Unique Entangling CdII-CoordinationFrameworks Constructed by Square Cd4-Building Blocks and AuxiliaryN,N′-Donor Ligands[J]. Cryst Growth Des,2012,12:1697-1702.
    [40] Zhou K, Jiang F L, Chen L, et al. Unprecedented three level hierarchicalentanglement in a coordination polymer[J]. ChemComm,2012,48:12168-12170.
    [41] Zhu X, Liu X G, Li B L, et al. Solvent-controlled assembly of supramolecularisomers:2D (4,4) network,1D ribbons of ring, and both2D (4,4) networks and1D ribbons of rings polycatenated in a3D array[J]. CrystEngComm,2009,11:997-1000.
    [42] Hoskins B F, Robson R, Slizys D A. The Structure of [Zn(bix)2(NO3)]·4.5H2O](bix=1,4-Bis(irnidazol-l-ylmethyl)benzene): A New Type of Two-DimensionalPolyrotaxane[J]. Angew Chem Int Ed,1997,36:2336-2338.
    [43] Yang J, Ma J F, Batten S R, et al. Polyrotaxane metal-organic frameworks(PMOFs)[J]. Chem Commun,2012,48:7899-7912.
    [44] Liu B, Yang J, Yang G C, et al. Four New Three-DimensionalPolyoxometalate-Based Metal-Organic Frameworks Constructed From[Mo6O18(O3AsPh)2]4-Polyoxoanions and Copper(I)-Organic Fragments:Syntheses, Structures, Electrochemistry, and Photocatalysis Properties[J]. InorgChem,2013,52:84-94.
    [45] Carlucci L, Ciani G, Proserpio D M. Borromean links and other non-conventionallinks in ‘polycatenated’ coordination polymers: re-examination of some puzzlingnetworks[J]. CrystEngComm,2003,5:269-279
    [46] Sun J K, Yao Q X, Tian Y Y, et al. Borromean-Entanglement-Driven Assembly ofPorous Molecular Architectures with Anion-Modified Pore Space[J]. Chem Eur J,2012,18:1924-1931.
    [47] He K H, Song W C, Li Y W, et al. A New10-Connected Coordination Networkwith Pentanuclear Zinc Clusters as Secondary Building Units[J]. Cryst GrowthDes,2012,12:1064-1068.
    [48] Cao L H, Xu Q Q, Zang S Q, First Three-Dimensional Self-PenetratingCoordination Polymer Containing Rare (10,3)-d Subnets: Synthesis, Structure,and Properties[J]. Cryst Growth Des,2013,13:1812-1814.
    [49] Chen H Y, Xiao D R, He J H, et al. A series of novel entangled coordinationframeworks with inherent features of self-threading, polyrotaxane andpolycatenane[J]. CrystEngComm,2011,13:4988-5000.
    [50] Kan W Q, Ma J F, Liu Y Y, et al. pH-Dependent assembly of two octamolybdatehybrid materials: A self-threading CdSO4-type framework and a3D4-connectedframework[J]. CrystEngComm,2011,13:7037-7043.
    [51] Wu H, Liu B, Yang J, et al. A new type of entangled motif: from2D polyrotaxanelayers to a3D polythreaded framework[J]. CrystEngComm,2011,13:3661-3664.
    [52] Gao J Z, Yang J, Liu Y Y, et al. Ten new coordination polymers based on3-carboxy-1-(49-carboxybenzyl)-2-oxidopyridinium and different N-donorligands: syntheses, structures, and photoluminescent properties[J].CrystEngComm,2012,14:8173-8185
    [53] Zhao F H, Che Y X, Zheng J M. A2D→3D net with coexistence ofpolycatenation and polythreading constructed by long rigid and flexible ligands[J]CrystEngComm,2012,14:6397-6399.
    [54]刘志亮,功能配位聚合物[M].北京:科学出版社,2013.87-120.
    [55]仲崇立,刘大欢,阳庆元.金属-有机骨架材料的构效关系及设计[M].北京:科学出版社,2013.3-12.
    [56] Pera-Titus M, Porous Inorganic Membranes for CO2Capture: Present andProspects[J]. Chem Rev,2014,114:1413-1492.
    [57] Murray L J, Dinc M, Long J R, Hydrogen storage in metal-organicframeworks[J]. Chem Soc Rev,2009,38:1294-1314.
    [58] Li J R, Sculley J, Zhou H C, Metal-Organic Frameworks for Separations[J].Chem Rev,2012,112:869-932.
    [59] Zhang M, Xue X D, Zhang J H, et al. Enantioselective chromatographicresolution using a homochiral metal-organic framework in HPLC[J]. Anal.Methods,2014,6:341-346.
    [60] Rao X, Cai J, Yu J, et al. A microporous metal-organic framework with both openmetal and Lewis basic pyridyl sites for high C2H2and CH4storage at roomtemperature[J]. Chem Commun,2013,49:6719-6721.
    [61] Fu Y Y, Yang C X, Yan X P. Incorporation of metal-organic framework UiO-66into porous polymer monoliths to enhance the liquid chromatographic separationof small molecules[J]. Chem Commun,2013,49:7162-7164.
    [62] A Dhakshinamoorthy, Opanasenko M, ejka J, et al. Metal organic frameworksas heterogeneous catalysts for the production of fine chemicals[J]. Catal SciTechnol,2013,3:2509-2540.
    [63] Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal-organicframeworks as heterogeneous catalysts[J]. Chem Commun,2012,48:11275-11288.
    [64] Zhu Q L, Li J, Xu Q. Immobilizing Metal Nanoparticles to Metal-OrganicFrameworks with Size and Location Control for Optimizing CatalyticPerformance[J]. J Am Chem Soc,2013,135:10210-10213.
    [65] Chen B, Wang L, Zapata F, et al. A Luminescent Microporous Metal-OrganicFramework for the Recognition and Sensing of Anions[J]. J Am Chem Soc,2008,130:6718-6719.
    [66] Lu Z Z, Zhang R, Li Y Z, et al. Solvatochromic Behavior of a NanotubularMetal-Organic Framework for Sensing Small Molecules[J]. J Am Chem Soc,2011,133:4172-4174.
    [67] Jin X H, Sun J K, Cai L X, et al.2D flexible metal-organic frameworks with
    [Cd2(μ2-X)2](X=Cl or Br) units exhibiting selective fluorescence sensing forsmall molecules[J]. Chem Commun,2011,47:2667-2669.
    [68] Pramanik S, Zheng C, Zhang X, et al. New Microporous Metal-OrganicFramework Demonstrating Unique Selectivity for Detection of High Explosivesand Aromatic Compounds[J]. J Am Chem Soc,2011,133:4153-4155.
    [69] Wu P, Wang J, He C, et al. Luminescent Metal-Organic Frameworks forSelectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells[J].Adv Funct Mater,2012,22:1698-1703.
    [70] Takashima Y, Martínez V M, Furukawa S, et al. Molecular decoding usingluminescence from an entangled porous framework[J]. Nature Commun,2011,2:168.
    [71] He J, Zha M, Cui J, et al. Convenient Detection of Pd(II) by a Metal-OrganicFramework with Sulfur and Olefin Functions[J]. J Am Chem Soc,2013,135:7807-7810.
    [72] Horcajada P, Serre C, Vallet-Regi M, et al. Metal-Organic Frameworks asEfficient Materials for Drug Delivery[J]. Angew Chem Int Ed Engl,2006,45:5974-5978.
    [73] Ma Z, Moulton B. Recent advances of discrete coordination complexes andcoordination polymers in drug delivery[J]. Coord Chem Rev,2011,255:1623-1641.
    [74] Miller S R, Alvarez E, Fradcourt L, et al. A rare example of a porous Ca-MOFfor the controlled release of biologically active NO[J]. Chem Commun,2013,49:7773-7775.
    [75] Ahmad M, Katoch R, Garg A, et al. A novel3D10-fold interpenetratedhomochiral coordination polymer: large spontaneous polarization, dielectric lossand emission studies[J]. CrystEngComm,2014,16:4766-4773.
    [76] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation inmetal-organic frameworks[J]. Chem Soc Rev,2009,38:1477-1504.
    [77] Wu H, Liu H Y, Yang J, et al. Series of Coordination Polymers Based onDifferent Carboxylates and a Tri(4-imidazolylphenyl)amine Ligand: EntangledStructures and Photoluminescence[J]. Cryst Growth Des,2011,11:2317-2324.
    [78] Schoedel A, Zaworotko M J.[M3(μ3-O)(O2CR)6] and related trigonal prisms:versatile molecular building blocks for crystal engineering of metal–organicmaterial platforms[J]. Chem Sci,2014,5:1269-1282.
    [79] Yang J, Li B, Ma J F, et al. An unusual ten-connected self-penetratingmetal-organic framework based on tetranuclearcobalt clusters[J]. Chem Commun,2010,46:8383-8385.
    [80] Wang Y, Yang J, Liu Y Y, et al. Controllable Syntheses of Porous Metal-OrganicFrameworks: Encapsulation of Ln(III) Cations for Tunable Luminescence andSmall Drug Molecules for Efficient Delivery[J]. Chem Eur J,2013,19:14591-14599.
    [81] Zhang J P, Zhang Y B, Lin J B, et al. Metal Azolate Frameworks: From CrystalEngineering to Functional Materials[J]. Chem Rev,2012,112:1001-1033.
    [82] Yang J, Ma J F, Liu Y Y, et al. A Series of Lead(II) Complexes with π-π Stackings:Structural Diversities by Varying the Ligands[J]. Cryst Growth Des,2009,9:1894-1911.
    [83] Shen P, He W W, Du D Y, et al. Solid-state structural transformation doublytriggered by reaction temperature and time in3D metal-organic frameworks:great enhancement of stability and gas adsorption[J]. Chem Sci,2014,5:1368-1374.
    [84] Liu B, Wei L, Li N, Wu W P, et al. Solvent/Temperature and Dipyridyl LigandsInduced Diverse Coordination Polymers Based on3-(2′,5′-Dicarboxylphenyl)pyridine[J]. Cryst Growth Des,2014,14:1110-1127.
    [85] Yang G P, Hou L, Ma L F, et al. Investigation on the prime factors influencing theformation of entangled metal–organic frameworks[J]. CrystEngComm,2013,15:2561-2578
    [86] Yang Y, Du P, Liu Y Y, et al. A Series of Coordination Polymers Constructed byFlexible4-Substituted Bis(1,2,4-triazole) Ligands and Polycarboxylate Anions:Syntheses, Structures, and Photoluminescent Properties[J]. Cryst Growth Des,2013,13:4781-4795.
    [87] Xu N, Yang J, He Y C, et al. Syntheses, structures, luminescent sensor, andmagnetism of a series of coordination polymers constructed by3-carboxy-1-(4’-carboxy-benzyl)-2-oxidopyridinium[J]. CrystEngComm,2013,15:7360-7371.
    [88] Hu F L, Wang S L, Wu B, et al. Ligand geometry-directed assembly of sevenentangled coordination polymers[J]. CrystEngComm,2014, DOI:10.1039/c3ce42545b.
    [89] Zhang H M, He Y C, Yang, et al. Ten Coordination Polymers Constructed Usingan Unprecedented Azamacrocyclic Octacarboxylate Ligand1,4,8,11-Tetrazacyclododecane-N,N′,N″,N-Tetra-Methylene-Isophthalic Acid:Syntheses, Structures, and Photoluminescent Properties[J]. Cryst Growth Des,2014,14:2307-2317.
    [90] Kan W Q, Liu Y Y, Yang J, et al. Syntheses, structures and photoluminescentproperties of a series of metal-organic frameworks based on a flexibletetracarboxylic acid and different bis(imidazole) ligands[J]. CrystEngComm,2011,13:4256-4269.
    [91] He X, Li Y N, Li G H, et al. Synthesis, crystal structure and magnetic propertiesof a new1D cobalt(II) complex with1,10-phenanthroline and3,5-dinitrosalicylate acid ligands[J]. Inorg Chem Commun,2005,8:983-987.
    [92] Wiesbrock F, Schmidbaur H. Complexity of Coordinative Bonding in Thallium(I)Anthranilates and Salicylates[J]. J Am Chem Soc,2003,125:3622-3630.
    [93] Toraishi T, Aoyagi N, Nagasaki S, et al. Stoichiometry, stability constants andcoordination geometry of Eu(III)5-sulfosalicylate complex in aqueoussystem—A TRLIFS study[J]. Dalton Trans,2004:3495-3502.
    [94] Fan S R, Zhu L G. Influence of the Reaction Conditions on the Self-assembly ofLead(II)5-Sulfosalicylate Coordination Polymers with Chelating AmineLigands[J]. Inorg Chem,2006,45:7935-7942.
    [95] Samanta R, Mondal B, Munshi P, et al. Mononuclear and dinuclearruthenium(II)/(III) salicylates incorporating azoimine functionalities as ancillaryligands. Synthesis, spectroscopic and electron-transfer properties[J]. J Chem SocDalton Trans,2001:1827-1833.
    [96] BayramaE, Senturk M, Kufrevioglu O I, et al. In vitro inhibition of salicylic acidderivatives on human cytosolic carbonic anhydrase isozymes I and II[J]. BioorgMed Chem,2008,16:9101-9105.
    [97] Constantino V R L, Toma H E, Oliveira, L F C, et al. Structure, spectroscopy andelectrochemistry of the bis(2,2′-bipyridine)(salicylato)ruthenium(II) complex[J].J Chem Soc Dalton Trans,1999:1735-1740.
    [98] Wu H, Dong X W, Liu H Y, et al. Influence of anionic sulfonate-containingco-ligands on the solid structures of silver complexes supported by4,4′-bipyridine bridges[J]. Dalton Trans,2008:5331-5341.
    [99] Thurston J H, Kumar A, Hofmann C, et al. Heterobimetallic Bi(III)-Ti(IV)Coordination Complexes: Synthesis and Solid-State Structures ofBiTi4(sal)6(μ-OiPr)3(OiPr)4, and the Cyclic Isomers Bi4Ti4(sal)10(μ-OiPr)4(OiPr)4and Bi8Ti8(sal)20(μ-OiPr)8(OiPr)8[J]. Inorg Chem,2004,43:8427-8436.
    [100] Wiesbrock F, Schmidbaur H. Lithium salicylate monohydrate: A layer structurewith carboxylate-bridged Δ-and Λ-[(H2O)Li+]∞helices[J]. CrystEngComm,2003,5:503-505.
    [101] Wiesbrock F, Schmidbaur H. Crystal Structures of Rubidium and CesiumAnthranilates and Salicylates[J]. Inorg Chem,2003,42:7283-7289.
    [102] Murugavel R, Korah R. Structural Diversity and Supramolecular Aggregation inCalcium, Strontium, and Barium Salicylates Incorporating1,10-Phenanthrolineand4,4‘-Bipyridine: Probing the Softer Side of Group2Metal Ions withPyridinic Ligands[J]. Inorg Chem,2007,46:11048-11062.
    [103] Yin M C, Ai C C, Yuan L J, et al. Synthesis, structure and luminescent propertyof a binuclear terbium complex [Tb2(Hsal)8(H2O)2][(Hphen)2]·2H2O[J]. J MolStruct,2004,691:33-37.
    [104] Zhu L G, Kitagawa S, Miyasaka H, et al. Syntheses and crystal structures ofthree one-dimensional copper(II) complexes constructed by salicylate and4,4′-bipyridine: ladder, zig-zag, and linear polymeric assembly[J]. Inorg ChimActa,2003,355:121-126.
    [105] Deacon G B, Forsyth C M, Behrsing T, et al. HeterometallicCeIII–FeIII–salicylate networks: models for corrosion mitigation of steel surfacesby the′Green′inhibitor, Ce(salicylate)3[J]. Chem Commun,2002:2820-2822.
    [106] Zheng S L, Zhang J P, Chen X M, et al. Effect of synthetic conditions on thestructures of silver(I)-hexamethylenetetramine coordination polymers: crystalstructures of two three-dimensional frameworks featuring new topologicalmotifs[J]. J Solid State Chem,2003,172:45-52.
    [107] Icbudak H, Olmez H, Yesilel O Z, et al. Syntheses, characterization and crystalstructures of novel amine adducts of metal saccharinates, orotates andsalicylates[J]. J Mol Struct,2003,657:255-270.
    [108] He X, Bi M H, Ye K Q, et al. Self-assembly of a1D helical manganesecoordination polymer and a tetranuclear lanthanum complex with1,10-phenanthroline and3,5-dinitrosalicylato dianion[J]. Inorg Chem Commun,2006,9:1165-1168.
    [109] Wen D C, Liu S X, Lin M. Hydrothermal syntheses and crystal structures offive complexes with3,5-dinitrosalicylate and N-donor ligand: Helical chains,2Dnetwork and extended3D structures[J]. J Mol Struct,2008,876:154-161.
    [110] Fan J, Sun W Y, Okamura T A, et al. An unusual2D→3D parallelinterpenetration: synthesis and X-ray structure of compound
    [Ag2(titmb)2][Hsal]2·3H2O (titmb=1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and H2sal=salicylicacid)[J]. Inorg Chim Acta,2004,357:2385-2389.
    [111] Yin M C, Yuan L J, Ai C C, et al. Synthesis, structure and luminescenceproperties of europium and zinc ionic complexes[J]. Polyhedron,2004,23:529-536.
    [112] Duncan P C M, Goodgame D M L, Menzer S, et al. Formation of an infiniteinterpenetrating three-dimensional network bytris(N,N′-butylenebismidazole)manganese(II) tetrafluoroborate[J]. ChemCommun,1996:2127-2128.
    [113] Dong B X, Peng J, Gómez-García C J, et al. High-Dimensional AssemblyDepending on Polyoxoanion Templates, Metal Ion Coordination Geometries, anda Flexible Bis(imidazole) Ligand[J]. Inorg Chem,2007,46:5933-5941.
    [114] Ma J F, Liu J F, Jia H Q, et al. Networks with hexagonal circuits in coordinationpolymers of metal ions (ZnII, CdII) with1,1′-(1,4-butanediyl)bis(imidazole)[J]. JChem Soc, Dalton Trans,2000:2403-2407.
    [115] Zhang L P, Ma J F, Pang Y Y, et al. Four novel topological frameworks based on4,4′-(hexafluoroisopropylidene)diphthalic acid and1,1′-(1,4-butanediyl)bis(imidazole) ligand[J]. CrystEngComm,2010,12:4433-4442.
    [116] Yang J, Ma J F, Liu Y Y, et al. Two New CuIICoordination Polymers: Studies ofTopological Networks and Water Clusters[J]. Eur J Inorg Chem,2006,6:1208-1215.
    [117] Liu Y Y, Ma J F, Yang J, et al. Versatile frameworks constructed from divalentmetals and1,2,3,4-butanetetracarboxylateanion: syntheses, crystal structures,luminescence and magnetic properties[J]. CrystEngComm,2008,10:894-904.
    [118] Ma J F, Yang J, Zheng G L, et al. Four new coordination polymers of Cu(II)with1,1′-(1,4-butanediyl)bis(imidazole)[J]. Polyhedron,2004,23:553-559.
    [119] Sheldrick G M. SHELXS-97, Programs for X-ray Crystal StructureSolution[CP]. University of G ttingen: G ttingen, Germany,1997.
    [120] Sheldrick G M, SHELXL-97, Programs for X-ray Crystal StructureRefinement[CP]. University of G ttingen: G ttingen, Germany,1997.
    [121] Farrugia L J, WINGX, A Windows Program for Crystal Structure Analysis[CP].University of Glasgow, Glasgow, UK,1988.
    [122] Dolomanov O V, Blake A J, Champness N R, et al. OLEX: new software forvisualization and analysis of extended crystal structures[CP]. Appl Crystallogr,2003,36:1283-1284.
    [123] Santis G D, Fabbrizzi L, Licchelli M, et al. Molecular Recognition ofCarboxylate Ions Based on the Metal-Ligand Interaction and Signaled throughFluorescence Quenching[J]. Angew Chem Int Ed,1996,35:202-204.
    [124] McGarrah J E, KimY J, Hissler M, et al. Toward a Molecular PhotochemicalDevice: A Triad for Photoinduced Charge Separation Based on a PlatinumDiimine Bis(acetylide) Chromophore[J]. Inorg Chem,2001,40:4510-4511.
    [125] Wu Q, Esteghamatian M, Hu N X, et al. Synthesis, Structure, andElectroluminescence of BR2q (R=Et, Ph,2-Naphthyl and q=8-Hydroxyquinolato)[J]. Chem Mater,2000,12:79-83.
    [126] Li F F, Ma J F, Song S Y, et al. Syntheses, Structures, and Characterizations ofFour New Silver(I) Sulfonate Coordination Polymers with Neutral Ligands[J].Cryst Growth Des,2006,6:209-215.
    [127] Yang J, Yue Q, Li G D, et al. Structures, Photoluminescence, Up-Conversion,and Magnetism of2D and3D Rare-Earth Coordination Polymers withMulticarboxylate Linkages[J]. Inorg Chem,2006,45:2857-2865.
    [128] Thirumurugan A, Natarajan S. Synthesis, structure and luminescent propertiesof yttrium benzene dicarboxylates with one-and three-dimensional structure[J]. JChem Soc Dalton Trans,2004:2923-2928.
    [129] Zheng X J, Jin L P, Gao S. Synthesis and Characterization of Two NovelLanthanide Coordination Polymers with an Open Framework Based on anUnprecedented [Ln7(μ3-OH)8]13+Cluster[J]. Inorg Chem,2004,43:1600-1602.
    [130] Yang Y, Yang J, Du P, et al. A series of coordination polymers constructed bythe semi-rigid bifunctional ligand5-((1H-1,2,4-triazol-1-yl)methoxy) isophthalicacid: syntheses, structures and the role of solvents[J]. CrystEngComm,2014,16:1136-1148.
    [131] Zhang L P, Ma J F, Yang J, et al. Series of2D and3D Coordination PolymersBased on1,2,3,4-Benzenetetracarboxylate and N-Donor Ligands: Synthesis,Topological Structures, and Photoluminescent Properties[J]. Inorg Chem,2010,49:1535-1550.
    [132] Liu H Y, Wu H, Ma J F, et al. Syntheses, Structures, and Photoluminescence ofZinc(II) Coordination Polymers Based on Carboxylates and FlexibleBis-[(pyridyl)-benzimidazole] Ligands[J]. Cryst Growth Des,2010,10:4795-4805.
    [133] Kong G Q, Wu C D. Four Novel Coordination Polymer s Based on a FlexibleZwitterionic Ligand and Their Framework Dependent Luminescent Properties[J].Cryst Growth Des,2010,10:4590-4595.
    [134] Cheng P C, Kuo P T, LiaoY H, et al. Ligand-Isomerism Controlled StructuralDiversity of Zn(II) and Cd(II) Coordination Polymers from MixedDipyridyladipoamide and Benzenedicarboxylate Ligands[J]. Cryst Growth Des,2013,13:623632.
    [135] Kuai H W, Fan J, Liu Q, et al. Structural diversity in imidazole andcarboxylate-containing metal complexes dependent on the alkaline reagents[J].CrystEngComm,2012,14:3708-3716.
    [136] Yang Y, Yang J, Du P, et al. A series of metal-organic frameworks based on asemi-rigid bifunctional ligand5-[(1H-1,2,4-triazol-1-yl)methoxy] isophthalicacid and flexible N-donor bridging ligands[J]. CrystEngComm,2014, DOI:10.1039/c3ce42625d.
    [137] O’Keeffe M, Yaghi O M. Deconstructing the Crystal Structures ofMetal-Organic Frameworks and Related Materials into Their Underlying Nets[J].Chem Rev,2012,112:675-702.
    [138] Roberts J M, Fini B M, Sarjeant A A, et al. Urea Metal-Organic Frameworks asEffective and Size-Selective Hydrogen-Bond Catalysts[J]. J Am Chem Soc,2012,134:3334-3337.
    [139] Su S Q, Zhang Y B, Zhu M, et al. An active-site-accessible porousmetal-organic framework composed of triangular building units: preparation,catalytic activity and magnetic property[J]. ChemComm,2012,48:11118-11120.
    [140] Corma A, García H, Llabrés i Xamena F X, Engineering Metal OrganicFrameworks for Heterogeneous Catalysis[J]. Chem Rev,2010,110:4606-4655.
    [141] Falkowski J M, Wang C, Liu S, et al. Actuation of AsymmetricCyclopropanation Catalysts: Reversible Single-Crystal to Single-CrystalReduction of Metal-Organic Frameworks[J]. Angew Chem Int Ed,2011,50:8674-8678.
    [142] Shigematsu A, Yamada T, Kitagawa H, Selective Separation of Water, Methanol,and Ethanol by a Porous Coordination Polymer Built with a Flexible TetrahedralLigand[J]. J Am Chem Soc,2012,134:13145-13147.
    [143] Suh M P, Park H J, Prasad T K, et al. Hydrogen Storage in Metal-OrganicFrameworks[J]. Chem Rev,2012,112:782-835.
    [144] Serra-Crespo P, Ramos-Fernandez E V, Gascon J, et al. Synthesis andCharacterization of an Amino Functionalized MIL-101(Al): Separation andCatalytic Properties[J]. Chem Mater,2011,23:2565-2572.
    [145] Wu H H, Gong Q H, Olson D H, et al. Commensurate Adsorption ofHydrocarbons and Alcohols in Microporous Metal Organic Frameworks[J].Chem Rev,2012,112:836-868.
    [146] Serre C. Superhydrophobicity in Highly Fluorinated Porous Metal-OrganicFrameworks[J]. Angew Chem Int Ed,2012,51:6048-6050.
    [147] Bu F, Lin Q P, Zhai Q G, et al. Two Zeolite-Type Frameworks in OneMetal-Organic Framework with Zn24@Zn104Cube-in-Sodalite Architecture[J].Angew Chem Int Ed,2012,51:8538-8541.
    [148] Liu Q K, Ma J P, Dong Y B. Reversible Adsorption and Separation of Aromaticson CdII-Triazole Single Crystals[J]. Chem Eur J,2009,15:10364-10368.
    [149] Qin J S, Du D Y, Li W L, et al. Polyoxometalate-based crystalline tubularmicroreactor: redox-active inorganic-organic hybrid materials producing goldnanoparticles and catalytic properties[J]. Chem Sci,2012,3:705-710.
    [150] Taylor-Pashow K M L, Rocca J D, Xie Z G, et al. Postsynthetic Modificationsof Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging andDrug Delivery[J]. J Am Chem Soc,2009,131:14261-14263.
    [151] Yin Z, Wang Q X, Zeng M H. Iodine Release and Recovery, Influence ofPolyiodide Anions on Electrical Conductivity and Nonlinear Optical Activity inan Interdigitated and Interpenetrated Bipillared-Bilayer Metal–OrganicFramework[J]. J Am Chem Soc,2012,134:4857-4863.
    [152] Zou J P, Peng Q, Wen Z H, et al. Two Novel Metal-Organic Frameworks (MOFs)with (3,6)-Connected Net Topologies: Syntheses, Crystal Structures, Third-OrderNonlinear Optical and Luminescent Properties[J]. Cryst Growth Des,2010,10:2613-2619.
    [153] Wang Y L, Fu J H, Wei J J, et al. Noncentrosymmetric Organic Solid and ItsZinc Coordination Polymer with Diamonded Network Prepared from anIonothermal Reaction: Syntheses, Crystal Structures, and Second-OrderNonlinear Optics Properties[J]. Cryst Growth Des,2012,12:4663-4668.
    [154] Liu W S, Jiao T Q, Li Y Z, et al. Lanthanide Coordination Polymers and TheirAg+-Modulated Fluorescence[J]. J Am Chem Soc,2004,126:2280-2281.
    [155] An J, Shade C M, Chengelis-Czegan D A, et al. Zinc-Adeninate Metal-OrganicFramework for Aqueous Encapsulation and Sensitization of Near-infrared andVisible Emitting Lanthanide Cations[J]. J Am Chem Soc,2011,133:1220-1223.
    [156] Zheng S T, Wu T, Irfanoglu B, et al. Multicomponent Self-Assembly of aNested Co24@Co48Metal-Organic Polyhedral Framework[J]. Angew Chem IntEd,2011,50:8034-8037.
    [157] Ma L F, Han M L, Qin J H, et al. MnIICoordination Polymers Based on Bi-,Tri-, and Tetranuclear and Polymeric Chain Building Units: Crystal Structuresand Magnetic Properties[J]. Inorg Chem,2012,51:9431-9442.
    [158] Xiao J, Liu B Y, Wei G, et al. Solvent Induced Diverse DimensionalCoordination Assemblies of Cupric Benzotriazole-5-carboxylate: Syntheses,Crystal Structures, and Magnetic Properties[J]. Inorg Chem,2011,50:11032-11038.
    [159] Wang M F, Hong X J, Zhan Q G, et al. Temperature-/solvent-dependentlow-dimensional compounds based on quinoline-2,3-dicarboxylic acid:Structures and fluorescent properties[J]. Dalton Trans,2012,41:11898-11906.
    [160] Yamada T, Maruta G, Takeda S. Reversible solid-state structural conversionbetween a three-dimensional network and a one-dimensional chain of Cu(II)triazole coordination polymers in acidic/basic-suspensions or vapors[J]. ChemCommun,2011,47:653-655.
    [161] Hao X R, Wang X L, Shao K Z, et al. Remarkable solvent-size effects inconstructing novel porous1,3,5-benzenetricarboxylate metal-organicframeworks[J]. CrystEngComm,2012,14:5596-5603.
    [162] Li S L, Tan K, Lan Y Q, et al. pH-Dependent Binary Metal OrganicCompounds Assembled from Different Helical Units: Structural Variation andSupramolecular Isomers[J]. Cryst Growth Des,2010,10:1699-1705.
    [163] Xu G H, He X Y, Lv J Y, et al. Solvent-Dependent Assemblies of TrinuclearCopper Cluster into Variable Frameworks Based on Mixed Ligands ofPolyalcohol Amines and Organic Carboxylates[J]. Cryst Growth Des,2012,12:3619-3630.
    [164] Liu B, Pang L Y, Hou L, et al. Two solvent-dependent zinc(II) supramolecularisomers: structure analysis, reversible and nonreversible crystal-to-crystaltransformation, highly selective CO2gas adsorption, and photoluminescencebehaviors[J]. CrystEngComm,2012,14:6246-6251.
    [165] Li N, Jiang F L, Chen L, et al. From discrete octahedral nanocages to1Dcoordination polymer: Coordination-driven a single-crystal-to-single-crystaltransformation via anion exchange[J]. Chem Commun,2011,47:2327-2329.
    [166] Kan W Q, Yang J, Liu Y Y, et al. A series of coordination polymers based on amultidentate N-donor ligand and different polycarboxylate anions: syntheses,structures and photoluminescent properties[J]. CrystEngComm,2012,14:6271-6281.
    [167] Xu C Y, Li L K, Wang Y P, et al. Three-Dimensional Cd(II) CoordinationPolymers Based on Semirigid Bis(Methylbenzimidazole) and AromaticPolycarboxylates: Syntheses, Topological Structures and PhotoluminescentProperties[J]. Cryst Growth Des,2011,11:4667-4675.
    [168] Leong W L, Vittal J J. One-Dimensional Coordination Polymers: Complexityand Diversity in Structures, Properties, and Applications[J]. Chem Rev,2011,111:688-764.
    [169] Zhang Y, Yang J, Yang Y, et al. Syntheses, Structures, and LuminescentProperties of a Series of Coordination Compounds Based on (4-Carboxylphenyl)(4-(2′-Carboxylphenyl)benzyl) Ether and Different N-Donor Ligands[J]. CrystGrowth Des,2012,12:4060-4071.
    [170] Hao H J, Liu F J, Su H F, et al. Syntheses, structures and fluorescence of twocoordination complexes of Zn(II) and1,3-bis(2-methylimidazolyl)propane:solvent effect[J]. CrystEngComm,2012,14:6726-6731.
    [171] Zhang Y X, Yang J, Kan W Q, et al. A series of coordination polymers based onflexible5-carboxy-1-(4′-carboxybenzyl)-2-oxidopyridinium and structurallyrelated N-donor ligands: syntheses, structures and photoluminescent properties[J].CrystEngComm,2012,14:6004-6015.
    [172] Kathalikkattil A C, Bisht K K, Aliaga-Alcalde N, et al. Synthesis, MagneticProperties, and Structural Investigation of Mixed-Ligand Cu(II) HelicalCoordination Polymers with an Amino Acid Backbone and N-Donor Propping:1-D Helical,2-D Hexagonal Net (hcb), and3-D ins Topologies[J]. Cryst GrowthDes,2011:1631-1641.
    [173] Liu H Y, Wu H, Ma J F, et al. Syntheses, structures, and photoluminescence of aseries of silver(I) sulfonates with pyrazinederivatives[J]. Dalton Trans,2009:7957-7968.
    [174] Chu Q, Liu G X, Huang Y Q, et al. Syntheses, structures, and optical propertiesof novel zinc(II) complexes with multicarboxylate and N-donor ligands[J].Dalton Trans,2007:4302-4311.
    [175] He W W, Yang J, Yang Y, et al. A series of chiral coordination polymerscontaining helicals assembled from a new chiral(R)-2-(4′-(4′′-carboxybenzyloxy)phenoxy)propanoic acid: syntheses, structuresand photoluminescent properties[J]. Dalton Trans,2012,41:9737-9747.
    [176] Li L L, Yuan R X, Liu L L, et al. Formation of [CuSCN]n-Based TopologicalStructures via a Family of Flexible Benzimidazolyl-Based Linkers with DifferentSpacer Lengths[J]. Cryst Growth Des,2010,10:1929-1938.
    [177] Cui P, Chen Z, Gao D L, et al. Syntheses, Structures, and Photoluminescence ofa Series of Three-Dimensional Cd(II) Frameworks with a Flexible Ligand,1,5-Bis(5-tetrazolo)-3-oxapentane[J]. Cryst Growth Des,2010,10:4370-4378.
    [178] Yu J H, Mereiter K, Hassan N, et al. Designed Assemblies of Metal Halo andPseudohalo Coordination Polymers with Bridging1-Substituted Ditetrazoles[J].Cryst Growth Des,2008,8:1535-1540.
    [179] Liang X Q, Li D P, Zhou X H, et al. Metal-Organic Coordination PolymersGenerated from Chiral Camphoric Acid and Flexible Ligands with DifferentSpacer Lengths: Syntheses, Structures, and Properties[J]. Cryst Growth Des,2009,9:4872-4883.
    [180] Tian A X, Ying J, Peng J, et al. Assemblies of Copper Bis(triazole) CoordinationPolymers Using the Same Keggin Polyoxometalate Template[J]. Inorg Chem,2009,48:100-110.
    [181] Albada G A, Guijt R C, Haasnoot J G, et al. Two Examples of Novel andUnusual Double-Layered, Two-Dimensional CuIICompounds with Bridging1,3-Bis(1,2,4-triazol-1-yl)propane[J]. Eur J Inorg Chem,2000:121-126.
    [182] Cui Y F, Sun P P, Chen Q, et al. An unusual three-dimensional coordinationnetwork formed by parallel polythreading of two-fold polycatenated (6,3)layers[J]. CrystEngComm,2012,14:4161-4164.
    [183] Chen C, Ma J F, Liu B, et al. Two Unusual3D Copper(II) CoordinationPolymers Constructed by p-Sulfonated Calixarenes and Bis(triazolyl) Ligands[J].Cryst Growth Des,2011,11:4491-4497.
    [184] Zhang C J, Pang H J, Tang Q, et al. Three3D hybrid networks based onoctamolybdates and different CuI/CuII-bis(triazole) motifs[J]. J Solid State Chem,2010,183:2945-2950.
    [185] Habib H A, Hoffmann A, Hoppe H A, et al. Crystal Structure Solid-State CrossPolarization Magic Angle Spinning13C NMR Correlation in Luminescent d10Metal-Organic Frameworks Constructed with the1,2-Bis(1,2,4-triazol-4-yl)ethane Ligand[J]. Inorg Chem,2009,48:2166-2180.
    [186] Yang Y, Du P, Ma J F, et al. A Series of Metal–Organic Frameworks Based onDifferent Salicylic Derivatives and1,1′-(1,4-Butanediyl)bis(imidazole) Ligand:Syntheses, Structures, and Luminescent Properties[J]. Cryst Growth Des,2011,11:5540-5553.
    [187] Schmidt M W, Gordon M S, Boatz J A, Triazolium-Based Energetic IonicLiquids[J]. J Phys Chem A,2005,109:7285-7295.
    [188] Liu Y Y, Li J, Ma J F, et al. A series of1D,2D and3D coordination polymersbased on a5-(benzonic-4-ylmethoxy)isophthalic acid: syntheses, structures andphotoluminescence[J]. CrystEngComm,2012,14:169-177.
    [189] Song W D, Yan J B, Guo X X, et al.Aqua(3,5-dinitrosalicylato-κO)bis(1,10-phenanthroline-κ2N,N′)manganese(II)3,5-dinitrosalicylate[J]. Acta Crystallogr, Sect E: Struct Rep Online,2007,63:m1307-m1308.
    [190] Othman A H, Skelton B W, White A H, Synthesis and Structure of the Binuclear1:1Silver(I)2-Hydroxy-3,5-dinitrobenzoate/Triphenylphosphine Complex[J].Aust J Chem,2003,56:718-721.
    [191] Li J, Gao Z, Zhang C, et al. Synthesis and Structural Characterization ofSubstituted Salicylate Titanocene Complexes: Three SupramolecularFrameworks Determined by Weak Interactions[J]. J Chem Cryst,2009,39:623-631.
    [192] Valigura D, Melnik M, Koman M, et al. The first structurally proved copper(II)complex simultaneously containing salicylato mono-and dianions. X-ray crystalstructure, spectral and magnetic properties of the trimeric
    [Cu3{3,5-(NO2)2sal2}2{3,5-(NO2)2sal1}2(H2O)4]·4H2O[J]. Inorg ChemCommun,2004,7:548-552.
    [193] Wang X C, Chen J, Wang C J, et al. Bis(-3,5-dinitro-2-oxidobenzoato)-3O1,O2:O1;3O1:O1,O2-bis[aqua(2-phenyl-1,3,7,8-tetraazacyclopenta[l]phenanthree-2N7,N8)cobalt(II)][J]. Acta Crystallogr, Sect E: Struct Rep Online,2010, E66:m751-m752.
    [194] Wen D C, Liu S X, Ribas J, Hydrothermal syntheses, structures and propertiesof three cyclic tetranuclear complexes and one1D chain complex with3,5-dinitrosalicylate[J]. Polyhedron,2007,26:3849-3856.
    [195] Shekhah O, Liu J, Fischer R A. MOF thin films: existing and futureapplications[J]. Chem Soc Rev,2011,40:1081-1106.
    [196] Férey G, Mellot-Draznieks C, Serre C, et al. A Chromium Terephthalate-BasedSolid with Unusually Large Pore Volumes and Surface Area[J]. Science,2005,309:2040-2042.
    [197] Xuan W, Zhu C, Liu Y, et al. Mesoporous metal-organic framework materials[J].Chem Soc Rev,2012,41:1677-1695.
    [198] Eubank J F, Wojtas L, Hight M R, et al. The Next Chapter in MOF PillaringStrategies: Trigonal Heterofunctional Ligands To Access TargetedHigh-Connected Three Dimensional Nets, Isoreticular Platforms[J]. J Am ChemSoc,2011,133:17532-17535.
    [199] Wang J L, Wang C, Lin W. Metal-Organic Frameworks for Light Harvestingand Photocatalysis[J]. ACS Catal,2012,2:2630-2640.
    [200] Li S L, Xu Q, Metal-organic frameworks as platforms for clean energy[J].Energy Environ Sci,2013,6:1656-1683.
    [201] Yoon M, Suh K, Natarajan S, et al. Proton Conduction in Metal-OrganicFrameworks and Related Modularly Built Porous Solids[J]. Angew Chem Int Ed,2013,52:2688-2700.
    [202] Lin M J, Jouaiti A, Pocic D, et al. Molecular tectonics: tubular crystals withcontrollable channel size and orientation[J]. Chem Commun,2010,46:112-114.
    [203] Hu Y, Luo F, Dong F. Design synthesis and photocatalytic activity of a novellilac-like silver-vanadate hybrid solid based on dicyclic rings of [V4O12]4with{Ag7}7+cluster[J]. Chem Commun,2011,47:761-763.
    [204] Liu P P, Cheng A L, Yue Q, et al. Cobalt(II) Coordination Networks Dependentupon the Spacer Length of Flexible Bis(tetrazole) Ligands[J]. Cryst Growth Des,2008,8:1668-1674.
    [205] Coronado E, Giménez-Marqués M, Espallargas G M, Combination of MagneticSusceptibility and Electron Paramagnetic Resonance to Monitor the1D to2DSolid State Transformation in Flexible Metal-Organic Frameworks of Co(II) andZn(II) with1,4-Bis(triazol-1-ylmethyl)benzene[J]. Inorg Chem,2012,51:4403-4410.
    [206] Yang Y, Du P, Yang J, et al. A series of Cu(II) and Cd(II) coordination polymersconstructed by3,5-dinitrosalicylic acid and flexible bis(triazole) ligandscontaining different spacers[J]. CrystEngComm,2013,15:4357-4371.
    [207] Fu H, Qin C, Lu Y, et al. An Ionothermal Synthetic Approach to PorousPolyoxometalate-Based Metal-Organic Frameworks[J]. Angew Chem Int Ed,2012,51:7985-7989.
    [208] Ni T, Shao M, Zhu S, et al. Lotus-Root-like One-Dimensional Polymetallocageswith Drastic Void Adaptability Constructed from4,4′-Bis(1,2,4-triazol-1-ylmethyl)biphenyl and Zn(II) or Co(II) and TheirFluoresce in Encapsulation Properties[J]. Cryst Growth Des,2010,10:943-951.
    [209] Garcia Y, Koningsbruggen P J, Kooijman H, et al. Synthesis, Crystal Structure,Spectroscopic and Magnetic Properties of an Unprecedented Three-DimensionalCuII Coordination Compound of1,2-Bis(1,2,4-triazol-4-yl)ethane[J]. Eur J InorgChem,2000:307-314.
    [210] Ke X J, Li D S, Zhao J, et al. Unique entangling CdII-framework featuring2D→3D inclined polycatenate motif and (4,6)-connected self-catenatedH-bonding topology[J]. Inorg Chem Commun,2012,21:129-132.
    [211] Zhou G, Wang Q, Wang X, et al. Metallophosphors of platinum with distinctmain-group elements: a versatile approach towards color tuning and white-lightemission with superior efficiency/color quality/brightness trade-offs[J]. J MaterChem,2010,20:7472-7484.
    [212] Zhou G, Wang Q, Ho C L, et al. Duplicating “sunlight” from simple WOLEDsfor lighting applications[J]. Chem Commun,2009,24:3574-3576.
    [213] Tan G, Chen S, Sun N, et al. Highly efficient iridium(III) phosphors withphenoxy-substituted ligands and their high-performance OLEDs[J]. J MaterChem C,2013,1:808-821.
    [214] Yang J, Li G D, Cao J J, et al. Structural Variation from1D to3D: Effects ofLigands and Solvents on the Construction of Lead(II)-Organic CoordinationPolymers[J]. Chem Eur J,2007,13:3248-3261.
    [215] Deng D, Liu L, Ji B M, et al. Temperature, Cooling Rate, andAdditive-Controlled Supramolecular Isomerism in Four Pb(II) CoordinationPolymers with an in Situ Ligand Transformation Reaction[J]. Cryst Growth Des,2012,12:5338-5348.
    [216] Wiley R H, Hart A J, Reaction of Diformylhydrazine with Aminoheterocycles[J].J Org Chem,1953,18:1368-1371.
    [217] Fang C, Liu Q K, Ma J P, et al. Independent1D Nanosized Metal-Organic Tube:Anion Exchange, Separation, and Anion-Responsive Luminescence[J]. InorgChem,2012,51:3923-3925.
    [218] Sun D, Yan Z H, Blatov V A, et al. Syntheses, Topological Structures, andPhotoluminescences of Six New Zn(II) Coordination Polymers Based on MixedTripodal Imidazole Ligand and Varied Polycarboxylates[J]. Cryst Growth Des,2013,13:1277-1289.
    [219] Bétard A, Fischer R A, Metal-Organic Framework Thin Films: FromFundamentals to Applications[J]. Chem Rev,2012,112:1055-1083.
    [220] Guo M, Sun Z M, Solvents control over the degree of interpenetration inmetal-organic frameworks and their high sensitivities for detecting nitrobenzeneat ppm level[J]. J Mater Chem,2012,22:15939-15946.
    [221] Wang J H, Li M, Li, D. A dynamic, luminescent and entangled MOF as aqualitative sensor for volatile organic solvents and a quantitative monitor foracetonitrile vapour[J]. Chem Sci,2013,4:1793-1801.
    [222] He J, Yee K K, Xu Z, et al. Thioether Side Chains Improve the Stability,Fluorescence, and Metal Uptake of a Metal-Organic Framework[J]. Chem Mater,2011,23:2940-2947.
    [223] Liu Y Y, Liu H Y, Ma J F, et al. Syntheses, structures and photoluminescentproperties of Zn(II) and Cd(II) coordination polymers with flexible tripodaltriazole-containing ligands[J]. CrystEngComm,2013,15:1897-1907.
    [224] Kan W Q, Yang J, Liu Y Y, et al. Series of Inorganic-Organic Hybrid MaterialsConstructed From Octamolybdates and Metal-Organic Frameworks: Syntheses,Structures, and Physical Properties[J]. Inorg Chem,2012,51:11266-11278.
    [225] Xu B, Lv J, Cao R. Anion-Assisted Structural Variation of CadmiumCoordination Polymers: From2D→3D Inclined Polycatenation to2D→3DPolythreading[J]. Cryst Growth Des,2009,9:3003-3005.
    [226] Shi X, Zhu G, Fang Q, et al. Novel Supramolecular FrameworksSelf-Assembled from One-Dimensional Polymeric Coordination Chains[J]. Eur JInorg Chem,2004:185-191.
    [227] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organicframeworks[J]. Chem Soc Rev,2009,38:1330-1352.
    [228] Liu K, Shi W, Cheng P, The coordination chemistry of Zn(II), Cd(II) and Hg(II)complexes with1,2,4-triazole derivatives[J]. Dalton Trans,2011,40:8475-8490.
    [229] Yuan F, Xie J, Hu H M, et al. Effect of pH/metal ion on the structure ofmetal-organic frameworks based on novel bifunctionalized ligand4′-carboxy-4,2′:6′,4′′-terpyridine[J]. CrystEngComm,2013,15:1460-1467.
    [230] Li X J, Jiang F L, Wu M Y, et al. Self-Assembly of Discrete M6L8CoordinationCages Based on a Conformationally Flexible Tripodal Phosphoric TriamideLigand[J]. Inorg Chem,2012,51:4116-4122.
    [231] Kan W Q, Liu B, Yang J, et al. A Series of Highly Connected Metal–OrganicFrameworks Based on Triangular Ligands and d10Metals: Syntheses, Structures,Photoluminescence, and Photocatalysis[J]. Cryst Growth Des,2012,12:2288-2298.
    [232] Zhang L P, Ma, J F, Yang J, et al.1D,2D, and3D Metal-Organic FrameworksBased on Bis(imidazole) Ligands and Polycarboxylates: Syntheses, Structures,and Photoluminescent Properties[J]. Cryst Growth Des,2009,9:4660-4673.
    [233] Cui Y, Yue Y, Qian G, et al. Luminescent Functional Metal-OrganicFrameworks[J]. Chem Rev,2012,112:1126-1162.
    [234] Wang H, Yang W T, Sun Z M. Mixed-Ligand Zn-MOFs for Highly LuminescentSensing of Nitro Compounds[J]. Chem Asian J,2013,8:982-989.
    [235] Ma D Y, Li Y W, Li J. In situ2,5-pyrazinedicarboxylate and oxalate ligandssynthesis leading to a microporouseuropium-organic framework capable ofselective sensing of small molecules[J]. CrystEngComm,2010,12:4372-4377.
    [236] Yi F Y, Yang W, Sun Z M. Highly selective acetone fluorescent sensors based onmicroporous Cd(II) metal-organic frameworks[J]. J Mater Chem,2012,22:23201-23209.
    [237] Xu H, Liu F, Cui Y, et al. A luminescent nanoscale metal-organic framework forsensing of nitroaromatic explosives[J]. Chem Commun,2011,47:3153-3155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700