家蚕精巢蛋白表达谱分析及精子形成的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Bombyx mori,L.)不仅是一种重要的经济昆虫,也是一种有中国特色的重要模式生物。家蚕基因组计划推动了家蚕模式化生物系统研究,从基因组到蛋白质组是家蚕研究的自然进程。
     以蛋白质组学为主要内容的家蚕功能基因组研究对于加快家蚕模式化研究进程、建立现代蚕桑产业技术体系、推动蚕丝产业发展具有重要的意义。建立家蚕蛋白组研究技术平台,利用家蚕开发实验动物模型替代,也是家蚕模式化生物系统研究的重要任务。
     精巢是雄蚕内部生殖器官,精子形成的场所。和大部分鳞翅目昆虫一样,家蚕具有精子二型性:上蔟吐丝前产生有核精子,之后则产生无核精子。精子形成过程,受到多种调控机制的影响:激素调控、营养调控、生态因子调控、基因调控等。研究家蚕精子形成和二型分化的分子机制,有助于搞清家蚕性别决定和分化、实现性别控制,达到提高丝质、专养雄蚕;有助于寻找优良品种选育所需要的蛋白分子标记;有利于发现农药的生殖毒性新靶标,开发新农药贡献于农业害虫控制;有助于加深对雄性生殖发生、生殖障碍、生殖调控分子机制等生殖相关基础生物学的认识。
     本文利用shotgun LC-MS/MS和双向电泳的方法,鉴定了家蚕5龄幼虫和蛹中期精巢蛋白质组;建立了家蚕5龄幼虫和蛹期的蛋白质标准表达谱图,并对5龄起蚕和化蛾前精巢部分差异表达蛋白点进行了鉴定;对部分精子形成相关基因进行了定量分析。建立了生精囊体外培养系,测定了双酚A对家蚕生精囊体外形成精子的影响。本研究为家蚕功能基因研究和新农药作用靶标开发提供了大量的研究对象,并对利用家蚕开发环境激素初筛、生殖毒理研究动物模型做了一些探讨。
     1.家蚕精巢shotgun法蛋白组表达谱鉴定
     利用家蚕预测蛋白数据库(silkDB:silkdatabase)和NCBI(National Center for Biotechnology Information)上已有家蚕蛋白,建立本地家蚕蛋白数据库。用shotgun LCMS/MS法鉴定了家蚕5龄幼虫和蛹中期精巢蛋白质组,分别获得753和498种蛋白质,其中二者共有蛋白为351种。建立了共有900种蛋白的家蚕精巢蛋白组数据库,为家蚕精巢功能基因组研究,新农药靶标开发提供了大量研究对象。
     鉴定蛋白的预测分子量、等电点分析表明,精巢中酸性蛋白稍多,蛹期以后大分子量蛋白比例减少。GO注释(Gene Ontology Annotation)分析表明,主要鉴定蛋白属于细胞组分、细胞器和大分子复合物;大部分蛋白参与代谢和细胞过程,并发现了多种与外部刺激响应有关的热激蛋白。分子功能注释表明鉴定的蛋白主要和催化、绑定功能有关。分析还发现精巢中有大量和色素沉积相关蛋白。5龄幼虫和蛹中期精巢差异表达蛋白GO分析表明,二者在细胞内部和细胞器成分上有明显差异;核苷酸、核酸、GTP结合蛋白等方面在数目和功能上差异显著;而在生物过程的差异主要表现在翻译和翻译后修饰方面。具体比较了两者之间在核蛋白上的差异。
     2.家蚕精巢蛋白组双向电泳研究
     对家蚕5龄起蚕到化蛾前家蚕精巢进行了双向电泳分析,建立了5龄幼虫和蛹期精巢蛋白质组双向电泳的标准图谱。并利用MALDI TOF/TOF质谱鉴定了22个差异或特异表达的蛋白点,获得其中9个家蚕蛋白,分别是:Ssu72蛋白(Ssu72 RNA polymerase II CTD phosphatase)、ABC转运蛋白(ABC transporter)、神经钙蛋白(海马钙结合蛋白)类似物( neurocalcin homolog ; hippocalcin )、未知蛋白(BGIBMGA014561-PA)、Tar DNA结合蛋白类似物(TBPH:TAR DNA binding protein homolog)、谷胱甘肽S转移酶ε2 (glutathione S-transferase sigma 2)、伴侣素(chaperonin)、热激蛋白19.5(19.5 kDa heat shock protein)、热激蛋白20.1 (heat shock protein 20.1)、热休克共轭蛋白(heat shock cognate protein)。
     3.家蚕精巢热激蛋白、细胞周期蛋白家族基因的转录表达水平分析
     对不同发育时相家蚕精巢中热激蛋白和细胞周期蛋白家族基因,进行了的转录水平分析。发现家蚕精巢中,热激蛋白家族hsp20.1(hsp:hot shock protein)、hsp20.4、hsp20.8相对表达量比较大,在5龄中期和化蛹前后有表达高峰,化蛾前迅速降低;hsp25.4、hsp70、hsp90表达量相对比较少。推测,小分子热激动蛋白与精子形成有密切关系。而细胞周期蛋白家族中cyclinB转录表达量最高,cyclinA非常少且随着发育进程变动不大。转录变动规律来看cyclinB最高和cyclinL1最相似,可能两者具有协同作用。
     4.双酚A对体外培养家蚕生精囊形成精子的影响
     建立了家蚕5龄起蚕到化蛾阶段精子发育进程的标准谱图,观察到有核和无核精子在分化成熟中的形态差异。
     建立了家蚕生精囊体外培养体系,并尝试利用双酚A作为低毒环境激素模式药物,研究了环境激素对家蚕生长发育和精子发生形成的影响。研究结果发现但家蚕生精囊体外培养时对外源物质敏感,可用作化学物质毒理初筛实验。
The silkworm, Bombyx mori, is not only an important economic insect, but also a central model with Chinese characteristics. The silkworm genome project promotes Bombyx biological system research as a model. It is a natural process to study it from genomics to proteomics.
     Taking proteomics as the main direction in Bombyx functional genomics has an important significance to speed up the process of silkworm modeling, establish a modern technology system of sericulture, and promote the development of silk industry. Therefore, to build the technology platform of silkworm proteome research and to explore experimental animal model with the silkworm are important research tasks in the future.
     The testis is the reproductive organ of male silkworm to form sperms. As most of the Lepidopteran insects, the silkworm has sperm dimorphism. They generate sperm with nuclei before the silkworm spinning, after that, they produce sperm without nuclei. Spermatogenesis is affected by various regulatory mechanisms, such as hormone, ecological factors, gene regulation. To study the molecular mechanism of spermatogenesis and dimorphism is helpful to figure out the sex determination and differentiation of the silkworm, realize gender control and specially rear male silkworm to improve silk quality. It is helpful to obtain protein markers to breed excellent strains. It is helpful to find new targets to develop other new pesticides to control pests. It is helpful to deeply clarify the molecular mechanism of male gametogenesis, reproductive disorders and reproductive regulation.
     In this paper, shotgun LC MS / MS and two-dimensional electrophoresis methods were used to identify the proteome of testis of the fifth instar larvae and middle pupa. We established protein expression pattern of the fifth instar larvae and pupa, characterized some protein spots differentially expressed in testis between the newly moulted larvae and pupa before eclosion, and analyzed part of genes related to spermatogenesis by qRT-PCR. We also established in vitro spermatocysts culture, which was used to determine the effect of bisphenol A on spermatogenesis. Our study provides many useful materials for Bombyx function genome analysis and new pesticide exploration, also primarily discussed silkworm modeling used to screen environment hormones and research reproductive toxicology.
     1. Proteomics of testis identified by shotgun method in the silkworm
     A local database was built depending on existed protein sequences in SilkDB and NCBI. With a shotgun LC MS / MS method, we obtained 753 and 498 proteins from testes of the fifth instar larvae and middle pupa, respectively. 351 proteins were included in both of them. Bombyx proteome database of testis was established, which provided many materials for Bombyx function genome analysis and new pesticide exploration.
     After the analysis of predicted molecular weight and isoelectric point of proteins, we found that acidic proteins in testis were more, and high molecular weight proteins reduced after the pupal stage. GO annotation showed that most of identified proteins belonged to cellular components, organelles and macromolecular complexes, and most of them were involved in cellular metabolism. A variety of heat shock proteins responding to external stimuli were contained in them, which were related to catalytic and binding functions. We also found a large number of pigment deposition -associated proteins in testis. GO analysis of differentially expressed proteins between the fifth instar larvae and middle pupa showed that there were significant differences in cellular internal structures and organelle components. The number and function of proteins implicated in nucleotides, nucleic acids, GTP binding have obvious differences. The differences of biological processes were mainly in translation and post-translational modifications, and we compared them on the differences of the nucleoproteins.
     2. Proteomics of testis researched by two-dimensional electrophoresis in the silkworm
     In this paper, two-dimensional electrophoresis method was used to analyze the proteome of Bombyx testis from the newly moulted larvae to pupa before eclosion, and a standard protein expression pattern of two-dimensional electrophoresis was established in testis. The MALDI TOF / TOF mass spectrometry was employed to identify 22 differentially expressed protein spots, and we got 9 Bombyx proteins, such as Ssu72 RNA polymerase II CTD phosphatase, ABC transporter, hippocalcin, BGIBMGA014561-PA, TAR DNA binding protein homolog, glutathione S-transferase sigma 2, chaperonin, 19.5 kDa heat shock protein, heat shock protein 20.1, heat shock cognate protein.
     3. Transcriptional level assays of Hsp and cyclin families in testis of the silkworm
     We analyzed genes encoding Hsp and cyclin in Bombyx testis during the different developmental stages. It was found that small heat shock proteins like hsp20.1, hsp20.4, hsp20.8 in testis were highly expressed, and peaked at the middle of the fifth instar and before pupation, then rapidly decreased before eclosion. However, hsp25.4, hsp70, hsp90 were lowly expressed. We suggest that small heat shock proteins are closely related to spermatogenesis. In cyclin families, cyclinB mRNA was highest, and cyclinA mRNA was low and little changed. In our results, expression pattern of cyclinB was similar to cyclinL1, implying a synergistic effect may exist between them.
     4. The effect of bisphenol A on spermatogenesis in in vitro cultured spermatocysts
     A standard protein expression pattern was built from the newly moulted stage of the fifth instar to eclosion. We observed morphological differences in the differentiation of sperm with or without nuclei.
     To investigate the effect of environmental hormones on the growth and development of silkworm and spermatogenesis, we established in vitro spermatocysts culture system and tried to select bisphenol A, a environmental hormone, as a model drug with low toxicity. Our results showed that the spermatocysts in vitro cultured are sensitive to foreign matters, suggesting it may be useful to screen chemical substances to research toxicology.
引文
1.秦俭何宁佳向仲怀家蚕模式化研究进展蚕业科学2010,36(4): 0645- 0649
    2. Zhonghua Zhou, Huijuan Yang, and Boxiong Zhong From genome to proteome: great progress in the domesticated silkworm (Bombyx mori L.)Acta Biochim Biophys Sin (2008): 601-611
    3. Yamashiki N. and Kawamura N. Behavior of centrioles during meiosis in the male silkworm, Bombyx mori (Lepidoptera)[J]. Dev Growth Differ, 1998, 40:619–630.
    4. Kawamura N., Yamashiki N. and Bando H. Behavior of mitochondria during eupyrene and apyrene spermatogenesis in the silkworm, Bombyx mori, investigated by fluorescence in situ hybridization and electron microscopy [J]. Protoplasma, 1998, 202:223–231.
    5. Yamashiki N. and Kawamura N. Behaviors of nucleus, basal bodies and microtubules during eupyrene and apyrene spermiogenesis in the silkworm, Bombyx mori (Lepidoptera)[J]. Dev Growth Differ, 1997, 39:715–722.
    6. Kambysellis, M.P., Williams, C.M., 1971. In vitro development of insect tissues. I, A macromolecular factor prerequisite for silkworm spermatogenesis. The Biological Bulletin 141, 527–540.
    7. Fugo H, Yamauchi M, Dedos SG (1996)Testicular ecdysteroids in the silkmoth, Bombyx mori. Proc Jap Acad 72:34-37
    8. Kawamura N,Sahara K.,Fugo H. Glucose and ecdysteroid increase apyrene sperm produciton in in vitro cultivation of spermatocysts of Bombyx mori [J]. J Insect Physiol, 2003, 49:25-30
    9. Jans, G., Benz, G., Friedla¨nder, M., 1984.Apyrene-spermatogenesis inducing factor is present in the haemolymph of male and female pupae of the codling moth. Journal of Insect Physiology 30, 495–497.
    10. H Matsui, M Kakei, M Iwami et al Glucose oxidase prevents programmed cell death of the silkworm anterior silk gland through hydrogen peroxide production[J] FEBS Journal,2011,278:(776–785)
    11.查幸福郭靖怡张文姬等家蚕幼虫性腺表达序列标签分析蚕业科学2009 35(1):18-23
    12. K. P. Arunkumar , Kazuei Mita , J. Nagaraju The Silkworm Z Chromosome Is Enriched in Testis-Specific Genes , Genetics , 2009,182: 493–501
    13.聂红毅,钟晓武,邹勇,家蚕精巢蛋白质的双向电泳及质谱分析昆虫学报2010, 53 (4): 369– 378
    14.聂红毅,钟晓武,衣启营,家蚕精巢中小热激蛋白在不同发育时期的蛋白质组学分析中国农业科学2011,44(9):1923-1930
    15.蒋猷龙等.中国养蚕学.上海:上海科学技术出版社,1990.1
    16.向仲怀杨焕明世界科技研究与发展Vol.25 No.6 P:1-5院士论坛2003.12
    17.向仲怀.家蚕遗传育种学.北京:中国农业出版社,1994.24—26.
    18. Sakudoh T,Sezutsu H,Nakashima T,et a1.Carotenoid silk coloration is controlled by a carotenoid—binding protein,a product ofthe Yellow blood gene.PNAS,2007,104(21):8941—8946
    19. Liu C, Yamamoto K, Cheng TC, et al Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori.. Proc Natl Acad Sci U S A. 2010 Jul 20; 107(29):12980-5. Epub 2010 Jul 6.
    20. Y Meng, S Katsuma, K Mita, et al (2009)Abnormal red body coloration of the silkworm, Bombyx mori, is caused by a mutation in a novel kynureninase. Genes to Cells 14(2): 129-140.
    21.徐俊良,时连根.中国家蚕(Bombyx mori L.)生理学研究的回顾与展望[C]∥时连根.蚕学研究—徐俊良教授文选,北京:中国农业科技出版社,2004:101 -110
    22. Nijhout H F,Grunert L W. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera[J]. Proc Natl Acad Sci USA,2002,99(24):15446 - 15450
    23.宋艳,朱晓苏,徐丽.光照和温度影响昆虫昼夜节律生物钟的分子机制[J].蚕业科学,2009,35(2):451 - 456
    24.朱晓苏,宋艳丽,徐世清家蚕作为模式生物在现代生物学中的应用,实验动物与比较医学,2009,29(1):61-65
    25. Xia Q, Zhou Z, Lu C, Cheng D et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004, 306: 1937?1940
    26.崔红娟,陈克平.家蚕生物反应器表达外源基因.生物技术,1999,9(3):3 1-34.
    27. Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z,et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol 2007 8: R162.
    28.秦俭,袁联伟.我国家蚕基因组的最新研究[J].蚕业科学,2010,36(1):115-119
    29. International Lepidopteran Genome Project . http : //www.ab.a.u-tokyo.ac.jp/ lep-genome/ new-lepgenome.Htm
    30.吕鸿声.昆虫免疫学原理[M].上海:上海科学技术出版社,2008:2 -18;206-313
    31.夏庆友,向仲怀.家蚕基因组计划2000~2007[M].重庆:西南师范大学出版,2008:1 - 200
    32. Kaito, C., Akimitsu, N., Watanabe, H. & Sekimizu, K.. Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog .2002,32, 183–190.
    33. Kaito, C., Kurokawa, K., Matsumoto, Y., Terao, Y., Kawabata, S., Hamada, S. & Sekimizu,K.(2005). Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol.Microbiol 56, 934–944.
    34. Renwick J,Kavanagh K.Insects as models for studying the virulence of fungal pathogens of humans.New Insights in Medical Mycology[M]. Netherlands,Springer Netherlands,2007:45 - 67
    35. Li, B., Xia, Q., Lu, C., Zhou, Z. & Xiang, Z. (2005). Analysis of cytochrome P450 genes in silkworm genome (Bombyx mori). Sci China C Life Sci 48, 414–418.
    36. Hamamoto, H., Kurokawa, K., Kaito, et al (2004).Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 48, 774–779.
    37. H Hamamoto,A Tonoike ,K Narushima,a,Silkworm as a model animal to evaluate drug candidate toxicity and metabolism,Comparative Biochemistry and Physiology, Part C 149 (2009)334–339
    38. Ishii, K., Hamamoto, H., Kamimura, M. and Sekimizu,K. (2008)Activation of the silkworm cytokine by bacterialand fungal cell wall components via a reactive oxygen species-triggered mechanism. J. Biol. Chem., 283, 2185-2191.
    39. Kaito C,Akimitsu N,Watanabe H,et al.Silkworm larvae as an animal model of infection with pathogenic bacteria against human[sJ].Microb Pathogenesis,2002,32(4):183 - 190
    40. S ASANO,K MIYAMOTO Bioassay Methods with the Silkworm, Bombyx mori for Quality Control of Bacillus thuringiensis Formulations—Current Method and Its Modification Japanese Joural of applied entoMmology and zoology 2003.48(1);13-21
    41. M.R.Wilkins,J.C.Sanchez,A.A.Gooley,et al,Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J].Biotechnol Genet Eng Rev,1996,13:19—50
    42.李建营家蚕蛋白质组表达谱分析博士论文杭州:浙江大学. 2010
    43.姚国华,颜新培,钟伯雄,家蚕胚胎发育关联的初始蛋白质研究,蚕业科学30(2004)436-439.
    44.赵峰霍永康林建荣等家蚕滞育卵浸酸后易溶性蛋白的表达差异分析[J].蚕业科学.2008,34(1):54-60
    45. Feng ZHAO, Jian-rong LIN, Yong-kang HUO. Analysis on the Variation Expression of Difficult-Dissolved-Proteins of Diapause Eggs After Activating by Acid Treatment[J]. Agricultural Sciences in China, 2008, 7 (2), 1474-1480.
    46.颜新培钟伯雄徐孟奎等家蚕卵黄蛋白组成及其胚胎时期的变化农业生物技术学报2004,12(5):556-563
    47.颜新培,钟伯雄,徐孟奎.家蚕催青前期胚胎蛋白质双向电泳图谱分析[J].昆虫学报, 2005, 48 (2): 295 -300.
    48.陈金娥,颜新培,徐孟奎,梁建设,家蚕催青后期胚胎蛋白质双向电泳图谱分析,昆虫学报(2005)637-642.
    49.卢忠燕,侯勇,赵萍,林英,夏庆友,家蚕伴性赤蚁sch胚胎期致死特异蛋白差异的研究,蚕业科学31 (2005142-46.
    50.叶键,钟伯雄,林健荣,颜海燕,梁建设,苏松坤,徐海圣,家蚕温敏性品种胚胎发育的蛋白质表达谱变化,蚕业科学(2005)362-365.
    51. Zhong BX, Li JK, Lin JR,et al.2005. Possible effect of 30K proteins in embryonic development of silkworm Bombyx mori. Acta Biochim Biophys Sin (Shanghai)37: 355-361.
    52. X.H. Long, J.W. Zhu, Z.H. Mo.et al. Development of an effective sample preparation approach for proteomic analysis of silkworm eggs using two-dimensional gel electrophoresis and mass spectrometry[J], Journal of Chromatography A, 2006, 1128, (1-2): 33-137.
    53. H. Sawada, Y. Yamahama, K. Mase, Molecular properties and tissue distribution of
    30K proteins as ommin-binding proteins from diapause eggs of the silkworm, Bombyx mori[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2007, 146 (2): 172-179.
    54. Chen JE, Yang HJ, Li JY, Shen YW, Zhong BX. 2008. Larva-relevant genes expression in embryonic development stages of domesticated silkworm (Bomby xmori L.). J Zhejiang Univer Angri Life Sci 34: 38-44.
    55.刘艳艳池旭娟谈建中等家蚕蚁蚕蛋白质组的质谱鉴定与数据库构建2008蚕业科学34(4):676-683
    56. shotgun proteomics approach to characterizing the embryonic proteome ofsilkworm, Bombyx mori, at labrum appearance stage. Insect Mol. Biol. 2009, 18,649–660.
    57. Shotgun proteomic analysis on the embryos of silkworm Bombyx mori at the end of organogenesis. Insect Biochem Mol. Biol. 2010, 40, 293-302.
    58. Izuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hirabayashi J,Tomita M. 2009. Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276: 5806-5820.
    59. Chaitanya RK, Dutta-Gupta A. 2010. Light chain fibroin and P25 genes of Corcyr acephalonica: Molecular cloning, characterization, tissue-specific expression, synchronous developmental and 20-hydroxyecdysone regulation during the last instar larval development. Gen Comp Endocrinol 167: 113-121.
    60. Terashima J, Yasuhara N, Iwami M, Sakurai S. 2000. Programmed celldeathtriggered by insect steroid hormone, 20-hydroxyecdysone, in the anterior silk gland ofthe silkworm, Bombyx mori. Dev Genes Evol 210: 545-558.
    61.颜新培,钟伯雄,徐孟奎,等.家蚕五龄后部丝腺蛋白质构成与茧层量的关系.蚕业科学, 2003, 29(4): 344-348
    62.沈飞英,钟伯雄,楼程富,等.家蚕五龄幼虫中部丝腺细胞的蛋白质组成比较[J].中国农业科学2005, 38 (5): 1052-1058.
    63.吴卫成,钟伯雄,孟智启,等.家蚕4眠期与5龄期后部丝腺细胞蛋白质组成分析.蚕业科学, 2005, 31(3): 273-279
    64.鲁华云,叶键,李建营.家蚕不同品种后部丝腺蛋白质双向电泳图谱比较.蚕业科学, 2006, 32(1): 114-117
    65. Jin Y X, Chen Y Y, Xu M K, et al. Studies on middle silkgland proteins of cocoon colour sex-limited silkworm (Bombyx mori L. ) using two-dimensional polyacrylamide gel electrophoresis. J. Biosci, 2004, 29: 45–49
    66. P.Zhang,K。Yamamoto,Y.Aso,Y.Banno,D.Sakano,Y.Wang,H.Fuiii,Proteomic studies of isoforms of the p25 component of Bombyx mori fibroin,Biosci Bioteehnol Biochem,2005,69:2086—2093
    67. Zhang P, Aso Y, Yamamoto K, et al. Proteome analysis of silkgland proteins from the silkworm, Bombyx mori [J]. Proteomics, 2006, 6(8): 2586-2599
    68.刘鸿丽,夏庆友,侯勇,等.家蚕丝腺蛋白质组学研究方法的建立[J].生物工程学报, 2007, 23 (1): 112-116.
    69. Hou Y, Xia Q, Zhao P, Zou Y, Liu H, Guan J, Gong J, Xiang Z. 2007. Studies on middle and posterior silk glands of silkworm (Bombyx mori ) using two-dimensional electrophoresis and mass spectrometry. Insect Biochem Mol Biol 37: 486-496.
    70. Li JY, Yang HJ, Lan TY, et al Expression profiling and regulation of genes related to silkworm posterior silk gland development and fibroin synthesis. J Proteome Res. 2011,10(8):3551-64.
    71. Peters W. In: Bradshaw D, Burggren W, Heller HC, Ishii S, Langer H, Neuweiler G, Randall DJ (eds)Zoophysiology, 1992,130. Springer-Verlag, Berlin
    72. X Hu, L Chen, X Xiang,et al Proteomic analysis of peritrophic membrane (PM)from the midgut of fifth-instar larvae, Bombyx mori Molecular Biology Reports (An International Journal on Molecular and Cellular Biology)2011 Electronic supplementary material The online version of this article (doi:10.1007/s11033- 011-1114-6)
    73.侯勇,官建,赵萍,等.家蚕中肠组织蛋白质组学研究[J].蚕业科学, 2007, 33 (2): 216-222.
    74.黄志君,邓小娟,陈芳艳,等.家蚕中肠组织在变态发育不同时期的蛋白表达差异分析.蚕业科学, 2007, 33(2): 207-215
    75.刘晓勇,陈克平,姚勤,等.家蚕中肠组织抗核型多角体病毒病的相关蛋白分析.昆虫学报, 2008, 54(1): 443-448
    76.兰天云,陈金娥,张金卫. BmNPV抗性差异蚕品种感染病毒后的中肠蛋白质组变化分析[J],蚕桑通报, 2009, 40(1): 8-12.
    77.包方,姚勤,李军,等.家蚕对浓核病毒中国株(BmDNV-3)抗性及感性品系中肠的差异蛋白质分析.昆虫学报, 2007, 50(12): 1219-1224
    78. Hui-qing Chen, Qin Yao, Fang Bao, Ke-ping Chen, Comparative Proteome Analysis of Silkworm in Its Susceptibility and Resistance Responses to Bombyx mori Densonucleosis Virus intervirology 2011 (DOI: 10.1159/000322381)
    79.郭锡杰,蒋云峰,裘智勇浓核病毒(镇江株)感受性家蚕品种中肠组织不同部位蛋白质比较分析江苏科技大学学报(自然科学版)Vo1.25 No.2:178-182
    80.姚慧鹏,郭爱芹,何芳青,等.家蚕幼虫5龄期中肠蛋白质组学[J].生物工程学报, 2008, 24 (1): 89-94.
    81. Sai Zhang, Yunmin Xu, Qiang Fu et al Proteomic Analysis of Larval Midgut from the Silkworm(Bombyx mori )Comparative and Functional Genomics Hindawi Publishing Corporation Volume 2011 Article ID 876064, (doi:10.1155/2011/ 876064)
    82. Li XH, Wu XF, Yue WF, Liu JM, Li GL, Miao YG. 2006. Proteomic analysis of the silkworm (Bombyx mori L.)hemolymph during developmental stage. J Proteome Res 5: 2809-2814.
    83. Song KH, Jung SJ, Seo YR, Kang SW, Han SS. 2006. Identification of up-regulated proteins in the hemolymph of immunized Bombyx mori larvae. CompBiochem Physiol Part D Genomics Proteomics 1: 260-266.
    84.蔡克亚,陈克平,刘晓勇,等.家蚕抗BmNPV品系与感性品系血淋巴液蛋白质组的差异分析[J].生物工程学报, 2008, 24 (2): 285-290.
    85. Fang YU, Hui-juan YANG, Jian-ying LI. Analysis of Protein Expression Patterns of Silkworm Jinqiu and Its Cross Parents[J]. Agricultural Sciences in China, 2009, 8 (9): 1130-1137.
    86.崔颖俊,赵巧玲,裘智勇,等.蜕皮前后家蚕幼虫血淋巴的蛋白质组学研究[J].中国农业科学, 2008, 41(12): 4381-4386
    87.刘艳艳,池旭娟,阚雪芹,等.家蚕性别相关血液蛋白质组的一维电泳-液相色谱-质谱分析.蚕业科学, 2009, 35(2): 287-294
    88.吴立娜,赵巧玲,裘智勇,等.农药氰戊菊酯和杀虫双诱导家蚕血液蛋白的变化.蚕业科学, 2010, 36(2): 262-267
    89. Yong Hou, Yong Zou, Fei Wang, Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages Proteome Science 2010, 8:45
    90. Furusawa T, Rakwal R, Nam HW, Hirano M, Shibato J, Kim YS, Ogawa Y,Yoshida Y, Kramer KJ, Kouzuma Y, Agrawal GK, Yonekura M: Systematic investigation of the hemolymph proteome of Manduca sexta at the fifth instar larvae stage using one- and two-dimensional proteomics platforms. J Proteome Res 2008, 7:938-959
    91.侯勇,赵萍,刘鸿丽,等.家蚕脂肪体蛋白质组学研究[J].生物工程学报, 2007, 23(5): 867-871
    92.董久鸣,徐和平,何达,等.家蚕钙网蛋白的基因结构与初步表达谱研究[J].蚕业科学, 2008, 34 (4): 619-626.
    93. Kajiwara H, Imamaki A, Nakamura M, et al Proteome analysis of silkworm 1. Fat body. J Electrophoresis 2009, 53:19-26.
    94. Yang H, Zhou Z, Zhang H, Chen M, Li J, Ma Y, Zhong B. 2010. Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori). Amino Acids 38: 1333-1342.
    95.王举梅,葛君,李兵,等.家蚕经菊酯类农药诱导后脂肪体蛋白的表达谱及烯醇酶基因的组织转录活性.蚕业科学, 2010, 36 (2): 256-261
    96.葛君,王举梅,李兵,等.杀虫剂辛硫磷诱导家蚕脂肪体蛋白的表达特征及SerB基因的组织转录活性分析.蚕业科学, 2010, 36(3): 428-434
    97. Wu XF, Li XH, Yue WF, et al . 2009. Proteomic identification of the silkworm (Bombyx mori L)prothoracic glands during the fifth instar stage. Biosci Rep 29: 121-129.
    98. Li JY, Chen X, Fan W,et al 2009a. Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx mori L. for a comprehensive understanding of their roles and relations. J Proteome Res 8: 2620-2632.
    99. Li J, Hosseini Moghaddam SH, Chen X, et al. 2010a. Shotgun strategy-based proteome profiling analysis on the head of silkworm Bombyx mori.Amino Acids 39: 751-761.
    100.靳远祥,徐孟奎,陈玉银,姜永煌,杜鑫,家蚕雌性附腺及其分泌物的蛋白质双向电泳分析,蚕业科学(2005)97-99.
    101.靳远祥,徐孟奎,陈玉银,姜永煌,家蚕雌性附腺及其Ng突变体的蛋白质组差异研究,生物化学与生物物理进展(2004)622-627.
    102. Jin Y, Chen Y, Jiang Y, Xu M. Proteome analysis of the silkworm (Bombyx mori. L)colleterial gland during different development stages. Arch Insect Biochem Physiol 2006. 61: 42-50
    103.毛立明,林健荣,赵峰,家蚕蛹期雌雄生殖腺蛋白质双向电泳比较分析昆虫学报, 2007,50( 6): 628- 633
    104.徐云敏付强张赛等家蚕化蛹第7天卵巢组织蛋白质标准图谱的构建蚕业科学2009;35(4):768-775
    105. H. Kajiwara,A. Imamaki,M. Nakamaru. et al. Proteome analysis of silkworm 3.Malpighian tube J Electrophoresis. 2009,53:33-38
    106.韩宾家蚕翅原基蛋白质组学研究.硕士论文.中国农业科学院, 2010
    107.王国宝陈玉华王举梅等家蚕蛾触角蛋白的双向电泳分析2011,-38昆虫学报,54(5):589-595
    108. Zhang P, Aso Y, Jikuya H, Kusakabe T, Lee JM, Kawaguchi Y, Yamamoto K, Banno Y, Fujii H: Proteomic profiling of the silkworm skeletal muscle proteinsduring larval-pupal metamorphosis. J Proteome Res 2007, 6:2295-2303.
    109. Wang Y, Zhang P, Fujii H, Banno Y, Yamamoto K, Aso Y. 2004b. Proteomic studies of lipopolysaccharide-induced polypeptides in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 68: 1821-1823.
    110. Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, Yu ML, Yu F, Li JY, et al. 2008b. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori)reared on fresh mulberry leaves and on artificial diet. J Proteome Res 7: 5103-5111.
    111. Machida J. (1929 ) Eine Experimentelle Untersuchung u¨ber die apyrene Spermatozoen des Seidenspiners Bombyx mori L. Zeitschrift fu¨r Zellforshung und Mikroscopische Anatomie 9, 466–510.
    112. Sahara K. and Kawamura N. (2002) Double copulation to a female with sterile diploid and polyploid increases fertility in Bombyx mori. , Zygote, 10, 23–29.
    113. Kawamura N,Sahara K. In vitro cultivation of spermatocysts to matured sperm in the silkworm Bombyx mori [J]. Develop.Growth Differ. 2002,44(4):273-280
    114.黄豁,茆琛.基因组研究为何选中家蚕为“代表生物”[J].蚕学通迅,2004,24(1):18 - 19
    115.向仲怀等蚕丝生物学北京:中国林业出版社2005,25
    116.吴载德等蚕体解剖生理学第二版北京:农业出版社1989,215
    117.冯家新蚕种研究文集杭州:浙江大学出版社,2000,139-158
    118. Kawamura N. Yamashiki N., Saito H. and Sahara. K. Peristaltic Squeezing of Sperm Bundles at the late Stage of Spermatogenesis in the Silkworm, Bombyx mori [J]. J morphol, 2000, 246:53-58
    119. Kawamura N., Yamashiki N., Saito H., Sahara K. Significance of peristaltic squeezing of sperm bundles in the silkworm, Bombyx mori: Elimination of irregular eupyrene sperm nuclei of the triploid [J]. Zygote, 2001, 9, 159–166
    120. Tazima Y. The Genetics of the Silkworm [M], London: Logos Press. 1964, pp. 1–17.
    121. Katsuno S. Studies on eupyrene and apyrene spermatozoa in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae)VIII. The length of spermatozoa. Appl Entomol Zool 1978.13:127–129.
    122. N. Kawamura and N. Yamashiki Giant nebenkern produced by colcemid treatment of the spermatocysts of the silkworm, Bombyx mori Protoplasma (1999)207:67-74
    123. Riemann J, Gassner G ULtrastructure of lepidopteran sperm within spermatheca. Ann Entomol Soc Am,1973 ,66: 154–159
    124. Iriki, S.. On the function of apyrene spermatozoa in the silkworm. Zool. Mag. 1941, 53, 123–4.
    125. Osanai M, Kasuga H, Aigaki T Physiological role of apyrene spermatozoa of Bombyx mori. Experientia ,1987, 43: 593–596
    126. Silberglied RE, Shephered JG, Dickinson JL Eunuchs: the role of apyrene sperms in Lepidoptera? Am Nat 1984,123: 255–265
    127. Cook.PA , Wendel N Non-fertile sperm delay female remating. Nature1999,397: 486-486
    128. Hanan Hamada and Fugo H. Effect of Fetal Bovine Serum on the Enhancement of In-Vitro Cultivation of Spermatocysts of the Silkworm, Bombyx mori L. (Lepiddoptera: Bombycidae)[J], Zoological Sci, 2007, 24:1251-1258
    129.三谷贤三郎有关家蚕蛾生殖能力的第一报告.蚕蛹期间高温环境蚕蛾生殖力减弱的影响日本蚕丝学杂志1948, 17(1):40-44
    130.须贝悦治木口宪尔家蚕蛹期高温保护与雄性不育的发现,日本蚕丝学杂志1967,36(6:491-496)
    131. Fugo, H., Yamauchi, M., Dedos, S.G., 1995. Testicular ecdysteroid level in the silkmoth, Bombyx mori, with special reference to heat treatment during the wandering stage. Zoological Science 12,783–788.
    132. Ota, A., T. Kusakabe, Y. Sugimoto, et al., Cloning and characterization of testis-specific tektin in Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002,133: 371–382.
    133. Miyagawa Y, Lee JM, Maeda T, Differential expression of a Bombyx mori AHA1 homologue during spermatogenesis. Insect Mol Biol. 2005 Jun;14(3):245-53.
    134.王振兴,王璞,姚玲等,家蚕细胞凋亡相关基因BmlCAD的克隆、序列和功能分析及其在精巢中特异表达的初步研究,遗传2006,28(7):838~844
    135.刘丽华.家蚕细胞周期蛋白家族基因的表达特点及功能分析.博士论文.苏州:苏州大学,2010
    136.侯勇家蚕丝腺等组织蛋白质组学研究博士论文重庆:西南大学2007.5
    137. Tsuzuki, S., Iwami, M., Sakurai, S., 2001. Ecdysteroid-inducible genes in the programmed cell death during insect metamorphosis. [J] Insect Biochemistry and Molecular Biology 31, 321–331.
    138.刘晓勇,刘海军,陈克平等利用Mascot程序与家蚕EST数据对质谱数据进行鉴定中国农业科学2010,43(12):2561-2569
    139. Pappas D.L., Jr., Hampsey M., Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae, Molecular and cellular biology 20 (2000)8343-8351.
    140. Meinhart A., Silberzahn T., Cramer P., The mRNA transcription/processing factor Ssu72 is a potential tyrosine phosphatase, The Journal of biological chemistry 278 (2003)15917-15921.
    141. Sun Z.W., Hampsey M., Synthetic enhancement of a TFIIB defect by a mutation in SSU72, an essential yeast gene encoding a novel protein that affects transcription start site selection in vivo, Molecular and cellular biology 16 (1996)1557-1566
    142. Wu W.H., Pinto I., Chen B.S., Hampsey M., Mutational analysis of yeast TFIIB. A functional relationship between Ssu72 and Sub1/Tsp1 defined by allele-specific interactions with TFIIB, Genetics 153 (1999)643-652.
    143.王华丙,张振义,包锐,等.ABC转运蛋白的结构与转运机制[J].生命的化学.2007,27(3):208-210
    144. Komoto N;Quan G X;Sezutsu H A single-base deletion in an ABC transporter gene causes White eyes,White eggs,and translucent larval skin in the silkworm w-3oe mutant [J] Insect Biochem Mol , 2009 39(02):152– 156
    145. Quan G.X ,Kanda T, Tamura T, Induction of the white egg3 mutant phenotype by injection of the doublestranded RNA of the silkworm white gene [J] Insect Biochem Mol 2002 , 11(03):217– 222
    146.刘彬彬家蚕低分子量热激蛋白基因克隆、表达和功能研究2007重庆:西南大学硕士论文147. Sugiyama Y, Suzuki A, Kishikawa M, et al. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 duringmyogenic differentiation [J]. J Biol Chem, 2000, 275(2): 1095-1104
    148. Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants [J]. Plant Mol Biol,1996, 32(11-2): 191-222
    149. Kirsch T,Nickel J,Sebald W.BMP-2 antagonists emerge from alterationsm in the low-affinity binding epitope for receptor BMPR-Ⅱ[J]. EMBO J,2000,19( 12): 3314 - 3324
    150. Kirsch T,Sebald W,Dreye M K.Crystal structure of the BMP-2-BRIA ectodomain complex [J].Nat Struct Biol,2000,7( 6): 492 -496
    151.张春东,谈娟,赵丹红,等.家蚕周期蛋白A基因( BmcyclinA)的克隆和表达谱分析[J].蚕业科学,2009,35( 4): 761 - 767
    152. Schefe J H, Lehmann K E, Buschmann I R, et al. Quantitative real-time RT-PCR data analysis: current concepts and the novel“gene expression’s CT difference”formula [J]. J Mol Med, 2006, 84: 901-910
    153.王瑞娴家蚕HSP基因的表达调控研究硕士论文,苏州:苏州大学,2011.
    154. MacAuley A, Cross J C, Werb Z. Reprogramming the cell cycle for endoreduplica- tion in rodent trophoblast cells [ J] . M ol B iol C el,l 1998, 9: 795- 807
    155. Zhang Y, Wei Z G, Li Y Y, et al. Transcription level of messenger RNA per gene copy determined with dual-spike-in strategy [J]. Anal Biochem, 2009, 394(2): 202-208
    156. Fugo, H., Arisawa, N., Oviposition behaviour of the moths which mated with males sterilized by high temperature in the silkworm, Bombyx mori[J]. J Sericultural Sci Japan, 1992.61, 110–115.
    157. Stapher C A,Dora P B,Klecka G M,et a1.A review of the environmental fate,effect and exposures of bisphenol A [J].Chemonphere,1998,36(10):2149-2173.
    158. Saito T., Yamashita O., MiyataT. Critical review of eendocrine disruptors in applied entomology [J]. Jpn. J.Appl. Entomol. Zool. 2000, 44:155-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700