八种海参中主要海参皂苷的结构特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海参(sea cucumber)是我国一种传统的海洋滋补品,富含多种生理活性成分,具有较高的食用和药用价值。海参皂苷是海参体内最重要的活性成分之一,具有抗肿瘤、抗真菌、免疫调节、细胞毒作用和溶血作用等多种生理活性。本论文对仿刺参中的皂苷组分做了分离鉴定,并采用ESI-MS的方法对其质谱的裂解规律进行了研究,采用HPLC的方法建立了仿刺参皂苷指纹图谱,随后成功将此方法延伸到了其他8种海参的皂苷特征图谱和结构分析中。本论文的研究和结果为海参品质的评价、海参种类的鉴别以及建立海参质量评价标准提供了理论基础和科学依据,对促进海参产业的发展具有重要的理论意义和应用价值。本文主要内容包括以下几个部分:
     1.采用大孔树脂、硅胶柱层析和半制备HPLC技术,从仿刺参(Apostichopus japonicus)体壁中分离得到6种海参皂苷化合物,根据化合物的理化性质和波谱数据,共鉴定了3种皂苷化合物的结构,分别为:cladoloside B, holotoxin A1和holotoxin B1。
     2.采用电喷雾飞行时间质谱技术(ESI-TOF-MS),在负离子检测方式下,对9种皂苷化合物的质谱裂解途径进行了研究。通过ESI-MS产生的[M-H]-/ [M-Na]-获得了相应化合物的分子质量信息。对[M-H]-/ [M-Na]-进行碰撞诱导解离(CID)获得了相应化合物的裂解途径信息。在二级质谱中,糖链上无硫酸酯基取代的皂苷发生糖苷键的断裂,连续丢失糖链的末端单糖,最后生成苷元的特征碎片离子,这些特征有助于皂苷的结构解析。糖链上有硫酸酯基取代的皂苷不发生糖苷键的断裂,而是发生了苷元的裂解,生成了更加稳定的结构。将其进行脱硫酸化处理后,其脱硫产物的MS/MS图谱中出现糖链上单糖顺序脱落形成的碎片峰。根据已知皂苷的二级质谱裂解规律,对仿刺参体内提取出的3种含量较少,无法进行核磁分析的皂苷单体进行了质谱分析,推测出了3种皂苷的结构。
     3.建立了仿刺参(Apostichopus japonicus)皂苷类成分的HPLC指纹图谱,为仿刺参的质量控制提供了新的方法。实验采用固相萃取(SPE)制备供试品溶液,选用Zorbox SB-C18色谱柱(250 mm×4.6 mm, 5μm),以乙腈-0.1%磷酸水溶液为流动相进行梯度洗脱,柱温30℃,流速1.0 mL/min,检测波长为205 nm。分析了不同产地的10批仿刺参样品,采用国家药典委员会推荐的“中药色谱指纹图谱相似度评价系统(2004 A版)”处理谱图,确定了6个共有峰。计算了10个样本间的指纹图谱相似度,所得相似度计算结果均大于0.97。该方法具有良好的稳定性和重现性,可用于仿刺参的质量控制。
     4.采用SPE-HPLC方法研究了8种海参的总皂苷特征图谱,比较不同种海参间皂苷的组成及含量差异,为海参的品种鉴定提供依据。使用Zorbax SB-C18(250mm×4.6 mm, 5μm)色谱柱,以乙腈-0.1%的三氟乙酸水溶液为流动相梯度洗脱,柱温30℃,流速1.0 mL/min,检测波长205nm。对不同海参体内皂苷类成分进行HPLC分析,所得图谱特征性强,8种海参的各皂苷成分均得到很好的色谱分离。结果表明不同海参体内的皂苷组成及含量有明显差异,所建立的方法简便、可靠,可用于海参的品种鉴定。
     5.采用HPLC-MS/MS联用技术,对8种海参体内主要的皂苷类成分进行了定性鉴定。选用Eclipse XDB-C18色谱柱(150mm×4.6mm, 5μm),以乙腈-0.1%碳酸氢铵水溶液为流动相进行梯度洗脱,通过与电喷雾飞行时间质谱联用获得各皂苷成分的精确分子量和分子式,通过碰撞诱导解离技术(CID)获得各化合物的裂解信息。每种海参选取含量较高具有代表性的几种皂苷作为其特征峰,通过定性鉴定,确认了每种海参独特的皂苷组成,并结合文献对部分已知皂苷化合物的结构进行了初步鉴定。该技术还可用于新皂苷化合物的快速检测,为寻找新颖的皂苷化合物提供快速简便的方法。
Sea cucumber is a traditional costful tonic sea food in China, which contains multi-kinds of bioactive components. It is well known that holothurians are of high nutrition and pharmic values. Triterpene glycosides, one of the most important bioactive compositions of sea cucumbers, are proved to exhibit various biological activities, including anti-tumor, antifungal, immunomodulatory, cytotoxic and hemolytic effects. This thesis make a study on the isolation and identification on triterpene glycosides in sea cucumber Apostichopus japonicus, their fragmentation patterns are investigated using electrospray ionization-mass spectrometry (ESI-MS) method, and finally establish the fingerprint chromatograms of triterpene glycosides in S. japonicus by high performance liquid chromatography (HPLC). This method is successfully used for the characteristic spectrum and structure analyze of eight other different sea cucumbers. The researches will provide some academic and scientific groundwork for the identification of different types of sea cucumbers, also for quality control and nutrition evaluation of sea cucumber. The main researches in this thesis are listed below:
     1. To study the constituents and proportion of triterpene glycosides from Apostichopus japonicus, macroporous resin, Si-gel chromatography and semi-preparative HPLC are used. Six triterpene glycosides are found, chemical structures of three compounds are identified. They are cladoloside B, holotoxin A1 and holotoxin B1 based on the chemical evidence and spectral data.
     2. The fragment pathways of nine kinds of triterpene glycosides from sea cucumbers has been investigated in negative ion mode by electrospray ionization -time of flight-mass spectrometry (ESI-TOF-MS). The[M-H]-/ [M-Na]-ions are observed by ESI-MS, from which the molecular weights are obtained. The collision induced dissociation (CID) data of the [M - H] - / [M - Na] - ions provide fragmentation pathways of the triterpene glycosides. In the MS/MS spectra, results show that the cleavage of non-sulfated triterpene glycosides is occurred on the sugar chain. Product ions are produced by consecutively losses of monosaccharide residue from sugar chain, and finally yield a signature ion of aglycone. These characteristic fragmentations will be helpful in identifying the structures of triterpene glycosides. The sulfated triterpene glycosides have different fragmentation pattern, the cleavage is occured on the agalycon, generating a more stable structure. After solvolysis, the desufated productions show signature ions by the cleavage of glucosidic bonds again. The fragmentation patterns are used for the structural conjecture of three minor triterpene glycosides from Apostichopus japonicus, and their structures are concluded by the information of MS/MS spectra.
     3. The fingerprint chromatograms of triterpene glycosides in S. japonicus are established for its quality control. The samples are prepared by solid phase extraction (SPE). The analysis is performed on a Zorbax SB-C18 column (250 mm×4.6 mm, 5μm) with acetonitrile-water (containing 0.1% phosphoric acid) as mobile phase, gradient elution, at a flow rate of 1.0 mL/min, at a column temperature of 30℃, and the detection wavelength is 205nm. Ten different original samples are analyzed, and 6 peaks are identified as common fingerprint peaks using the similarity evaluation system for chromatographic fingerprint of TCM(Version 2004 A)recommended by State Pharmacopoeia Committee of China. The similarity of the fingerprints is greater than 0.97. The method set up is proved to be stable and repeatable and can be utilized as a quality control for S. japonicus.
     4. A SPE-HPLC methord is established for the species identification by comparing the composition of triterpene glycosides among different sea cucumbers. The analysis is performed on a Zorbax SB-C18 column (250mm×4.6 mm, 5μm), use acetonitrile- water (containing 0.1% trifluoroacetic acid) as mobile phase, gradient elution, at a flow rate of 1.0 mL/min, at a column temperature of 30℃, and the detection wavelength is set at 205nm. The HPLC analysis of triterpene glycosides from different sea cucumbers is established for the first time. Among the obtained characteristic spectrums, all the detected peaks are separated effectively. The results show that triterpene glycosides in different sea cucumbers are significant difference. The method established is simple, stable, and can be utilized as a quality control for sea cucumber.
     5. A convenient method based on high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) has been developed for analysis and characterization of triterpene saponins in extract of different sea cucumbers. Samples are analyzed on a Eclipse XDB-C18 column ( 150mm×4.6mm, 5μm ) , with acetonitrile-water (containing 0.1% ammonium acid carbonate) as mobile phase, gradient elution. ESI-TOF-MS is used to obtain accurate molecular weight and molecular formula information of triterpene glycosides. Fragmentation behavior is obtained by CID experiment. Several chromatographic peaks are chosen for signature peaks for different sea cucumbers, and their unique compositions are verified. Combined with literature review, some triterpene glycosides are primary identified. This method has the advantages of simple operation, rapid measurement, and it is a powerful tool for identification of new triterpene glycosides.
引文
[1]廖玉麟.我国的海参.生物学通报,2001,36(9):1-3
    [2]张凤漆.棘皮动物门.中国经济动物志,北京:科学出版社,1963,49-115
    [3]王秉和,李文波,李玉珍,等.世界海参渔业.齐鲁渔业,1998,15(4):45-46
    [4]崔桂友,赵廉.食用海参的名称与种类鉴别.扬州大学烹饪学报,2000,(3):13-18
    [5]廖玉麟.中国动物志棘皮动物门海参纲.北京:科学出版社, 1997:154
    [6].姜健,杨宝灵,邰阳.海参资源及其生物活性物质的研究.生物技术通讯,2004,5(15):537-540
    [7] Nigrelli RF. The effects of holothurin on fish and mice with Sarcoma180. Zoologica, 1952, 37:89-90
    [8] Yamanouchi T. On the poisonous substance contained in holothurians. Publ Seto Mar Biol Lab, 1955, 4: 183-202
    [9]邹峥嵘,易杨华,张淑瑜,等.海参皂苷研究进展.中国海洋药物,2004, 1:46-53
    [10].孙鹏,易杨华,李玲,等.海参皂苷的生源分类和化学结构特征(楯手目).中国天然药物,2007, 5 (6):463-469
    [11] Kitagawa I, Inamoto T, Fuchida M, et al. Structures of echinoside A and B, two antifungal oligoglycosides from the sea cucumber Actinopyga echinites (Jaeger). Chem Pharm Bull. 1980, 28(5): 1651-1653
    [12] Stonik VA , Maltsev II , Kalinovsky AI , et al. Glycosides of marine invertebratesⅫ. Structure of new triterpene olygoglycosides from sea cucumbers belonging to the family Stichopodidae [J ]. Khim Prirod Soedin, 1982b, 2: 200-204
    [13] Maltsev II, Stonik VA , Kalinovsky AI. Glycosides of marine invertebrates. Structure of new triterpene glycoside from sea cucumbers belonging to the family Stichopodidae-stichoposide E. Khim Prirod Soedin, 1983, 3: 308-311
    [14] Kitagawa I, Yamanaka H, Kobayashi M, et al. Saponin and sapogenol. XXVII. Revised structures of holotoxin A and holotoxin B, two antifungal oligoglycosides from the sea cucumber Stichopus japonicus Selenka. Chem. Pharm. Bull. 1978, 26: 3722-3731
    [15] Mal’tsev II, Stonik VA, Kalinovsky AI, et al. Triterpene glycosides from sea cucumber Stichopus japonicus selenka. Comp. Biochem. Physiol. 1984, 78B (2): 421-426
    [16] Wu J, Yi YH, Tang HF, et al . Nobilisides A-C, three new triterpene glycosides from the sea cucumber Holothuria nobilis. Planta Med, 2006, 72 (10): 932-935
    [17] Kalinin VI, Avilov SA, Kalinina EY, et al. Structure of eximisoside A, a new triterpene glycoside from the Far-Eastern sea cucumber Psoluseximius . J. Nat. Prod, 1997, 60 (8): 817-819
    [18] Avilov SA, Antonov AS, Drozdova OA , et al . Triterpene glycosides from the Far-Eastern sea cucumber Pentamera calcigera. 1. Monosulfated glycosides and cytotoxicity of their unsulfated derivatives. J. Nat. Prod., 2000, 63 (1): 65-71
    [19] Kitagawa I, Nishino T, Kobayashi M, et al. Marine nature products VIII. Bioactive triterpene-oligoglycosides from the sea cucumber Holothuria leucospilota Brandt (2). Structure of holothurin A. Chem Pharm Bull, 1981, 29 (7): 1951-1956
    [20] Kitagawa I, Nishino T, Matsuno T, et al. Structure of holothurin B: A pharmeologieally active triterpene-oligoglyceside from the sea cucumber H. leucospilota Brandt. Tetrahedron lett, 1978, 11: 985-988
    [21] Findlay J, Yayli N, Radics L. Novel sulphated oligosaccharides from the sea cucumber Cucumaria frondosa. J Nat Prod, 1992, 55: 93-101
    [22] Drozdova OA, Avilov SA, Kalinovsky AI, et al. Trisulphated glycosides from the sea cucumber Cucumaria japonica. Khim Prirod Soedin, 1993, 3: 369-374
    [23]翁怡毅,易杨华,李玲,等.沙海参中的三个海参皂苷.中国天然药物,2007,5(2):96-100
    [24]喇明平,易杨华,李玲,等.叶瓜参中的三个海参皂苷.中国天然药物,2008,6(4):254-258
    [25] Yuan WH, Yi YH, Li L, et al. Two triterpene glycosides from the sea cucumber Bohadschia marmorata Jaeger. Chinese Chemical Letters, 2008, 19: 457–460
    [26]Jaime R, Rita C, Ricardo R. Holothurinosides: new antitumour non sulphated triterpenoid glycosides from the sea cucumber Holothuria forskalii. Tetrahedron, 1991, 47(26): 4753-4762
    [27] Marta SM, Alejandro JR, Anabel K. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. Journal of Natural Products, 2001, 64: 732-736
    [28] Vladimir IK, Sergey AA, Elena YK, et al. Stucture of eximisoside A, a novel triterpene glycosides from the far-eastern sea cucumber Psolus eximius. Journal of Natural Products, 1997, 60: 817-819
    [29] Zou ZR, Yi YH, Wu HM, et al. Intercedensides A-C, three new cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert. J. Nat. Prod. 2003, 66: 1055-1060
    [30] Han H, Yi YH, Li L, et al. A new triterpene glycoside from sea cucumber Holothuria leucospilota. Chinese Chemical Letters, 2007, 18: 161–164
    [31] Greta M, Peter T N, Alexandra S S, et al. Mollisosides A, B1, and B2: Minor triterpene glycosides from the New Zealand and South Australian sea cucumber Australostichopus mollis. Journal of Natural Products, 2005, 68: 842-847.
    [32]樊廷俊,袁文鹏,丛日山,等.仿刺参水溶性海参皂苷的分离纯化及其抑瘤活性研究.药学学报,2009, 44(1): 25-31. [33苏永昌,刘淑集,吴成业.海参皂苷的分离提取与生物活性.福建水产,2008,3:66-68
    [34]邹峥嵘,易杨华,张淑瑜,等.海参皂苷研究进展.中国海洋药物杂志,2004,1:46-52
    [35] Nurettin Y, John AF. A triterpenoid saponin from Cucumaria frondosa. Phytochemistry. 1999, 50: 135-138
    [36] Chludil HD, Muniain CC, Seldes AM, et al. Cytotoxic and Antifungal Triterpene Glycosides from the Patagonian Sea Cucumber Hemoiedema spectabilis. J. Nat. Prod. 2002, 65: 860-865.
    [37] Alexandra SS, Sergey AA, Alexandr SA, et al. Glycosides from the sea cucumber Cucumaria frondosa. III. Structure of frondosides A2-1, A2-2, A2-3, and A2-6, four new minor monosulfated triterpene glycosides. Can. J. Chem. 2005, 83: 21–27
    [38] Alexandra SS, Valentin AS, Sergey AA, et al. Holothurins B2, B3, and B4, New Triterpene Glycosides from Mediterranean Sea Cucumbers of the Genus Holothuria. J. Nat. Prod. 2005, 68: 564-567
    [39]韩华,易杨华,李玲,等.玉足海参中一个新的三萜皂苷脱硫衍生物.中国海洋药物杂志,2007,26(5):21-24
    [40] Zou ZR, Yi YH, Wu HM, et al. Intercedensides D-I, Cytotoxic Triterpene Glycosides from the Sea Cucumber Mensamaria intercedens Lampert. J. Nat. Prod. 2005, 68: 540-546
    [41]Sergey AA, Alexandr SA, Olga AD, et al. Triterpene Glycosides from the Far Eastern Sea Cucumber Pentamera calcigera II: Disulfated Glycosides. J. Nat. Prod. 2000, 63, 1349-1355
    [42] Sergey AA, Alexandr SA, Alexandra SS, et al. Triterpene glycosides from the far eastern sea cucumber Cucumaria conicospermium. J. Nat. Prod. 2003, 66: 910-916
    [43] Van DS, Gerbaux P, Flammang P. Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comp. Biochem. Physiol. B. 2009, 152: 124-134
    [44] Ana PM, Claudia M, Alicia MS, et al. Patagonicoside A: a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus. Tetrahedron. 2001, 57: 9563-9568
    [45]王晓华,李玲,易杨华,等.花刺参中两个新的三萜皂苷.中国海洋药物. 2006,3:176-180
    [46] Honda S, Akao E, Suzuki S, et al. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal. Biochem. 1989, 180(2): 351-357
    [47]董平.革皮氏海参(Pearsonothria graeffei)皂苷化合物的分离鉴定、结构修饰及活性研究:[博士学位论文].青岛:中国海洋大学,2008
    [48] Mal’tsev, II, Stonik, VA, Kalinovsky, AI, et al. Triterpene glycosides from sea cucumber Stichopus japonicus selenka. Comp. Biochem. Physiol. 1984, 78B (2): 421-426
    [49] Vladimir I. Kalinin. System-theoretical (Holistic) approach to the modelling of structural-functional relationships of biomolecules and their evolution: an example of triterpene glycosides from sea cucumbers (Echinodermata, Holothurioidea). J. theor. Biol. 2000, 206: 151-168
    [50] Kalinin VI, Prokofieva NG, Likhatskaya GN, et al. Hemolytic activities of triterpene glycosides from the holothurian order Dendrochirotida: some trends in the evolution of this group of toxins. Toxicon, 1996, 34: 475-483
    [51] Santhakumari G, Stephen JA. Effects of holothurin. J Cytologia, 1998, 53: 163
    [52] Nguyen HD, Nguyen VT, Phan VK, et al. Two new tritenpene glycosides from the Vietnamese sea cucumber Holothuria scabra. Arch Pharm Res., 2007. 30: 1387-1391
    [53] Jun-O J, Valeria VS, Sung-Won S, et al. Differential effects of triterpene glycosides, frondoside A and cucumarioside A2-2 isolated from sea cucumbers on caspase activation and apoptosis of human leukemia cells. FEBS Letters. 2009, 583(4): 697-702
    [54] Kitagawa I, Sugawara T, Yosioka I. Saponin and sapogenol. XV. Antifungal glycosides from the sea cucumber Stichopus japonicus selenka(2). Structures of holotoxin A and holotoxin B. Chem Pharm Bull, 1976, 24(2): 275-284
    [55]刘雪莉,钱伯初.日本海洋天然活性物质研究简况.中国海洋药物,1997(1):46.
    [56].周清凯,杨惠英,蔡云见,等.玉足海参素的抗真菌作用及其临床应用.海洋药物,1985,(4) :43
    [57] Kobayashi M, Hori M, Kan K, et al. Marine natural products. XXVII. Distribution of lanostane-type triterpene olygoglycosides in ten kinds of Okinawan Sea Cucumbers. Chem Pharm Bull, 1991, 39: 2282-2287
    [58] Kitagawa I, Kobayashi M, Inamoto T, et al. Marine natural products. XIV. Structures of echinosides A and B, antifugal lanostane-oligosides from sea cucumber Actinopyga echinites (jaeger). Chem Pharm Bull, 1985, 33(12): 5214-5224
    [59]张诗龙.方柱五角瓜参活性成分研究及Philinopside A类似物的结构修饰:[博士学位论文].上海:第二军医大学:2004
    [60] Aminin DL, Anisimov MM. Biological function of holotoxins in body of holothurian Stichopus japonicus. In: Recent Adwances in Toxinology Research (Gopalakrishnakone, P. & Tan, C.K., eds). 2: 562-575
    [61] Mats MN, Korkhov VV, Stepanov VR, et al. The contraceptive activity of triterpene glycosides– the total sum of holotoxins A1 and B1 and holothurin A in an experiment. Farmakol Toksikol. 1990, 53(2): 45-47
    [62]杨壮,田景奎,张琳.比色法测定桔梗中桔梗总皂苷的含量.中国现代应用药学杂志,2008,25(1):58-61
    [63]兰霞,王洪新.比色法测定甘草中总皂苷的含量.时珍国医国药,2007,18(4):886-887
    [64]吴爱英,杨晓云,邹德禄.薄层扫描法测定胰活生片中人参皂苷Rg1的含量.中国医院药学杂志,2000,20(5):277-278
    [65]许舒雯,龚祝南,丛晓东,等.快速薄层扫描法测定苜蓿中总皂苷含量.中国生化药物杂志,2006,27(4):235-236.
    [66]俞坚,刘杭,王京霞.高效液相色谱法测定三七片中三七皂苷R1和人参皂苷Rg1的含量.中华中医药学刊,2008,26(2):421-422
    [67]冯伟博,杨光宇,雷春,等.高效液相色谱法测定桔梗中皂苷类物质.理化检验-化学分册,2009,45:3340-345
    [68]董平,薛长湖,盛文静,等.海参中总皂苷含量测定方法的研究.中国海洋药物杂志,2008,27(1):28-32
    [69] Ping D, Changhu X, Linfang Y, et al. Determination of Triterpene Glycosides in Sea Cucumber (Stichopus japonicus) and Its Related Products by High-Performance Liquid Chromatography. J. Agric. Food Chem. 2008, 56, 4937–4942
    [70]孔德营,刘力.指纹图谱技术及其在中药质量鉴定中的应用.吉林畜牧兽医,2007,1:12-14
    [71]杨雪梅.浅谈几种中药指纹图谱技术在中药鉴定中的应用.中国药事,2007,21( 2):119-122
    [72]罗国安,王义明.中药指纹图谱的分类和发展.中国新药杂志,2002,11(1):46-51
    [73]陈英红,姜瑞芝,罗浩铭,高阳,徐多多,高其品.人参总皂苷提取物指纹图谱研究.中国实验方剂学杂志,2009,15(11) :12-14
    [74]王雁,毕开顺.三七HPLC指纹图谱的建立.中国中药杂志,2003,4:316-320
    [75]陈军辉,谢明勇,王慧琴,等.西洋参中人参皂苷类HPLC测定及其指纹图谱研究.食品科学,2005,26(11):200-206
    [76]谢孟峡,刘媛,丁稚韵.现代高效液相色谱技术的发展.现代仪器,2001,1:30-32
    [77]秦宏伟,张林军,周广田.高效液相色谱在啤酒检测中的应用.中国酿造-分析与检验,2009,5:155-157
    [78]从浦珠,苏克曼.分析化学手册(第二版)第九分册:质谱分析(第二版).北京:化学工业出版社,2000
    [79]陈海梅,杨晓艳.质谱分析法简介及其在检测认证领域中的应用.广州化工, 2009,37(3):145-146
    [80]滕久委,李德良.田七花提取物中22种皂苷类成分的液相色谱-质谱测定.分析测试学报,2008,27(8):851-855
    [81]陈军辉,李文龙,杨佰娟,等.高效液相色谱-电喷雾飞行时间质谱分析娑罗子中皂苷类成分.分析化学研究报告,2008,36(3):285-291
    [82]杨运云,郭鹏然,陈怡禄,等.高效液相色谱-质谱法快速鉴定复方毛冬青冲剂中三萜皂苷活性成分.分析化学研究简报,2009,37(10):1523-1527
    [83]李翔,王彬,娄子洋,等.黄芪药材HPLC-MS总离子流色谱指纹图谱研究.中国药学杂志,2006,41(22):1745-1747
    [84]张继杰.天然药物化学, 3版.北京:人民卫生出版社,1997:154-158
    [85]于德泉,杨峻山.分析化学手册,核磁共振波谱解析[M]. 2版.北京:化学工业出版社, 1999: 495
    [86] Avilov SA, Stonik VA. New triterpene glycosides from the holothurian Cladolabes sp. Khim Prirodn Soedin, 1988, 5: 764-765
    [87] Guo MQ, Song FR, Bai Y, et al. Rapid Analysis of A Triterpenoid Saponin Mixture from Plant Extracts by Electrospray Lonization Tandem Mass Spectrometry. Anal Sci, 2002, 18(4): 48-484
    [88] Liu SY, Cui M, Liu ZQ, et al. Structural analysis of saponins from medicinal herbs using electrospray ionization tandem mass spectrometry . J Am Soc Mass Spectrom, 2004, 15, 133-141
    [89] Madl T, Sterk H, Mittelbach M, et al. Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. J Am Soc Mass Spectrom, 2006, 17: 795-806
    [90]Van DS, Gerbaux P, Flammang. P, Qualitative and Quantitative Saponin Contents in Five Sea Cucumbers from the Indian Ocean. Mar. Drugs, 2010, 8: 173-189
    [91]王增蕾.仿刺参和一种肉芝软珊瑚化学成分及生物活性研究[D].上海:第二军医大学,2009
    [92] Oleinikova GK, Kuznetsova TA, Ivanova NS, et al. Glycosides of marine invertebrates XV. A new triterpene glycoside-Holothurin A1-From Caribbean holothurians of the family Holothuriidae. Chemistry of Natural Compounds, 1983, 18(4):430-434
    [93]闫冰,李玲,易杨华,等.糙海参中三萜皂苷活性成分的研究.第二军医大学学报. 2005,26(6):626-631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700